INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M.M. Emmanuel et al., Vol.4, No.1

AN ENCRYPTION KEY MANAGEMENT
APPROACH FOR CONFIGURATION FILES

MOUKOUOP NGUENA lbrahim*, MOUPOJOU MATANGO Emmanuel***, ATSA ETOUNDI Roger**

*National Advanced School of Engineering, Faculty of Science, University of Yaounde |
**Department of Computer Science, Faculty of Science, University of Yaounde |

fMOUPOJOU MATANGO Emmanuel; Yaounde, Cameroon: Tel: +237 673 80 78 64, e-mail: moupojouemma®@yahoo.fr

Abstract—One of the major points of interest in software engineering nowadays is how to ensure applications configuration files’
security. In fact, they very often contain confidential information as database connection credentials, thereby providing a vulnerability
point to these applications, for those files have their information clearly written. Some studies upon 2200 applications revealed that
96% of them were vulnerable, and that 80% of those vulnerable applications contained vulnerabilities exposed by incorrect configuration
information management. Encryption is then used to secure these delicate files. The difficulty then lies in the usage and backup of the
encryption key so as to guarantee data security. To do this, current approaches are either to hide the encryption key in the application
source code or somewhere on disk, it's safety then being compromised; or to protect the key by bounding it to a specific user account,
the application can then operate only within this account, obligating that user to be physically present for the availability of the
key, which is an unacceptable constraint for critical systems. In this paper, we propose an encryption key management model solving
limitations mentioned above. The key lies only in main memory, which is great for its protection; it is submitted to the files security

module when starting using a secure and flexible way (directly, through https or SMS).

Keywords—Software engineering, configuration file, security, encryption key.

1. Introduction because they give critical information about the

design and operation of applications using them:

A configuration file is a file containing con-
figuration information used by a computer pro-
gram to adapt or customize its operations. A
configuration file may contain information such
as connection settings to a database (login, pass-
word, port number), communication protocols,
language preferences etc. In most cases, since
these information are clearly written, they should
never fall into the hands of ill-intentioned people,

this is a large security hole. For example: Joomla!,
Ciel Gestion Commerciale, OpenERP or MDAL
E] applications have their information clearly writ-
ten in their configuration files.

The report [15] of Cenzic Inc. reveals that 96%
of tested applications have vulnerabilities. On the
1. Megasoft Data Access Library: written in Java Frame-

work, facilitating the development, deployment, operation and
maintenance of applications accessing databases

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

|=| corfiquration phe E3

E«z
var Suser : user)
var Spassword : password
var $ftp port : o
var $ftp user : FIPUser 1

7 var $ftp pass : FIFPasaword

var Ssmtpuser : SMIFUser
var Ssmtppass : SHIPPassword

-

Fig. 1. Joomla! and MDAL configuration files

other hand, the 2013 Cyber risk report of HP [12]
states that, upon 2200 tested applications, 80% of
vulnerable applications contain vulnerabilities ex-
posed by incorrect configuration, and not by their
source code. In fact, attackers exploit misconfig-
ured servers or access to server configuration files,
enabling further, more sophisticated attacks, for
unsecured configuration files. An incorrectly con-
figured application can be just as dangerous as an
incorrectly coded one, assets the authors Savita
B. et al.; Ketki and Bryan Sullivan [19][30][7]. For
example, Jamie Riden et al. demonstrate how it
is possible, by a basic code injection, to download
a web application configuration file[25].

One of the biggest malware news stories of
these last years took place on 20 March 2013
in South Korea[l2]. In a timed and coordinated
attack, a malware payload was executed on about
48000 computers belonging to a number of tar-
geted businesses and organizations, effectively
crippling them for some time. The attack was
made possible because of the vulnerability offered
by configuration files which where unsecured or
secured by vulnerable tools as mRemote or Se-
cureCRT. In fact, Eric Romang, Raffacle Addesso
and Cosine Security demonstrate how is it possi-
ble to get passwords protected by mRemote or

| mailerdaemonparams - Bloc-nates

EE)

Fichier Edition Format Affichage 1

(ur1=jdbc:mysql:/ /emmanuel-PC:3309/evaluation
|dbuser=root

|dbpasswor d=manager10
|dbdriver=com. mysq]l. jdbc.Driver
|appliuser=system

|applipassword=mongui

|

SecureCRT[26][29] [2].

