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Abstract- Development in computing technology for the past decade has also given rise to threats against the users, 

particularly in form of malware. However, manual malware identification effort is being overwhelmed due to the sheer number 

of malware being created every day. Most of the malware are not exactly created from scratch; large numbers of them are 

byproducts of particular malware family. This means that same or slightly modified resolution can be applied to counter their  

threat. This paper analyzes string matching methods for identification of same family malware. We investigate and compare 

the effectiveness of three well-known pattern matching algorithms, namely Jaro, Lowest Common Subsequence (LCS), and N-

Gram. After researching these three algorithms we found out thresholds of 0.79 for Jaro, 0.79 for LCS, and 0.54 for N-Gram 

showed to be effective for string similarity detection between malware. 
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1. Introduction 

 

In the annals of computing history, 

technological advances have enabled advances in 

threats against the users. One form of these threats 

is malware. Since malware’s first creation in 1970, 

there have been numerous variations of malware 

circulating around the world. The complexity and 

attack vectors of malware have also advanced 

along with advancements in technology. In recent 

decades, malware mainly targeted personal 

computer users but as mobile operating systems 

become increasingly common, malware target has 

also shifted toward mobile operating system users. 

Similarly if recently private company networks 

were the main target of malware, it is possible that 

the next malware attack may be aimed to cloud 

computing network. 

While the motivation behind malware creation 

varies, there is no doubt about its destructive 

nature by its exploitation of vulnerabilities. These 

vulnerabilities can be found any time, even on the 

same day the software is released [1].  

Concerns regarding apparent vulnerabilities of 

computer users, coupled with the malware 

capability to elude detection, trigger a unified 

effort between software companies and academic 

researchers. Together these parties work to devise 

analysis methods that will identify and help 

resolve these threats. 

Due to the significance of malware 

identification in formulating solution, we perform 

research on improving the framework of same 

family malware identification. Same family 

malware identification hold significant importance 

because the same base solution to a malware attack 

can be applied within malwares of the same 
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family. This research for same family malware 

identification is done through application of string 

matching algorithms with appropriate threshold 

values. Specifically, we have evaluated the 

performance of well-known string matching 

algorithms to identify same family malware. As 

reflected later in Section 4, we have shown that 

string matching algorithms can be employed for 

differentiating same family member malwares 

from distinct ones. 

The rest of the paper is organized as follows. In 

Section 2, related studies in malware identification 

are discussed. The employed methodology is 

elaborated in Section 3. Test case and results are 

discussed in Section 4 and the paper is finalized 

with discussion and conclusion section. 

 

2. Background Study 

 

According to Islam et al. [2], manual malware 

analysis has become overwhelmed due to the 

higher volume of malware being produced every 

day. Contrary to this; however, Walenstein et al. 

[3] found through their research that the high 

volume of malware is a byproduct or a variant of a 

malware family. Therefore further research must 

be done to analyze malware similarities and 

differences for identification purpose. 

Motivated by the facts presented by Walenstein 

[3] and Kendall et al [4], the method of malware 

identification and classification are categorized 

into two types of analysis: dynamic analysis and 

static analysis. According to [4], dynamic analysis 

is done through studying the behavior of a running 

malicious code in a controlled environment such as 

in a virtual machine. Dynamic analysis may yield 

immediate information on what the malware is 

doing instead of how it accomplishes its purpose. 

The authors in [4] stated that the static analysis 

performs its task by studying a malicious code 

structure and extracting assembly code without 

actually running it. Static analysis research can be 

slow and exhaustive, but the result gained is very 

detailed.  

This research will focus on static analysis due 

to the fact that it is safer and may provide detailed 

results albeit in a slower and more complex way.  

According to [2] and [4], static analysis is usually 

done in one of these ways: Features analysis or 

contextual analysis. The authors in [2] explained 

that features analysis conducted by analyzing 

bytes, binary, and disassembly. This type of 

analysis measured certain patterns in the malware 

and was exemplified by [2], [3] and Park et al [5]. 

