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TÜBİTAK BİLGEM UEKAE Gebze, 41470 Kocaeli Turkey.
E-mails: {abaysal,orhun}@uekae.tubitak.gov.tr

Abstract—In this paper we re-visit the Matsui’s linear cryptanalysis. The linear attack on the full round DES was the first attack

that has been verified experimentally. Matsui extended one-round linear approximations to a linear mask of plaintext-ciphertext

pairs by means of his piling-up lemma. The assumption of the lemma, the independence of the random variables in the round

approximations, is hopefully fulfilled for the full round DES. So the experiment was successful. However, there exist some ciphers

whose linear approximations may have completely different biases than those calculated by the piling-up lemma. We work out

a case study where the biases of the linear approximations cannot be calculated through the lemma. We derive the theoretical

infrastructures which lead us to compute the overall bias. We verify the theoretical results by performing some experiments on a

toy cipher. For the verification, we mount a linear attack on the cipher and construct two linear approximations having the same

plaintext-ciphertext masks. We show that the biases of the approximations are different from what the piling-up lemma asserts.
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1. Introduction

Matsui’s linear cryptanalysis is the second suc-
cessful attack on the full round DES, exploiting
the biases of the linear approximations between
plaintext, ciphertext and key bits [12]. These linear
approximations are constructed by extending one-
round linear approximations whose input-output
masks cancel out one by one so that there is no
interior variable left in the combined linear approx-
imation. Matsui introduces the piling-up lemma to
compute the overall bias of the combined linear
approximation.

The piling-up lemma works when the random
variables in the linear approximations are indepen-
dent. It is interesting to see that this condition is

∗ This paper is presented in ISCTurkey 2012.

not fulfilled for all ciphers. Hopefully, Matsui has
shown experimentally that his approximations work
for an arbitrary key on DES [13].

In this paper, we examine the Matsui’s linear
cryptanalysis. We construct a set of random vari-
ables and calculate the biases between them. We
divide the random variables into two sets and as-
sume that any two distinct variables in different sets
are independent. On the other hand, the random
variables in one set are equal to each other with
certain probabilities, and hence we can construct
a linear approximation for each set. We compute
the biases for the approximations. We show that
the biases are not equal to the biases computed
by the piling-up lemma even though the random
variables are independent. We design a toy cipher
and construct two linear approximations for the
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cipher whose random variables act in accordance
with the model we introduce. Finally, we calculate
the biases experimentally and verify our theoretical
results.

The paper is organized as follows: In Section 2,
we give a brief overview of the linear cryptanalysis
and show how it is mounted on DES. Also, we
depict a high level description of DES in this
section. We introduce the notion of hull effect and
the related works on the hull effect in Section 3. In
Section 4 we describe our case study and give the
theoretical infrastructure. We verify the theoretical
results by performing some experiments in Section
5. Finally we conclude the paper with section 6.

2. An Overview of Linear Attack on
DES

Linear attack is one of the most effective crypt-
analysis methods on block ciphers. The first, and
maybe the most prominent sample of the method is
the attack mounted on DES by Matsui [12]. Matsui
show that the full round DES is vulnerable to the
linear cryptanalysis if the attacker has 247 known
plaintexts. He also conducted an experiment and
implemented the attack successfully [13], verifying
his results related to attack complexities and success
rates.

The linear cryptanalysis exploits the biased equa-
tions between linear combinations of certain plain-
text bits and ciphertext bits. Consider a linear equa-
tion of the form

P [i1]⊕ · · · ⊕ P [im]⊕ C[j1]⊕ · · · ⊕ C[js]
= K[l1]⊕K[l2]⊕ · · · ⊕K[lt] (1)

where P [i], C[i] and K[i] are the i-th bits of the
plaintext, the ciphertext and the key respectively.
The operation ⊕ is the XOR operation. Let Equation
1 be satisfied with a probability 1

2
+ ε. Matsui

introduces an algorithm which he calls ”Algorithm
1” to reveal one bit information of the key. Assume
that ε > 0.

If the number of plaintext-ciphertext pairs which
make the left hand side of Equation 1 equal to 0 is
more than half of all the plaintext-ciphertext pairs
then we conclude that

K[l1]⊕K[l2]⊕ · · · ⊕K[lt] = 0.

