
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

104

Comparison of Pattern Matching Techniques on

Identification of Same Family Malware

Ferdiansyah Mastjik*
‡
, Cihan Varol*, Asaf Varol**

* Department of Computer Science, Sam Houston State University, 1806 Avenue J Huntsville Texas 77340 USA

** Department of Software Engineering,Firat University, Bilgi İşlem Dairesi, Enformatik Bölümü, 23119, Turkey

‡
Ferdiansyah Mastjik ; Department of Computer Science, Sam Houston State University, 1806 Avenue J Huntsville Texas

77340 USA:

Tel: +1 936 294 3846, e-mail: fxm010@shsu.edu

Abstract- Development in computing technology for the past decade has also given rise to threats against the users,

particularly in form of malware. However, manual malware identification effort is being overwhelmed due to the sheer number

of malware being created every day. Most of the malware are not exactly created from scratch; large numbers of them are

byproducts of particular malware family. This means that same or slightly modified resolution can be applied to counter their

threat. This paper analyzes string matching methods for identification of same family malware. We investigate and compare

the effectiveness of three well-known pattern matching algorithms, namely Jaro, Lowest Common Subsequence (LCS), and N-

Gram. After researching these three algorithms we found out thresholds of 0.79 for Jaro, 0.79 for LCS, and 0.54 for N-Gram

showed to be effective for string similarity detection between malware.

Keywords- Jaro;Longest Common Subsequence; Malware Analysis; N-gram; String Similarity.

1. Introduction

In the annals of computing history,

technological advances have enabled advances in

threats against the users. One form of these threats

is malware. Since malware’s first creation in 1970,

there have been numerous variations of malware

circulating around the world. The complexity and

attack vectors of malware have also advanced

along with advancements in technology. In recent

decades, malware mainly targeted personal

computer users but as mobile operating systems

become increasingly common, malware target has

also shifted toward mobile operating system users.

Similarly if recently private company networks

were the main target of malware, it is possible that

the next malware attack may be aimed to cloud

computing network.

While the motivation behind malware creation

varies, there is no doubt about its destructive

nature by its exploitation of vulnerabilities. These

vulnerabilities can be found any time, even on the

same day the software is released [1].

Concerns regarding apparent vulnerabilities of

computer users, coupled with the malware

capability to elude detection, trigger a unified

effort between software companies and academic

researchers. Together these parties work to devise

analysis methods that will identify and help

resolve these threats.

Due to the significance of malware

identification in formulating solution, we perform

research on improving the framework of same

family malware identification. Same family

malware identification hold significant importance

because the same base solution to a malware attack

can be applied within malwares of the same

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

105

family. This research for same family malware

identification is done through application of string

matching algorithms with appropriate threshold

values. Specifically, we have evaluated the

performance of well-known string matching

algorithms to identify same family malware. As

reflected later in Section 4, we have shown that

string matching algorithms can be employed for

differentiating same family member malwares

from distinct ones.

The rest of the paper is organized as follows. In

Section 2, related studies in malware identification

are discussed. The employed methodology is

elaborated in Section 3. Test case and results are

discussed in Section 4 and the paper is finalized

with discussion and conclusion section.

2. Background Study

According to Islam et al. [2], manual malware

analysis has become overwhelmed due to the

higher volume of malware being produced every

day. Contrary to this; however, Walenstein et al.

[3] found through their research that the high

volume of malware is a byproduct or a variant of a

malware family. Therefore further research must

be done to analyze malware similarities and

differences for identification purpose.

Motivated by the facts presented by Walenstein

[3] and Kendall et al [4], the method of malware

identification and classification are categorized

into two types of analysis: dynamic analysis and

static analysis. According to [4], dynamic analysis

is done through studying the behavior of a running

malicious code in a controlled environment such as

in a virtual machine. Dynamic analysis may yield

immediate information on what the malware is

doing instead of how it accomplishes its purpose.

The authors in [4] stated that the static analysis

performs its task by studying a malicious code

structure and extracting assembly code without

actually running it. Static analysis research can be

slow and exhaustive, but the result gained is very

detailed.

This research will focus on static analysis due

to the fact that it is safer and may provide detailed

results albeit in a slower and more complex way.

According to [2] and [4], static analysis is usually

done in one of these ways: Features analysis or

contextual analysis. The authors in [2] explained

that features analysis conducted by analyzing

bytes, binary, and disassembly. This type of

analysis measured certain patterns in the malware

and was exemplified by [2], [3] and Park et al [5].