Features analysis key argument is that no matter 

what code is being executed, the end result is still 

the same. Contextual analysis utilizes command 

string/code analysis. This method examines strings 

inside suspected malware that is represented in a 

certain programming language or an unusual 

Windows PE API calls. Islam et al. [2], Lee et al. 

[6], and Sulaiman et al. [7] used this type of static 

analysis in their research.  

The authors in [6] and [7] showed that 

contextual analysis yields more accurate results 

and provides better classifications. They further 

argued that by knowing which strings were used, it 

may show which programming language and 

Windows API are being employed. This will be 

helpful in determining exploits and the pattern 

being used by the malware. The authors in [5] 

proposed that both methods of malware analysis 

have something in common: both perform 

difference and similarity analysis on the malware. 

The similarities helped detect generic signatures 

while the differences helped on improving an 

existing solution. Combined, features analysis and 

contextual analysis were the main methods being 

used in malware identification and classification. 

The authors in [2], performed classification of 

malware features through a combination of 

methods called Function Length Frequency (FLF) 

and Printable String Information (PSI). FLF 

measures the “length” of the function through the 

number of bytes of code in it, and the frequency 

these “length” occurs within a particular sample of 

malware. They found out that within the same 

malware family, the shape of the function’s 

“length” pattern was similar. PSI method extracted 

printable strings and analyzes of their occurrence 

in samples to form a pattern. PSI has a global list 

of available API calls and counts the occurrence to 

determine the pattern. The authors in [2], did not 

mention about similarity analysis being done in 

PSI but rather looked for the occurrence count. 

This can potentially be enhanced by introducing 

string similarity detection algorithm to reduce 

redundant occurrence count. Further the authors 



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE  
F. Mastjik et al. ,Vol.4, No.3 

106 

claim classification efficiency being over 98 

percent. 

The authors in [3], proposed a method which 

analyzes distinctive feature comparison of 

information. This is opposite to the traditional 

method of looking at a particular signature. They 

employed a method to determine "n-grams" which 

is a sequence of n-characters found in succession 

inside disassembly. They also measured "n-perms" 

which is the same as n-grams except the ordering 

of the characters is not taken into account. The 

results were further weighted for relevance and 

applied into a vector model by calculating the 

result using standard cosine similarity formula. 

The lower the score, the less relevant the feature 

was. The relevant features that match a certain 

similarity threshold were then compared iteratively 

through a database where it was ranked in the 

order of similarity for further classification. 

Research by [5] featured assembly instruction 

sequence similarity analysis through byte 

comparison and byte order analysis. This method 

calculated the frequency of certain instructions that 

appear in sequence of cmp blocks in assembly 

instruction. This frequency was modeled into a 

vector and further calculated to compare the cmp 

blocks between the source program and target 

program to find the similarity. The formula being 

used to calculate the vector of similarity is the 

standard cosine formula such as being used by [3].  

The authors in [5] used the Levenshtein 

distance [6] to calculate the similarity based on the 

assembly instruction order. If there are some 

sections with similar frequencies of assembly 

instructions and similar order in the sequence, it is 

considered similar. The authors in [7] performed 

their research by extracting strings of malicious 

executable. They devised a method to filter these 

strings based on several qualifications such as the 

length of strings, and filtering out normal/common 

API calls. Once the data is filtered, they employed 

Jaro-Winkler algorithm with a modified 

Levenshtein distance algorithm to determine if one 

malware is a member of a certain family through 

its similarities. The researchers also managed to 

show that the lower level similarity in the same 

family of malware is a possible indication of 

polymorphism or mutation in the code.  

In [8], the authors gathered a collection of API 

“snippets” extracted from binary into a readable 

windows PE string format. These snippets were a 

collection or sequences of unusual API calls. 