Otherwise, that is, if the number of plaintext-
ciphertext pairs where the right half Equation 1 is
equal to 1 is more than half of the all the plaintext-
ciphertext pairs, then,

K[l1]⊕K[l2]⊕ · · · ⊕K[lt] = 1.

If the bias, ε, is negative, Algorithm 1 complements
the results above.

Algorithm 1 retrieves one bit of information from
the key which is the value of the linear combination

K[l1]⊕K[l2]⊕ · · · ⊕K[lt].

The success rate depends on the data complexity. It
is given as ∫ ∞

−2
√
N |ε|

1√
2π

exp(−x2/2)dx

where N is the number of the plaintexts and exp is
the Euler function. Let us remark that this success
rate is almost one when N is proportional to ε−2.
For instance, when N ≈ ε−2 the success rate is
around 98 %.

For a given cipher, one of the natural questions is
how to find equations of the form given in Equation
1, if such equations exist with significant biases.
Matsui answered this question in the case of DES
and found a linear characteristic with a bias of ε =
−1, 49 · 2−24 for the 16-round DES. To find such
a characteristic, Matsui analyzed the ”nonlinearity
degree” of the S-boxes of DES. He introduced the
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following definition to measure how nonlinear an
S-box is [12]:

Definition 1: Let S be an S-box of n-bit input,
m-bit output. For a given α ∈ GF (2)n and β ∈
GF (2)m, define the number NS(α, β) as the number
of times out of 2n inputs such that an XORed value
of the input bits masked by α is equal to an XORed
value of the output bits masked by β. In other words,

NS(α, β) = |{x|⊕ni=0x[i]·α[i] = ⊕mj=0S(x)[j]·β[j]}|

where · is bitwise AND operation.

The values NS(α, β) are expected to be around 2n−1

for a highly nonlinear S -Box. Otherwise, there are
some α masks in the input and β masks in the output
such that the linear equation given by NS(α, β)

would be highly biased, that is, the absolute value
of its bias, say ε, is quite larger than 0. For instance,
the fifth S-Box of DES satisfies NS5(16, 15) = 12

among all the 64 input patterns. That is, the fourth
input bit of the S-Box is equal to the sum of all the
output bits with a probability 1

2
− 20

64
if the input is

random.

2.1. A Brief Description of DES

DES is one of the most famous block ciphers
which has been used worldwide prevalently since
1976. It can be considered as the ancestor of all the
modern block ciphers. DES has 64-bit block length
and 56-bit key length. It is a Feistel network. That
is, the plaintext is divided into two equal part, say
the left half and the right half, and then the output of
right part through the round function F is XOR’ed
to the left part. Then the left and right parts are
swapped. This procedure is repeated 16 times where
a different round key is incorporated into the round
function F in each round.

The round function F first expands the 32-bit
input, which is the right part of the internal state, to

48-bit value and then this expansion is XOR’ed with
the current round key. The eight 6× 4-bit S-Boxes
are then applied. The S-Box outputs are permuted
bitwise by a particular permutation to constitute the
32-bit output of the F function. The Feistel structure
of DES is depicted in Figure 1.
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Fig. 1. Feistel structure of DES.

2.2. Linear Cyptanalysis of DES

Matsui introduced several linear characteristics for
certain number of rounds of DES. In this section
we give one of them. The method to find an in-
put/output mask with a biased equation is to extend
the biased linear approximations of F to the full
cipher. For example, if X,K are the data and the
key inputs to the DES Feistel function F , then it is
given in [12] that;

A : X[15]⊕ F (X,K)[7, 18, 24, 29] = K[22]
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with a probability of 1
2
− 20

64
due to the fifth S-box

of F since NS5(16, 15) = 12. Another one-round
characteristic can be given as

B : X[27, 28, 30, 31]⊕F (X,K)[15] = K[42, 43, 45, 46]

with a probability 1
2
− 10

64
. Remark that this one-

round approximations is valid for any round so
we can construct a linear approximation for several
rounds by combining one round approximations like
the examples above. A linear approximation for 5-
round DES which uses the approximations above is
depicted in Figure 2.