Cryptographyﬂ is then used to further secure
these files, over existing measures !} The difficulty
is then the choice and saving of the encryption key
to guarantee optimal data security, for the appli-
cation has to know the key used for encryption,
in order to read or write information on these
configuration files.

Many authors like A. Menezes et al. then agree
that the optimal encryption key manage-
mentﬂ to ensure data security is the main issue
in cryptography [17][18][3][20][11]. Kerckhoffs de-
clares: “The security of a cryptographic protocol
must be guaranteed by cryptographic keys used
for encryption and decryption, and not by the
encryption method”[I7] [22]. The security of the
system then depends on the confidentiality of the
cryptographic keys.

Encryption key management in this document
will mainly refer to their storage and usage.

2. Science of transforming a file according to a given al-
gorithm to make it unreadable without Conversely algorithm
applied.

3. Physical protection of server stations, definition of access
rights for user accounts, implementation of .htacces control for
web servers...

4. Activities involving the handling of cryptographic keys
and other parameters related to safety throughout the life of
the key. Ie their production, storage, use and destruction

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

2. Materials and Methods

2.1.
proaches

Existing Encryption Key Management Ap-

2.1.1
application or in a file on disk

Encryption key in the source code of the

the
source code of the

Some approaches advocate placing
encryption key in the
application[31][28], in a file on disk[3], or else
to use as key a feature of the server machine
[24](Hard drive id for example);

to Keith Martin the key security is then

according

compromised [16]. Indeed, an intruder having
the application and encrypted configuration files
could decrypt them; or make reverse engineering
on the application code to get the key. If the key
is stored on disk, he could access them on an
easier way, by code injection for example[25].

In addition to their respective disadvantages,
the following three approaches have in common
the fact that they require the administrator to be
physically present whenever the system boots so
that he submits the key [24], which according to
the authors Elaine Barker et al., is an unaccept-
able constraint for important systems [3].

2.1.2. Encrypting encryption key

This technique consists in encrypting the en-
cryption key itself with a key called KEK []
[5]. This new key is not stored on disk, but is
generated each time we want to make use for
encrypting or decrypting the master key. Further-
more, this new key is obtained through the PBE]

5. Key Encryption Key
6. Password Based Encryption

mechanism, comprising inputting a password and
a code for outputting a key. According to Keith
Martin, the problem is reduced to the manage-
ment of that other password and the code
[16], which must be identical to produce the same

KEK [6][1].

2.1.3. Backup the encryption key on an external
drive

To protect the encryption key, the administra-
tor could make use of a safety equipment[28][34]
like a HSM [] These are electronic components
more or less secured, which are actually digi-
tal saves for secured storage of critical elements
such as cryptographic keys. According to authors
Elaine Barker et al., the disadvantages are that
the external support could pose a security
risk[8], fall into evil hands, get lost, or cease
to function[3].

2.1.4. Encryption key protected by the operating
system

This approach consists in using the protection
mechanisms of user’s accounts of the operat-
ing system to protect the encryption key [24].
This may be, for example, a user environment
variable containing the encryption key [27]. In
the case of ASP. Net framework, Microsoft uses
a key pair for encrypting and decrypting the
“web.config” configuration file [21]. This key pair
is in turn encrypted using a key derived from the
user’s password[3]. The application is therefore
forced to operate within a specific user account;
if there is not real VPN or internet connection
allowing the user session to be started remotely,

7. Hardware Security Module

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

then it requires the physical presence of the
account holder to start it when necessary, oth-
erwise nothing works. To remedy this, it was
proposed to define a machine-level key container,
which is not recommended [[] However, this ap-
proach remains platform-specific (windows) and
technology-specific (ASP .Net).