These sequences share characteristics between 

malware and the authors assumed they do not 

appear in a normal program. To support these 

assumptions, the snippets were compared to 

normal program to see if any of the bad snippets 

appear anywhere in the body of code from the 

extracted string. If there were no matches found 

within non-malicious program then it was 

considered a malicious characteristic. These 

characteristics were then organized further for 

classification and identification of certain malware 

family. 

From [7] and [8] we see that [7] employs a 

certain kind of modified Jaro-Winkler algorithm, 

the approach that they used can definitely be 

improved through refining the filter and comparing 

the algorithm with other string similarity detection 

algorithms, while the pattern comparison in the 

other work, [8], can certainly benefit from actual 

use of string similarity algorithm to which it can 

potentially increase the efficiency of 

characteristics detection. 

 

3. Methodology 

 

Based on the previous study, we focused our 

research on leveraging the string similarity for the 

purpose of identification and classification of 

malware families. In order to do this, we choose 

three well-known algorithms for string similarity 

detection.  

3.1. Jaro Algorithm 

 

Jaro is a type of edit-distance algorithm which 

detects string similarity by counting minimum 

number of operations needed to transform one 

string to another [9]. The improved version of this 

algorithm, Jaro-Winkler, is relying on the literature 

results that claims most misspelling errors occur 

after the 4th character; thus, boosting the closeness 

degree if the mismatch is located later part of the 

word.  

 Therefore, we have modified the Jaro 

algorithm as follows: 
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Dj = ½ * (m/[S1] + m/[S2])   (1) 

 

Where S1 and S2 represent the number of 

characters in the strings respectively and m 

represents the total number of characters matching 

between S1 and S2. 

3.2. LCS Algorithm 

 

According to [10], LCS is a similarity 

detection algorithm which uses the concept of 

finding the longest subsequence common to all 

sequences in a group or series of sequences (often 

only two sequences). LCS can be a variant of edit 

distance algorithm when only insertion and 

deletion operations are allowed.  

3.3. N-Gram Algorithm 

 

According to [3], N-Gram algorithm is a string 

matching algorithm utilizing a collection of n-

items from a contiguous sequence of strings. And 

n-gram of size one is referred as unigram, two is 

known as bigram, and three is a trigram. For string 

similarity matching usually a trigram is used as 

exemplified by [3] in their research. Borrowing 

from this previous research we establish our N-

Gram test with tri-gram.  

Using these three algorithms, we conduct an 

experiment with several families of malwares to 

determine the optimum condition for identifying 

same family malware.  

However, in case of malware, the only reason 

for a misspelling to occur is in obfuscation and 

when that happens the scrambling can take place 

any part of the text. Moreover, Jaro algorithm 

takes the accidental transposition of two adjacent 

letters as one of the possible ways of creating 

mistyped data and this greatly impacts the distance 

score of two misspelled words. However, this 

scenario is rarely seen in malware; thus, having 

this measure can increase the false positive ratings. 

 

4. Test Case and Results 

 

To conduct the first experiment, four random 

different malware families were obtained. 

Furthermore, we take randomly two or three 

random samples of malware belonging to each 

family with a total of eleven samples, as shown in 

Table 1 : 

Table 1. Malware sample list 

Malware Family Sample Name 

Asylum A1,A2,A3 

Bagle B1,B2,B3 

Welchia W1,W2 

Brontok C1,C2,C3 

 

For the purpose of experiment, the strings from 

these malware are extracted and compared 

between same families and cross-compared 

between different malware families. Strings 

extracted from the malware comprised of 

Windows API calls and non-Windows API calls. 

Non-API calls may contain either signature strings 

or patterns that can be used to identify malware 

families; however it may also contain meaningless 

strings. For our first series of tests the entire 

extracted strings are compared. Table 2 represents 

exact identical strings found in malware 

comparison. 

A series of tests are run to establish optimum 

thresholds for two strings to be considered near 

identical. The thresholds are established using two 

criteria: 1. The adjusted thresholds need to show 

high quantity of near-identical strings between 

same-family malware. 2. The adjusted threshold 

needs to show zero or low quantity of near-

identical strings between two malware of different 

families. Exact number of string similarity 

occurrence to be considered as high quantity and 

low quantity are refined throughout the 

experiment. 