Matsui introduced a lemma, piling-up lemma, to
compute the bias of the new linear approximation
obtained by combining one-round approximations.
It is given as

Lemma 1: Let Xi be independent random vari-
ables for 1 ≤ i ≤ n. Let Pr(Xi = 0) = 1

2
+ εi.

Then

Pr(⊕ni=1Xi = 0) =
1

2
+ 2n−1

n∏
i=1

εi.

Using the piling-up lemma and the 1-round char-
acteristics A and B, as in the 5-round characteristic
depicted in Figure 2, we get;

X1[27, 28, 30, 31]⊕ Y1[15] = K1[42, 43, 45, 46], ε1

X2[15]⊕ Y2[7, 18, 24, 29] = K2[22], ε2

X4[15]⊕ Y4[7, 18, 24, 29] = K4[22], ε3

X5[27, 28, 30, 31]⊕ Y5[15] = K5[42, 43, 45, 46], ε4

Here Yi = F (Xi, Ki) and εi’s are the biases of
each equation and by A and B, ε1 = ε4 = −10

64
,

and ε2 = ε3 = −20
64

. Using the fact that X1 = PR,
X2 = F (X1, K1)⊕ PL and for i ≥ 1, Xi+2 = Xi ⊕
F (Xi+1, Ki+1), we can eliminate the intermediate
values at these equations and finally get
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Fig. 2. A five round linear characteristic for DES
using above approximations, in the BA − AB

form.

PL[15]⊕ PR[7, 18, 24, 27, 28, 29, 30, 31]⊕
CL[15]⊕ CR[7, 18, 24, 27, 28, 29, 30, 31] =

K1[42, 43, 45, 46]⊕K2[15]⊕
K4[15]⊕K5[42, 43, 45, 46] (2)

where Equation 2 has bias approximately equal to
2−5.71. Using this 5-round characteristic and 212

plaintext-ciphertext pair, one can recover the right
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hand side of the Equation 2 with the success prob-
ability equal to almost one, using Algorithm 1.

One discussion has been raised about the assump-
tion of Matsui’s piling-up lemma. It is a question
that the random variables in the one-round linear
approximations may not be independent. Hence the
actual bias may be quite different than the calculated
bias by the piling-up lemma. For example, Selçuk
noted for some Feistel networks that, some biases
calculated by the piling-up lemma can be quite
different than those derived by the experimental
results [1].

The independence of the variables in the linear
approximations has been studied well. However, the
stability of the probabilities for one-round approxi-
mations after plunging in the cipher is not examined.

3. Linear Hull

The definition of approximate linear hull (ALH),
or simply linear hull, was first introduced by Nyberg
[9]. Linear hull appears in the case that there are
multiple linear characteristics with the same data
mask but different key masks. The opposite of this
idea, i.e. benefiting from linear approximations with
different data masks and the same key mask (multi-
ple linear approximations) is explained and applied
in [2], [3], [4] and [5]. The idea of multiple linear
approximations is further improved by Hermelin,
Cho, and Nyberg in [10] and [11], and their attack
is called as Multidimensional Linear Cryptanalysis.

In [14], Murphy claimed that there is no linear
hull effect in the linear cryptanalysis. But, Leander
later proved that the linear hull does indeed effect
the security of a cipher, and thus should always be
taken into account [7]. In his work, Leander claims
that calculating the average time complexity of a
linear characteristic by using the average over all
keys is not appropriate since this average is usually

infinite (due to the case that there is at least one key
with zero bias). He claims that one should take into
account of the median of the complexities to prove
the security against linear cryptanalysis [7].

Assume we analyze a block cipher in which there
is a linear hull with two linear characteristics whose
biases are dominating (i.e other characteristics have
negligible biases). Since the input bits (plaintext
bits) of these characteristics are the same, there
must be a function (such as an S-box) F whose
input masks for those characteristics are the same,
whereas the output masks are different. Similarly,
starting from the ciphertext and going backwards,
necessarily there is a function G such that the input
masks differ and output masks are the same. Con-
sider a scenario in which there is only one such F
and G. Also, assume that the linear approximations
between these functions are independent. Calling
this middle part U , we get the model in Figure 3.
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Fig. 3. An example scenario of a linear hull.
x, t1, t2, y1, y2 and z represent 1-bit masked val-
ues.