2.1.5. Configuration files protected by vulnerable
tools

As mentioned in introduction, tools such as
mRemote or SecrureCRT are used to protect con-
figuration files. Eric Romang, Raffacle and Ad-
desso Cosine Security unfortunately demonstrate
how it is possible to recover passwords protected
by these tools [26][29][2]. Some applications in
the hacked machines in the introductory example
were protected by these tools, but the malware
still had access to the configuration information.
Note however that mRemote has recently been
withdrawn from circulation because of this flaw.

The main limitation of these existing ap-
proaches is the violation of the third and fourth
Kerchoffs’s rule[17] stipulating that: The key shall
be communicated and retained without using writ-
ten notes, and shall be modifiable at any moment;
and that the system must be applicable to tele-
graphic correspondence. The six rules established
by Auguste Kerchoffs for a cryptographic system
will be used later for the validation of the model
proposed here.

8. RSA key information may persist even when the Windows
user profile is deleted

2.2. Proposed Method: Keeping Encryption Key in
Main Memory

To protect configuration files data, the idea is to
make them incomprehensible to anyone who even
succeeded to get them. Cryptography is then use
to protect those data.

The model proposed here is the definition of a
new method of configuration files encryption key
management. Specifically, it will set the policy of
the secured encryption key management and the
interactions with the security moduleﬂ proposed
here, knowing that this key can be remotely
transmitted.

As mentioned previously, this model should:

1. Avoid linking the encryption key to a specific
user account.

2. Never store it to disk, but keep it in main
memory in order to protect it.

3. Allow the remote submission of the encryp-
tion key using a secure and flexible way.

2.2.1. Solution architecture

The objective is to move from the configuration
of Figure [2| to the one of Figure [3| below:

In Figure [3] “Configuration Files Securer”
(CFS) designates the component responsible of
encrypting and decrypting configuration files.
When the application needs to access a configura-
tion file, it uses that component. The component
then decrypts the file and sends the result back to
the application. If the application needs to write
data in a configuration file, it also works with the
component by sending the data to write in the

9. The one in charge of reading/writing data in configuration
files

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

Write (f, data)

—
Clear

Configuration

=
O
=
S
—1
o
o
=L

data = Read (f)

. file

Fig. 2. Classical Access to configuration files

Write (f, data)

data = Read (f)

=
o
=
S
—1
o
o
=

| Encrypted
Configuration

file

WriteE (f, data)

—

data = ReadE(f)

Start (encryption_key)

Administrator

Fig. 3. Secured access to configuration files

file. The CFS writes data in the file and encrypts
it.

To perform its task, the CFS takes as input the
encryption key sent by the system administrator,
at the startup of the module. This key is never
stored on disk, but remains exclusively in main
memory. When the administrator is not present
in front of the server machine at the startup, it’s
possible to remotely transmit the key in several
ways, depending on whether he is connected to
the network or not, while ensuring key security.

2.2.2. Risks identification

Data in encrypted configuration files must be
decrypted before their use by applications. This
fact implies a symmetric encryption (using a
unique key). The problem to solve here then is
the encryption key protection and accessibility[9].
Indeed, once the configuration files are encrypted,

they must be decrypted so that applications can
continue to read or to write configuration infor-
mation in these files. This should be done using
the same key used for encryption.

When thinking about a way of managing the
encryption key, we must also think about pirate
decoding attempts. It must be clearly understood
that an intruder will try to decipher the key, he
will perhaps have access to the source code of
the application. To ensure the reliability of the
proposed encryption key security solution, a way
to eliminate the risks of hacking that key must
be provided. In this context, three enemies have
been identified:

1 The one having access to the server machine
and the application source code (intruder 1)

2 The intruder who intercepted the encryption
key when submitted remotely (intruder 2)

3 The intruder combining 1 and 2 (intruder 3)

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

2.2.3. Model description

The encryption key is never stored on disk,
but remains only in main memory (intruder 1
disabled)[32][28]; it’s then secured. An attack at-
tempt could be to suddenly restart the machine,
so as to cause a dump of the main memory
content to disk, in order to recover the key later
from disk. This potential vulnerability is solved
by prohibiting dump of memory areas contain-
ing sensitive information [32]. Here, however, the
intervention of the administrator or RCO [is
needed to start the configuration files manager.
He is notified by a message sent to him by the
security module at the startup, when waiting for
the key. Doing this reduces the probability for the
system to remain in a locked state because of the
administrator’s absence at the startup. If he is not
physically present to start the service, an Https
or an SMS channel for remote transmission of the
encryption key is made available, thus allowing
the start of the service. This GSM solution for
the key transmission is very useful for countries
where GSM network is always present, rather
than internet connection (this is the case for many
African countries). More, here, the application
can operate under any user account unlike OS
solution.