It is important to note that thirteen comparisons 

out of fifty five comparisons are being displayed as 

a demographic of the strings comparison 

algorithms effectiveness the reason for this is 

because other comparisons between different 

samples within same family or different family 

shows near or identical counts (e.g. C2vA1 shows 

the same result with C1vA1). 
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Table 2. Exact identical strings 

Malware Comparison 

Modified 

JARO LCS 

NGRA

M 

C1vC2 18 18 18 

C1vC3 18 18 18 

C1vA1 2 2 2 

C1vB1 1 1 1 

W1vW2 12 12 12 

W1vA1 7 7 7 

W1vB1 3 3 3 

W1vC1 2 2 2 

A1vA2 51 51 51 

A1vA3 51 51 51 

A1vB1 20 20 20 

B1vB2 21 21 21 

B1vB3 26 26 26 

Table 3 shows near identical strings found in 

malware comparison done with optimum 

thresholds of 0.79 for Jaro, 0.79 for LCS, 0.54 for 

n-Gram.  

The result from the test also shows that any 

single string may have both identical and near 

identical results when compared. For example the 

string “lstrcpyA” from sample A1 has an identical 

match in sample A2 and a near identical match 

with the string “lstrcmpA” in the same malware 

sample.  

In Figure 1, the same GET script appears on 

both sample A1 and A2, which is a very 

distinguishing similarity between the two. This 

line clearly indicates they belong to the same 

malware family 

Figure 1. Identical Non-API Call from A1 vs A2 

 

 

Table 3. Near identical strings 

Malware Comparison 

Modified 

JARO LCS NGRAM 

C1vC2 5 3 0 

C1vC3 0 0 0 

C1vA1 0 0 0 

C1vB1 0 0 0 

W1vW2 5 4 1 

W1vA1 1 1 1 

W1vB1 4 4 2 

W1vC1 0 0 0 

A1vA2 14 14 1 

A1vA3 15 12 3 

A1vB1 10 9 2 

B1vB2 10 9 4 

B1vB3 11 8 3 

 

The conclusion derived from the comparison 

between full extracted strings shows Windows API 

calls can theoretically be used as a malware family 

identifying pattern as exemplified by [8], however, 

the test also shows Windows API calls might be 

just common program initializer that can occur on 

any kind of application. Non-API calls on the other 

hand clearly signify a pattern or may contain 

identifier. 

To further gain focused result, another series of 

tests are done with the Windows API excluded 

from the string extracts. After removing the 

Windows API strings, the numbers of exact 

identical strings shows are shown in Table 4. This 

Windows API filtering resulted in a simplified and 

faster detection for malware differentiation. 

The test impact is visible on the quantity of 

near -identical strings detection, it reduce the 

amount of near identical detection by almost 40 

percent as shown on Table 5.   
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Table 4. Filtered identical strings 

Malware Comparison 

Modified 

JARO LCS NGRAM 

C1vC2 15 15 15 

C1vC3 0 0 0 

C1vA1 0 0 0 

C1vB1 0 0 0 

W1vW2 2 2 2 

W1vA1 0 0 0 

W1vB1 0 0 0 

W1vC1 0 0 0 

A1vA2 2 2 2 

A1vA3 0 0 0 

A1vB1 0 0 0 

B1vB2 0 0 0 

B1vB3 0 0 0 

 

Removal of Windows API calls will speed up 

signature analysis, reduce false positives, and may 

potentially reduce the time needed for malware 

family classification when used in large batches of 

files. 

Both tests show evidence that the appearance 

of meaningless strings is not a coincidence and 

may act as potential differentiating malware 

signature if, and only if: 

1. The meaningless strings show as exact 

identical match. 

2. It appears consistently over a 

significant population of a malware family. 

Furthermore to support this argument, D. 