For Figure 3, we can assume that the only key
difference of the characteristics is caused by the
part U . Depending on the actual key values which
affects this difference, the overall bias of the model
changes. The reason behind this effect is studied
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theoretically in Section 4 and practically verified in
Section 5.

4. A Case Study

In this section, we define some random variables
and the relations between these variables. Then
we derive some statements in order to use for
the construction of certain linear approximations
which are affecting each other. The variables and
probabilities are constructed in order to have a better
understanding of the linear hull structure depicted in
Figure 3.

Let x, y1, y2 and z be binary random variables.
Then

Proposition 1: Assume Pr(x = y1) =
1
2
+ ε and

Pr(x = y2) =
1
2
− ε for some ε > 0. Assume also

that these events are independent. If Pr(z = y1|y1 6=
y2) = 1

2
which is independent of x and Pr(z =

y1|y1 = y2) is also independent of x, then we have
Pr(z = x) = 1

2
.

Proof: The probability Pr(x = z) is given as

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1 ∩ x = y2)

+Pr(x = z|x = y1 ∩ x 6= y2) Pr(x = y1 ∩ x 6= y2)

+Pr(x = z|x 6= y1 ∩ x = y2) Pr(x 6= y1 ∩ x = y2)

+Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1 ∩ x 6= y2).

On the other hand we assume that the events x = y1
and x = y2 are independent. Hence the probability
Pr(x = z) will be equal to

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1) Pr(x = y2)

+Pr(x = z|x = y1 ∩ x 6= y2) Pr(x = y1) Pr(x 6= y2)

+Pr(x = z|x 6= y1 ∩ x = y2) Pr(x 6= y1) Pr(x = y2)

+Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1) Pr(x 6= y2).

We have

Pr(x = z|x = y1 ∩ x 6= y2) Pr(x = y1) Pr(x 6= y2)

+ Pr(x = z|x 6= y1 ∩ x = y2) Pr(x 6= y1) Pr(x = y2).

= (
1

2
+ ε)2(Pr(x = z|x = y1 ∩ x 6= y2)

+ (
1

2
− ε)2(Pr(x = z|x 6= y1 ∩ x = y2))

and

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1) Pr(x = y2)

+ Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1) Pr(x 6= y2)

= (
1

4
− ε2)((Pr(x = z|x = y1 ∩ x = y2) +

+ Pr(x = z|x 6= y1 ∩ x 6= y2)).

However

Pr(x = z|x = y1 ∩ x = y2) =

Pr(z = y1|x = y1 = y2) = Pr(z = y1|y1 = y2)

since it is independent of x, and similarly

Pr(x = z|x 6= y1 ∩ x 6= y2) = Pr(z 6= y1|y1 = y2).

Hence

Pr(x = z|x = y1 ∩ x = y2)

+ Pr(x = z|x 6= y1 ∩ x 6= y2) = 1.

We conclude that

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1) Pr(x = y2)

+ Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1) Pr(x 6= y2)

= (
1

4
− ε2). (3)

On the other hand, it is given that Pr(z = y1|y1 6=
y2) =

1
2
. So,

Pr(x = z|x = y1 ∩ x 6= y2) =
1

2

and

Pr(x = z|x 6= y1 ∩ x = y2) =
1

2
.
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This gives us

(
1

2
+ ε)2(Pr(x = z|x = y1 ∩ x 6= y2))

+ (
1

2
− ε)2(Pr(x = z|x 6= y1 ∩ x = y2))

=
1

2
((
1

2
+ ε)2 + (

1

2
− ε)2)

=
1

4
+ ε2. (4)

Summing the probabilities given in Equation 3 and
Equation 4 we conclude that Pr(x = z) = 1

2
.

A similar proposition can be proven as:

Proposition 2: Let Pr(x = y1) = Pr(x = y2) =
1
2
+ ε for some ε > 0. Assume that these events

are independent. If Pr(z = y1|y1 6= y2) = 1
2

and
Pr(z = y1|y1 = y2) = σ which are independent of
x, then we have Pr(z = x) = 1

2
+ ε(2σ − 1).