Features analysis key argument is that no matter

what code is being executed, the end result is still

the same. Contextual analysis utilizes command

string/code analysis. This method examines strings

inside suspected malware that is represented in a

certain programming language or an unusual

Windows PE API calls. Islam et al. [2], Lee et al.

[6], and Sulaiman et al. [7] used this type of static

analysis in their research.

The authors in [6] and [7] showed that

contextual analysis yields more accurate results

and provides better classifications. They further

argued that by knowing which strings were used, it

may show which programming language and

Windows API are being employed. This will be

helpful in determining exploits and the pattern

being used by the malware. The authors in [5]

proposed that both methods of malware analysis

have something in common: both perform

difference and similarity analysis on the malware.

The similarities helped detect generic signatures

while the differences helped on improving an

existing solution. Combined, features analysis and

contextual analysis were the main methods being

used in malware identification and classification.

The authors in [2], performed classification of

malware features through a combination of

methods called Function Length Frequency (FLF)

and Printable String Information (PSI). FLF

measures the “length” of the function through the

number of bytes of code in it, and the frequency

these “length” occurs within a particular sample of

malware. They found out that within the same

malware family, the shape of the function’s

“length” pattern was similar. PSI method extracted

printable strings and analyzes of their occurrence

in samples to form a pattern. PSI has a global list

of available API calls and counts the occurrence to

determine the pattern. The authors in [2], did not

mention about similarity analysis being done in

PSI but rather looked for the occurrence count.

This can potentially be enhanced by introducing

string similarity detection algorithm to reduce

redundant occurrence count. Further the authors

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

106

claim classification efficiency being over 98

percent.

The authors in [3], proposed a method which

analyzes distinctive feature comparison of

information. This is opposite to the traditional

method of looking at a particular signature. They

employed a method to determine "n-grams" which

is a sequence of n-characters found in succession

inside disassembly. They also measured "n-perms"

which is the same as n-grams except the ordering

of the characters is not taken into account. The

results were further weighted for relevance and

applied into a vector model by calculating the

result using standard cosine similarity formula.

The lower the score, the less relevant the feature

was. The relevant features that match a certain

similarity threshold were then compared iteratively

through a database where it was ranked in the

order of similarity for further classification.

Research by [5] featured assembly instruction

sequence similarity analysis through byte

comparison and byte order analysis. This method

calculated the frequency of certain instructions that

appear in sequence of cmp blocks in assembly

instruction. This frequency was modeled into a

vector and further calculated to compare the cmp

blocks between the source program and target

program to find the similarity. The formula being

used to calculate the vector of similarity is the

standard cosine formula such as being used by [3].

The authors in [5] used the Levenshtein

distance [6] to calculate the similarity based on the

assembly instruction order. If there are some

sections with similar frequencies of assembly

instructions and similar order in the sequence, it is

considered similar. The authors in [7] performed

their research by extracting strings of malicious

executable. They devised a method to filter these

strings based on several qualifications such as the

length of strings, and filtering out normal/common

API calls. Once the data is filtered, they employed

Jaro-Winkler algorithm with a modified

Levenshtein distance algorithm to determine if one

malware is a member of a certain family through

its similarities. The researchers also managed to

show that the lower level similarity in the same

family of malware is a possible indication of

polymorphism or mutation in the code.

In [8], the authors gathered a collection of API

“snippets” extracted from binary into a readable

windows PE string format. These snippets were a

collection or sequences of unusual API calls.

These sequences share characteristics between

malware and the authors assumed they do not

appear in a normal program. To support these

assumptions, the snippets were compared to

normal program to see if any of the bad snippets

appear anywhere in the body of code from the

extracted string. If there were no matches found

within non-malicious program then it was

considered a malicious characteristic. These

characteristics were then organized further for

classification and identification of certain malware

family.

From [7] and [8] we see that [7] employs a

certain kind of modified Jaro-Winkler algorithm,

the approach that they used can definitely be

improved through refining the filter and comparing

the algorithm with other string similarity detection

algorithms, while the pattern comparison in the

other work, [8], can certainly benefit from actual

use of string similarity algorithm to which it can

potentially increase the efficiency of

characteristics detection.

3. Methodology

Based on the previous study, we focused our

research on leveraging the string similarity for the

purpose of identification and classification of

malware families. In order to do this, we choose

three well-known algorithms for string similarity

detection.