Plohman [11] showed that a string that seems 

meaningless might be a code reference in 

assembly, only that these codes are obfuscated. 

As a final test, we have randomly selected 

forty six malware samples from twenty different 

malware families, and executed the algorithms to 

test the performance.  

 

Table 5. Filtered near identical strings 

Malware Comparison 

Modified 

JARO  LCS NGRAM 

C1vC2 5 3 0 

C1vC3 4 7 2 

C1vA1 0 0 0 

C1vB1 0 0 0 

W1vW2 5 4 1 

W1vA1 0 0 0 

W1vB1 0 0 0 

W1vC1 0 0 0 

A1vA2 10 10 1 

A1vA3 4 5 2 

A1vB1 0 0 0 

B1vsB2 7 7 3 

B1vB3 6 5 3 

 

The results of the comparisons are four 

parameters used to calculate, sensitivity, 

specificity, precision, and accuracy of the 

algorithms. These four parameters are true 

positives, true negative, false positive, and false 

negative.  

Any comparison showing negative similarity 

detection between two malware of different family 

is defined as true negative, while positive 

similarity detection between same family malware 

is called true positive. On the other hand, 

comparison showing negative similarity detection 

between two malware of same family is called 

false negative, while positive similarity detection 

between two malware of different family is called 

false positive. 

Table 6 shows cumulative true positive, true 

negative, false positive, and false negative of all 20 

families, however the calculation for sensitivity, 

specificity, precision, and accuracy is an average 

of all 20 families sensitivity, specificity, precision, 

and accuracy. 
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Table 6. Cumulative true/false positive and true/false 

negative 

Comparison Result Modified Jaro LCS Ngram 

Total True Positive  18 13 8 

Total True Negative 825 817 860 

Total False Positive  57 49 18 

Total False Negative 8 13 18 

 

Sensitivity is a proportion of true positives [12] 

that are correctly identified by the malware 

comparison test. Specificity is a proportion of true 

negatives that are correctly identified by the 

comparison test [12]. Precision measures the 

relevancy of a data through fractional portion of 

true positive from the combination of true 

positives and false positives [13]. As shown in 

Table 7, modified Jaro algorithm has higher 

precision rates than the LCS and N-Gram. 

Table 7. Performance results 

Algorithm Specificity Sensitivity Precision 
Original Jaro 91.98% 60.83% 31.64% 

Modified Jaro 95.19% 65% 38.62% 
LCS 94.15% 55% 32.47% 

N-Gram 97.36% 40% 28.53% 

 

The last parameter we measure is the 

algorithms’ accuracy, which is defined by the level 

of correct detection compared to the combined 

result of the test [13]. Average accuracy of 91.2% 

is counted for the original Jaro, 94.56% for 

modified Jaro, 93.33% for LCS, and 95.89% for 

N-Gram. 

We found out one factor affecting the decision 

when considering two malwares as same family 

members. The numbers of near identicals need to 

be greater than 4 for Jaro, LCS, and N-Gram to 

achieve high specificity and precision values. One 

near identical often not enough as an adjustment 

for classification decision. This will yield to a 

large number of false positives.   

5. Conclusion and future works 

 

Jaro, LCS, and N-Gram algorithms can be 

potentially used for string similarity detection 

which in turn can be used to differentiate a 

malware from another. With fine-tuned thresholds, 

the potential can be boosted further to provide a 

considerable degree of malware detection.  

Strings that belong to non-API calls category 

seems more likely to act as a pattern or a malware 

signature identifier, thus it is important to consider 

removing Windows API calls to reduce false 

positives and enhance analysis speed.   

Potential future work can be directed in 

determining which Windows API can be classified 

as uncommon when found in a file. Instead of 

filtering Windows API completely, we can include 

a small set of uncommon Windows API which 

does not appear in normal clean executables or 

files. This may further aid the effort for malware 

family classification.  

Another potential work would be creation of 

new string similarity detection algorithm to 

improve the efficiency of these three algorithms. 
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