Proof: We give the sketch of the proof since
it is similar to the proof of Proposition 1. We have
Pr(z = x) given as

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1) Pr(x = y2)

+Pr(x = z|x = y1 ∩ x 6= y2) Pr(x = y1) Pr(x 6= y2)

+Pr(x = z|x 6= y1 ∩ x = y2) Pr(x 6= y1) Pr(x = y2)

+Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1) Pr(x 6= y2).

On the other hand we have

Pr(x = z|x = y1 ∩ x 6= y2) Pr(x = y1) Pr(x 6= y2)

+Pr(x = z|x 6= y1 ∩ x = y2) Pr(x 6= y1) Pr(x = y2)

= (
1

2
+ ε)2(Pr(x = z|x = y1 ∩ x 6= y2)

+(
1

2
− ε)2(Pr(x = z|x 6= y1 ∩ x = y2))

= (
1

2
+ ε)2

1

2
+ (

1

2
− ε)21

2
=

1

4
− ε2

and

Pr(x = z|x = y1 ∩ x = y2) Pr(x = y1) Pr(x = y2)

+Pr(x = z|x 6= y1 ∩ x 6= y2) Pr(x 6= y1) Pr(x 6= y2)

= (
1

2
+ ε)2 · σ + (

1

2
− ε)2 · (1− σ).

Hence we conclude that

Pr(x = z) = (
1

2
+ ε)2 · σ + (

1

2
− ε)2 · (1− σ)

+
1

4
− ε2 = 1

2
+ ε(2σ − 1)

Note that if the probabilities Pr(z = y1|y1 6=
y2) = 1

2
and Pr(z = y1|y1 = y2) = σ are

swapped, that is, if Pr(z = y1|y1 = y2) = 1
2

and Pr(z = y1|y1 6= y2) = σ then the results
in Proposition 1 and Proposition 2 will also be
swapped. That is, we have Pr(z = x) = 1

2
+ε(2σ−1)

in Proposition 1 and Pr(z = x) = 1
2

in Proposition
2. The proof is rather knotty. However, it is very
similar to the proof of Proposition 1. So, we skip
it.

We generalize the statements in Proposition 1 and
Proposition 2 to add another pair of random vari-
able, this time loosing the independence condition
for the new variables.

Theorem 1: For given binary random variables
x, t1, t2, y1, y2, z, let Pr(x = t1 ∩ x 6= t2) = Pr(x 6=
t1 ∩ x = t2). Assume Pr(t1 = y1) = 1

2
+ ε,

Pr(t2 = y2) = 1
2
− ε for some ε > 0 and

they are independent of each other and of x. Let
Pr(z = y1|y1 6= y2) =

1
2

which is independent of x
and Pr(z = y1|y1 = y2) be also independent of x.
Then we have Pr(z = x) = 1

2
.

Proof: Let Pr(x = t1 = t2) = p1, Pr(x =

t1 6= t2) = p2, Pr(x = t2 6= t1) = p3 and Pr(x 6=
t1 = t2) = p4. Recall that we have p2 = p3 by the
assumption and p1 + p2 + p3 + p4 = 1. Also, define
Pr(z = y1|y1 = y2) = p. Then Pr(z 6= y1|y1 =
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y2) = 1− p. With these parameters we write

Pr(z = x) =p1(p(
1

4
− ε2) + 1

2
((
1

2
+ ε)2+

(
1

2
− ε)2) + (1− p)(1

4
− ε2))+

p2(p(
1

2
+ ε)2 +

1

2
(
1

4
− ε2+

1

4
− ε2) + (1− p)(1

2
− ε)2)+

p3(p(
1

2
− ε)2 + 1

2
(
1

4
− ε2+

1

4
− ε2) + (1− p)(1

2
+ ε)2)+

p4(p(
1

4
− ε2) + 1

2
((
1

2
+ ε)2+

(
1

2
− ε)2) + (1− p)(1

4
− ε2)).

Hence Pr(z = x) is given as

p1(
1

4
− ε2 + 1

4
+ ε2) + p2(

1

2
+ ε(2p− 1))

+ p3(
1

2
− ε(2p− 1)) + p4(

1

4
− ε2 + 1

4
+ ε2)

=
p1 + p4

2
+ p2(

1

2
+ ε(2p− 1) +

1

2
− ε(2p− 1))

and this equals to p1+p4
2

+ p2 . However, p1 +2p2 +

p4 = p1 + p2 + p3 + p4 = 1. Hence, Pr(z = x) = 1
2
.