1 Encryption Key Transmission Inter-
faces
The proposed security Component has three
interfaces through which the administrator
can submit the encryption key. At startup,
the security module instantiates each of
these interfaces, and remains awaiting the
key listening on each of them. Upon receiv-
ing the encryption key through one of these
interfaces and checking that it is correct, it

10. Responsible of Cryptographic Operations

then closes them all and can start operating.
Those interfaces are:

a) Direct or Window
This interface is useful when the ad-
ministrator actually is in front of the
machine at the startup. A window is
displayed and he can directly enter the
encryption key.

b) Https
Used when the administrator is not
physically present at workstation, but
has a network connection. He can then
run the web page built and deployed for
this purpose, and submits the encryp-
tion key . This key is securely transmit-
ted to the security module, which closes
all interfaces after receiving it.

c) SMS
Useful when the administrator is not
present at the workstation, and does
not have a network connection. He then
sends the key by SMS to a phone
connected to the server. The security
module communicates with the phone
via the serial port and can read or
send SMS (to inform about the startup
status). The SMS containing the key is
immediately deleted after the key has
been read.

2 Using asymmetric encryption

Asymmetric encryption [33][3] is used for the
encryption key transmission. The encryption
key is encrypted with the public key and
decrypted with the corresponding private
key on each side of the entities exchanging it.
We therefore use asymmetric encryption for
the protection of the symmetric encryption
key [10][23].

i At startup, the security module gener-

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

ates a pair of public/private key and
publishes its public key; the private key
remains in main memory and is not saved
on disk.

ii The administrator uses this public key to
encrypt the encryption key before sub-
mission.

iii The security module then uses its private
key to decrypt the transmitted encrypted
key, and thus obtains the configuration
files encryption key, which also remains
in main memory.

If the administrator is absent, has no con-
nection to the network, or tool to perform
its encryption, he can make use of an SMS
to transmit the encryption key. The fear is
that the key sent away may be intercepted
(intruder 2): The technique of one-time pass-
word [1[33] [13][35] is then used, as described
below:
3 Using one-time password

At the starting of the CFS module, the
administrator proceeds as follow:

i He encrypts and submits the current
password and the next password through
one of the interfaces at his disposal.

ii. The CFS then verifies that the current
password can perform the decryption,
and that the new password has not yet
been used.

iii If these two conditions are met, config-
uration files are decrypted with the cur-
rent password and re-encrypted with the
new one, that remains in main memory.
The new key is then encrypted by an
irreversible encryption and saved in the
list of passwords already used.

Without password encryption, if the mes-

11. Valid password once to connect to a system

sage is intercepted by an intruder, he will
know the key used to make the last encryp-
tion, and if he has access to encrypted files,
he could decrypt them. To avoid this, the
reverse Vigenere square [7]is used to perform
codification of the key before submitting it
to the security module. This module has a
copy of this square, and uses it to determine
the real passwords transmitted. On the other
hand this square is encrypted on disk, using
the hashed identifier of hard drive as encryp-
tion key.

3. Results and Discussion

3.1. Results

As result of this work, it was proposed an
encryption key management model for config-
urations files ensuring the protection and the
availability of that key.

Concretely, the result consists in a security
module (component called “Configuration Files
Securer”) placed between encrypted configuration
files and applications. At the startup, this compo-
nent notifies the administrator that it needs the
encryption key (that is never stored on disk), and
receives it in a secured and flexible way'%, and
can then start deserving applications requesting
access to their configuration files. Notice that
this solution respects all the Kerckhoffs rules
established for a cryptographic system [17].