3.1. Jaro Algorithm

Jaro is a type of edit-distance algorithm which

detects string similarity by counting minimum

number of operations needed to transform one

string to another [9]. The improved version of this

algorithm, Jaro-Winkler, is relying on the literature

results that claims most misspelling errors occur

after the 4th character; thus, boosting the closeness

degree if the mismatch is located later part of the

word.

 Therefore, we have modified the Jaro

algorithm as follows:

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

107

Dj = ½ * (m/[S1] + m/[S2]) (1)

Where S1 and S2 represent the number of

characters in the strings respectively and m

represents the total number of characters matching

between S1 and S2.

3.2. LCS Algorithm

According to [10], LCS is a similarity

detection algorithm which uses the concept of

finding the longest subsequence common to all

sequences in a group or series of sequences (often

only two sequences). LCS can be a variant of edit

distance algorithm when only insertion and

deletion operations are allowed.

3.3. N-Gram Algorithm

According to [3], N-Gram algorithm is a string

matching algorithm utilizing a collection of n-

items from a contiguous sequence of strings. And

n-gram of size one is referred as unigram, two is

known as bigram, and three is a trigram. For string

similarity matching usually a trigram is used as

exemplified by [3] in their research. Borrowing

from this previous research we establish our N-

Gram test with tri-gram.

Using these three algorithms, we conduct an

experiment with several families of malwares to

determine the optimum condition for identifying

same family malware.

However, in case of malware, the only reason

for a misspelling to occur is in obfuscation and

when that happens the scrambling can take place

any part of the text. Moreover, Jaro algorithm

takes the accidental transposition of two adjacent

letters as one of the possible ways of creating

mistyped data and this greatly impacts the distance

score of two misspelled words. However, this

scenario is rarely seen in malware; thus, having

this measure can increase the false positive ratings.

4. Test Case and Results

To conduct the first experiment, four random

different malware families were obtained.

Furthermore, we take randomly two or three

random samples of malware belonging to each

family with a total of eleven samples, as shown in

Table 1 :

Table 1. Malware sample list

Malware Family Sample Name

Asylum A1,A2,A3

Bagle B1,B2,B3

Welchia W1,W2

Brontok C1,C2,C3

For the purpose of experiment, the strings from

these malware are extracted and compared

between same families and cross-compared

between different malware families. Strings

extracted from the malware comprised of

Windows API calls and non-Windows API calls.

Non-API calls may contain either signature strings

or patterns that can be used to identify malware

families; however it may also contain meaningless

strings. For our first series of tests the entire

extracted strings are compared. Table 2 represents

exact identical strings found in malware

comparison.

A series of tests are run to establish optimum

thresholds for two strings to be considered near

identical. The thresholds are established using two

criteria: 1. The adjusted thresholds need to show

high quantity of near-identical strings between

same-family malware. 2. The adjusted threshold

needs to show zero or low quantity of near-

identical strings between two malware of different

families. Exact number of string similarity

occurrence to be considered as high quantity and

low quantity are refined throughout the

experiment.

It is important to note that thirteen comparisons

out of fifty five comparisons are being displayed as

a demographic of the strings comparison

algorithms effectiveness the reason for this is

because other comparisons between different

samples within same family or different family

shows near or identical counts (e.g. C2vA1 shows

the same result with C1vA1).

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

108

Table 2. Exact identical strings

Malware Comparison

Modified

JARO LCS

NGRA

M

C1vC2 18 18 18

C1vC3 18 18 18

C1vA1 2 2 2

C1vB1 1 1 1

W1vW2 12 12 12

W1vA1 7 7 7

W1vB1 3 3 3

W1vC1 2 2 2

A1vA2 51 51 51

A1vA3 51 51 51

A1vB1 20 20 20

B1vB2 21 21 21

B1vB3 26 26 26

Table 3 shows near identical strings found in

malware comparison done with optimum

thresholds of 0.79 for Jaro, 0.79 for LCS, 0.54 for

n-Gram.

The result from the test also shows that any

single string may have both identical and near

identical results when compared. For example the

string “lstrcpyA” from sample A1 has an identical

match in sample A2 and a near identical match

with the string “lstrcmpA” in the same malware

sample.