Figure [0] describes the internal structure of that
security module:

12. Variant of Vigenere square, developed by Dr. MOUK-
OUOQP. It is a matrix of 31 columns and N rows. Each line
corresponds to a character of the selected alphabet, and each
column corresponds a day of the month. The character to
be used on day j to encode the character i is placed at the
intersection of row i and column j.

13. directly, through https or SMS

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

Private_Key (private key remaining in RAM)

Public_Key

- Administrator

En_Key =encrypt (password, Public _Key)

password = decrypt (En_Key, Private_Key) i

Fig. 4. Starting security module using asymmetric encryption

— Enc_Vig [old_key), Enc_Vig (new_key)

Administrator

Fig. 5. Starting security module using one-time password

3.2. Discussion

3.2.1. Model validation by Kerckhoffs principles

We now check whether the proposed model
meets the six rules established by Kerckhoffs for
a cryptographic system [17].

1 The system must be physically, if not
mathematically, indecipherable
To implement the solution, AES-256 algo-
rithmEl was chosen because, despite exist-
ing theoretical attacks[4], it is currently the
safest symmetric encryption algorithm [14].

2 It must not require secrecy, and it can
conveniently fall in the hands of the

14. Advanced Encryption Standard

old_key = Dec_Vig (old_key)
new_key = Dec_Vig (new_key)

If {consistency (old_key, new_key]) then

1. encrypt (decrypt(f, old_key), new_key)
2. password = new_key

3. save (Enc_lrrinew_key]) iii

enemy

This rule, also called Kerckhoffs’ princi-
ple means that: Any encryption method is
known by the enemy and the security of
the system only depends on the key man-
agement. The main purpose of the proposed
model was precisely to protect the encryp-
tion key. It is clearly written nowhere and
resides only in memory when used.

The key must be provided and retained
without written notes, and be changed
or modified at the discretion of the
relevant

As said earlier, the encryption key is clearly
written nowhere and resides only in main
memory. In addition, the proposed model

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M.M. Emmanuel et al., Vol.4, No.1

Configuration Files Securer

=
=

5
Interfaces =
vt
n
.
; =
[ees data = read (f)
@ o Eﬁ"’ar o I | = Application
v Https M write (f, data)
Administrator
SMS i‘: E
= g
=
= ke
i i
n
sendMessa ge (*Subm itK ev™)
Encrypted

Configuration File

Fig. 6. Internal Schema of the security component

allows the keys to be modified at any time
for security purposes.

It must be applicable to telegraphic
correspondence

The model proposed here makes it possible
to remotely transmit the encryption key at
the startup of the security module. The
key can be transmitted via https, SMS, or
directly entered into the system, and this is
done using a secured way.

It must be portable, and its usage and
operations not requiring the assistance

of several people

Only a system administrator is required to
manipulate the encryption key.

The system must be easy to use, re-
quiring no spirit strength, nor knowl-
edge of a long series of rules to be
observed

It is true that the usability is a rather
relative concept, especially in the case of
a security system. However, once taken in
hand, the processes described in the pro-
posed model do not prove to be complex.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

M.M. Emmanuel et al., Vol.4, No.1

3.2.2. Complexity of the system hacking problem

Assuming that the variant of the one-time
password has been used, to perform an attack
other than brute force unto the system to access
configuration information, the attacker shall:

e Pick up the transmitted key. This is very dif-
ficult, because he does not previously know
which of the three interfaces (SMS, https, or
window) will be used by the administrator
to submit the password, in order to monitor
it.

e Have the decrypted reverse Vigenere square
(so he shall have access to the application
source code and to the server’s hard disk
identifier).

e Make an intrusion on the server to have
currently encrypted configuration files.

However, it is practically = impossible
to simultaneously meet, these three
conditions in an application session:

the solution thus proves to be reliable.

3.2.3. Comparison of the different encryption key
management approaches

Table [I] below summarizes and compares the
different approaches of encryption key manage-
ment for configuration files’ security.