In Figure 1, the same GET script appears on

both sample A1 and A2, which is a very

distinguishing similarity between the two. This

line clearly indicates they belong to the same

malware family

Figure 1. Identical Non-API Call from A1 vs A2

Table 3. Near identical strings

Malware Comparison

Modified

JARO LCS NGRAM

C1vC2 5 3 0

C1vC3 0 0 0

C1vA1 0 0 0

C1vB1 0 0 0

W1vW2 5 4 1

W1vA1 1 1 1

W1vB1 4 4 2

W1vC1 0 0 0

A1vA2 14 14 1

A1vA3 15 12 3

A1vB1 10 9 2

B1vB2 10 9 4

B1vB3 11 8 3

The conclusion derived from the comparison

between full extracted strings shows Windows API

calls can theoretically be used as a malware family

identifying pattern as exemplified by [8], however,

the test also shows Windows API calls might be

just common program initializer that can occur on

any kind of application. Non-API calls on the other

hand clearly signify a pattern or may contain

identifier.

To further gain focused result, another series of

tests are done with the Windows API excluded

from the string extracts. After removing the

Windows API strings, the numbers of exact

identical strings shows are shown in Table 4. This

Windows API filtering resulted in a simplified and

faster detection for malware differentiation.

The test impact is visible on the quantity of

near -identical strings detection, it reduce the

amount of near identical detection by almost 40

percent as shown on Table 5.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

109

Table 4. Filtered identical strings

Malware Comparison

Modified

JARO LCS NGRAM

C1vC2 15 15 15

C1vC3 0 0 0

C1vA1 0 0 0

C1vB1 0 0 0

W1vW2 2 2 2

W1vA1 0 0 0

W1vB1 0 0 0

W1vC1 0 0 0

A1vA2 2 2 2

A1vA3 0 0 0

A1vB1 0 0 0

B1vB2 0 0 0

B1vB3 0 0 0

Removal of Windows API calls will speed up

signature analysis, reduce false positives, and may

potentially reduce the time needed for malware

family classification when used in large batches of

files.

Both tests show evidence that the appearance

of meaningless strings is not a coincidence and

may act as potential differentiating malware

signature if, and only if:

1. The meaningless strings show as exact

identical match.

2. It appears consistently over a

significant population of a malware family.

Furthermore to support this argument, D.

Plohman [11] showed that a string that seems

meaningless might be a code reference in

assembly, only that these codes are obfuscated.

As a final test, we have randomly selected

forty six malware samples from twenty different

malware families, and executed the algorithms to

test the performance.

Table 5. Filtered near identical strings

Malware Comparison

Modified

JARO LCS NGRAM

C1vC2 5 3 0

C1vC3 4 7 2

C1vA1 0 0 0

C1vB1 0 0 0

W1vW2 5 4 1

W1vA1 0 0 0

W1vB1 0 0 0

W1vC1 0 0 0

A1vA2 10 10 1

A1vA3 4 5 2

A1vB1 0 0 0

B1vsB2 7 7 3

B1vB3 6 5 3

The results of the comparisons are four

parameters used to calculate, sensitivity,

specificity, precision, and accuracy of the

algorithms. These four parameters are true

positives, true negative, false positive, and false

negative.

Any comparison showing negative similarity

detection between two malware of different family

is defined as true negative, while positive

similarity detection between same family malware

is called true positive. On the other hand,

comparison showing negative similarity detection

between two malware of same family is called

false negative, while positive similarity detection

between two malware of different family is called

false positive.

Table 6 shows cumulative true positive, true

negative, false positive, and false negative of all 20

families, however the calculation for sensitivity,

specificity, precision, and accuracy is an average

of all 20 families sensitivity, specificity, precision,

and accuracy.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

110

Table 6. Cumulative true/false positive and true/false

negative

Comparison Result Modified Jaro LCS Ngram

Total True Positive 18 13 8

Total True Negative 825 817 860

Total False Positive 57 49 18

Total False Negative 8 13 18

Sensitivity is a proportion of true positives [12]

that are correctly identified by the malware

comparison test. Specificity is a proportion of true

negatives that are correctly identified by the

comparison test [12]. Precision measures the

relevancy of a data through fractional portion of

true positive from the combination of true

positives and false positives [13]. As shown in

Table 7, modified Jaro algorithm has higher

precision rates than the LCS and N-Gram.