4. Conclusion

Configuration files contain confidential informa-
tion which should be preserved from all attacks,
it is then necessary to encrypt them. To protect
the encryption key, existing approaches consisted
firstly in hiding the encryption key in the applica-
tion source code, or somewhere on disk, its safety
being compromised; or to exploit the protection
mechanism of users accounts of the operating
system, the problem is this case is that the ap-
plication can operate only under a specific user
account, which is quite restrictive for important
systems. Moreover, the physical presence of this
user is needed at the startup of the system. In
this paper, a model was proposed to address these
limitations. The encryption key is kept only in
main memory, and may be submitted remotely
to the configuration files security module when
starting using a secure and flexible way. In per-
spective, this module could be enhanced to be de-
veloped and deployed as a real stand alone server,
which can serve simultaneously a multiplicity of
applications or distributed applications; it should
therefore be necessary to define a protocol for
client applications authentication.

Acknowledgments

The thank the
Cameroon for premium sought they gave us

authors government of

in funding for our research. We thank the
CETI(™] for funding our research. We thank
MEGASOFT SARL Company for allowing us to

undertake this work.

15. Centre d’Excellence Africain
I'Information et de la Communication

en Technologies de

10

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M.M. Emmanuel et al., Vol.4, No.1

TABLE 1
Summary and comparison of different approaches of encryption key management for configuration files’
security

IMPLEMENTSYSTEM SOLUTION

APPROACH DESCRIPTION ATTACK
Key hidden Applications have in their source
in applica- code the key enabling them to en-
tion source crypt and decrypt configuration EASY EASY EASY
code files
Key saved The system reads the key from
on disk disk. The key may be read from
a file, the hard drive identifier, = EASY MEDIUM EASY
a user environment variable con-
tent...
To start the security module, the
administrator encodes the cur-
rent and new passwords using the
reverse Vigenere square. The sys-
Using tem decodes the passwords, re-
one-time ceived through one of its three
password interfaces (window, SMS, https) COMPLEX COMPLEX COMPLEX
+ reverse and starts if the current password
Vigenere is the last to be used, and the new
square password ever. The files are then
decrypted with the current pass-
word and re-encrypted with the
new one, that remains in main
memory.
The system generates a pair of
public/private keys and publishes
its public key, but keeps the pri-
vate key in main memory. The
Using administrator uses that public
asymmetric key to encrypt the password be- MEDIUM COMPLEX MEDIUM
encryption fore submitting it. The security

module decrypts the transmitted
encrypted key with its private
key, and gets the encryption key
that also remains in main mem-
ory.

11

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M.M. Emmanuel et al., Vol.4, No.1

References

[1]
2]

3]

[4]
[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

Symmetric-key management, 2014. http://books.mcgraw-
hill.com/downloads/products/.

Raffaele Addesso. Van dyke securecrt discloses password
to local users, fevrier 2013.

Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid. Recommendation for key man-
agement. National Institute of Standards and Technology,
juillet 2012.

Andrey Bogdanov, Dmitry Khovratovich, and Christian
Rechberger. Biclique cryptanalysis of the full aes. 2011.
S. Burnett and S. Paine. Rsa security’s official guide to
cryptography. RSA Press, 2001.

David Cane, David Hirschman, Philip Speare, and Lev
Vaitzblit. Secure file archive through encryption key
management. United States Patent N. 5940507, aout 1999.
B. Savita Chavan and B. B. Meshram. Classification of
web application vulnerabilities. International Journal of
Engineering Science and Innovative Technology (IJESIT),
Volume 2(ISSN: 2319-5967):page 241, mars 2013.

Richard Clayton and Mike Bond. Experience using a low-
cost fpga design to crack des keys. Cryptographic Hardware
and Embedded Systems, aout 2002.

Club de la Securité de 'Information Frangais. Gestion des
secrets cryptographiques : Usages et bonnes pratiques, mai
2012.

Tan Curry. An Introduction to Cryptography and Digital
Signatures. Entrust, mars 2001.

de la des
d’information France. Gestion des clés cryptographiques,
mars 2006.

Joy Marie Forsythe, Brian Gorenc, Heather Goudey,
Abdul-Aziz Harir, Scott Lambert, John Park, Joe Sech-
man, Nidhi Shah, Jasiel Spelman, Jewel Timpe, and Jewel
Timpe. Cyber risk report 2013. Technical Report 4AA5-
0858ENW, HP, janvier 2014.