Table 7. Performance results

Algorithm Specificity Sensitivity Precision
Original Jaro 91.98% 60.83% 31.64%

Modified Jaro 95.19% 65% 38.62%
LCS 94.15% 55% 32.47%

N-Gram 97.36% 40% 28.53%

The last parameter we measure is the

algorithms’ accuracy, which is defined by the level

of correct detection compared to the combined

result of the test [13]. Average accuracy of 91.2%

is counted for the original Jaro, 94.56% for

modified Jaro, 93.33% for LCS, and 95.89% for

N-Gram.

We found out one factor affecting the decision

when considering two malwares as same family

members. The numbers of near identicals need to

be greater than 4 for Jaro, LCS, and N-Gram to

achieve high specificity and precision values. One

near identical often not enough as an adjustment

for classification decision. This will yield to a

large number of false positives.

5. Conclusion and future works

Jaro, LCS, and N-Gram algorithms can be

potentially used for string similarity detection

which in turn can be used to differentiate a

malware from another. With fine-tuned thresholds,

the potential can be boosted further to provide a

considerable degree of malware detection.

Strings that belong to non-API calls category

seems more likely to act as a pattern or a malware

signature identifier, thus it is important to consider

removing Windows API calls to reduce false

positives and enhance analysis speed.

Potential future work can be directed in

determining which Windows API can be classified

as uncommon when found in a file. Instead of

filtering Windows API completely, we can include

a small set of uncommon Windows API which

does not appear in normal clean executables or

files. This may further aid the effort for malware

family classification.

Another potential work would be creation of

new string similarity detection algorithm to

improve the efficiency of these three algorithms.

References

[1] Microsoft, "The evolution of malware and the threat

landscape - a 10-year review: key findings," 2012,

http://download.microsoft.com/download/1/A/7/

1A76A73B-6C5B-41CF-9E8C-

33F7709B870F/Microsoft-Security-Intelligence-Report-

Special-Edition-10-Year-Review-Key-Findings-

Summary.pdf, Feb.2012 [Online; accessed September

2014]

[2] M.R.Islam , R.Tian, L.Batten, and S.Versteeg.

"Classification of malware based on string and function

feature selection." In Cybercrime and Trustworthy

Computing Workshop (CTC), 2010 Second, pp. 9-17.

IEEE, 2010.

[3] A.Walenstein, M.Venable, M.Hayes, C.Thompson, and

A.Lakhotia. "Exploiting similarity between variants to

defeat malware." In Proc. BlackHat DC Conf. 2007.

[4] K.Kendall, and C.McMillan. "Practical malware

analysis." In Black Hat Conference, USA. 2007

[5] J.H.Park, M.Kim, B.Noh, and J.Joshi. "A Similarity

based Technique for Detecting Malicious Executable files

for Computer Forensics." In Information Reuse and

Integration, 2006 IEEE International Conference on, pp.

188-193. IEEE, 2006.

[6] V.Levenshtein,"Binary codes capable of correcting

deletions, insertions, and reversals". Soviet Physics

Doklady 10 pp.707-710, USSR, 1966.

[7] J.Lee, C.Im, and H. Jeong. "A study of malware detection

and classification by comparing extracted strings." In

Proceedings of the 5th International Conference on

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
F. Mastjik et al. ,Vol.4, No.3

111

Ubiquitous Information Management and

Communication, pp. 75. ACM, 2011

[8] A.Sulaiman, S.Mandada, S. Mukkamala, and A.Sung.

"Similarity Analysis of Malicious Executables." In

Proceedings of the 2nd International Conference on

Information Warfare & Security, pp. 225. Academic

Conferences Limited, 2007.

[9] M.Jaro. “Advances in record linkage methodology as

applied to the 1985 census of Tampa Florida,” In 84th

Journal of the American Statistical Association, pp.414-

420, 1989.

[10] L. Bergroth, H. Hakonen and T. Raita. “A Survey of

Longest Common Subsequence Algorithms” In SPIRE

(IEEE Computer Society), pp.39-48, 2000.

[11] D.Plohman. “Portable Executable 101 - a windows

executable walkthrough”, Internet:

https://code.google.com/p/corkami/wiki/PE101?show=co

ntent, Aug.2014[Online, accessed August 2014]

[12] DG Altman and JM Bland. “Diagnostic tests. 1

:Sensitivity and specificity”, In 38th Business Medical

Journal ,1994.

[13] D.Olson and D.Delen, Advanced Data Mining

Techniques, 1st ed, Springer, 2008, pp.138.