Neil M. Haller. The s/key one time-password system.
CiteSeer, fevrier 1994.

Romaric Hinault.

Direction centrale sécurité systemes

Le chiffrement aes cracker par des
chercheurs francais belges et de microsoft, aout 2013.
http://www.developpez.com/actu/36169/Le-chiffrement-
AES-cracke-par-des-chercheurs-francais-belges-et-de-
Microsoft-la-methode-reste-tres-complexe//.

Cenzic Inc. Application vulnerability trends report. Tech-
nical report, Cenzic Inc., 2014.

Martin Keith. Cryptographic Key Management. Informa-
tion Security Summer School, juillet 2006.

Auguste Kerckhoffs. La cryptographie militaire. Journal
des sciences militaires, janvier 1883.

Gary C. Kessler. An Overview of Cryptography, Novembre
2006.

(19]
20]

(21]

(22]

23]

24]

(25]

(28]

29]

[30

31

32]

33]

Ketki. Common vulnerabilities in configuration files,
juillet 2013.

A. Menezes, Van P. Oorschot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, juillet 1996.
Microsoft.
tion a l'aide de la configuration protégée, decembre 2013.
http://msdn.microsoft.com/fr-fr/library /53ty fkaw

Nadia EL MRABET, J. C. Bajard, and S. Duquesne.
Cryptographie. LIRMM-I3M-CNRS Université Montpel-
lier I, octobre 2008.

Christof Paar. Symmetric Key Management:Key Deriva-

Chiffrement des informations de configura-

tion and Key Wrap. Ruhr-Universitat Bochum, fevrier
2009.

Radek. Where to store a key for encryption, mars 2012.
http://security.stackexchange.com/questions/12332/where-
to-store-a-key-for-encryption.

Jamie Riden, Ryan McGeehan, Brian Engert, and Michael
Mueter. Know your enemy: Web application threats, juin
2014.

Eric Romang. Eric romang blog : Securecrt, juin 2014.

C. Ross. Standards
words in configuration

for
files,

encrypting pass-

decembre 2013.

http://security.stackexchange.com/questions/15040/standards-

for-encrypting-passwordss-in-configuration-files.

Karen Scarfone, Murugiah Souppaya, and Matt Sexton.
Guide to Storage Encryption Technologies for End User
Devices, novembre 2007.

Cosine Security. Stealing passwords from mremote, juin
2011.

Bryan Sullivan. Top 10 Application Security Vulnerabilities
in Web.config Files-Part One. SPI Dynamics, mai 2007.
Nicolas VERNON. Réalisation d’un outil d’extraction de
données et sécurisation du projet DNA. Université de
Nantes, Aout 2008.

John Viega. Protecting sensitive data in memory, février
2001. http://www.ibm.com/developerworks/library /s-
data.html?n-s-311.

Nafi Kawser Wazed, Tonny Shekha Kar, Sayed Anisul
Hoque, and Dr. M. M. A Hashem. A newer user authen-
tication file encryption and distributed server based cloud
computing security architecture. International Journal of
Advanced Computer Science and Applications, 2012.

Bing Wu, Jie Wu, and Mihaela Cardei. A survey of key
management in mobile ad hoc networks. Handbook of
Research on Wireless Security, 2001.

Ilsou YOU. An one-time password authentication scheme
for secure remote access in digital home networks. Journal
of Security Engineering, novembre 2005.

12

	Introduction
	Materials and Methods
	Existing Encryption Key Management Approaches
	Encryption key in the source code of the application or in a file on disk
	Encrypting encryption key
	Backup the encryption key on an external drive
	Encryption key protected by the operating system
	Configuration files protected by vulnerable tools

	Proposed Method: Keeping Encryption Key in Main Memory
	Solution architecture
	Risks identification
	Model description

	Results and Discussion
	Results
	Discussion
	Model validation by Kerckhoffs principles
	Complexity of the system hacking problem
	Comparison of the different encryption key management approaches

	Conclusion
	References