Theorem 1 explains how the biases of two charac-
teristics can be perished together. These two charac-
teristics have biases in the opposite directions. The
natural question is what the combined bias is when
the characteristics have both positive or negative
biases. We give the combined biases in the following
statement.

Theorem 2: For given binary random variables
x, t1, t2, y1, y2, z, let Pr(x = t1 ∩ x = t2)− Pr(x 6=
t1 ∩ x 6= t2) = ρ. Assume Pr(t1 = y1) = Pr(t2 =

y2) = 1
2
+ ε and they are independent of each

other and of x. Let Pr(z = y1|y1 6= y2) = 1
2

and
Pr(z = y1|y1 = y2) = σ which are independent of
x. Then Pr(z = x) = 1

2
+ ερ(2σ − 1).

Proof: Let Pr(x = t1 = t2) = p1, Pr(x =

t1 6= t2) = p2, Pr(x = t2 6= t1) = p3 and Pr(x 6=
t1 = t2) = p4. We have p1 + p2 + p3 + p4 = 1

and it is given that Pr(z = y1|y1 = y2) = σ. Then
Pr(z 6= y1|y1 = y2) = 1− σ. Then

Pr(z = x) =

p1((
1

4
− ε2) + σ(

1

4
+ ε2) + (1− σ)(1

2
− ε)2)

+p2(
1

2
((
1

2
+ ε)2 + (

1

2
− ε)2) + σ(

1

4
+ ε2)

+(1−σ)(1
4
− ε2))

+p3(
1

2
((
1

2
+ ε)2 + (

1

2
− ε)2) + σ(

1

4
+ ε2)

+(1− σ)(1
4
− ε2))

+p4((
1

4
− ε2) + σ(

1

4
− ε2) + (1− σ)(1

2
+ ε)2)

Clearing out the parameters, Pr(z = x) will be
equal to

(p2 + p3)/2 + p1(1/2 + ε(2σ − 1)) + p4(1/2− ε(2σ − 1)).

Then we conclude that

Pr(z = x) =
1

2
+ ε(2σ − 1)(p1 − p4)

since p1 + p2 + p3 + p4 = 1. On the other hand
p1 − p4 = ρ. Hence,

Pr(z = x) =
1

2
+ ερ(2σ − 1).

5. Experimental Results

In this section, we analyze a fictious cipher in
which there are two linear characteristics with the
same data (plaintext and ciphertext) mask but differ-
ent key masks. This gives the so-called linear hull
affect [9].

27



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Adnan Baysal and Orhun Kara, Vol.1, No.1

5.1. The analyzed cipher

The fictious cipher, depicted in Figure 4, has
32-bit block length. Plaintext is XORed with the
whitening key at the beginning of the encryption.
Then the round function is applied four times. The
cipher is an SPN structure. The round function con-
sists of 4 8× 8 S-boxes and a bitwise permutation.
We apply 6-bit S-boxes after the permutation to the
bits which we do not use in the approximations to
randomize the passive bits in the input masks. In
Figure 4, S8 is an 8-bit and S6i’s are 6-bit S-boxes.
Bold lines (which are entering to any of the S6i’s)
are 6-bit values whereas other data lines are 1 bit
variables. Each XORed key part has a length of 8-
bits (Ki, where i = 1 . . . 20).

The input of the round function is 32-bit data and
32-bit round key. The S-box layer of 8-bit S-boxes,
which is also used at the end of the encryption, is
applied to the data in the beginning of the round
function. Then 7-bit left cyclic rotate operation is
applied. After that, a combination of key XORing,
6-bit S-box operation and 6-bit diffusions are ap-
plied in the following manner:

Let the data after the 8-bit S-box and 7-bit cyclic
rotate be named as D1||D2||D3||D4 where Di’s are
8 bit parts from left to right. These names will also
serve as the state at that block in the forthcoming
operations. Similarly let Ki+1||Ki+2||Ki+3||Ki+4 be
the round key. First, Ki+2||Ki+3 is XORed to
D2||D3. Then S62 and S63 are applied to the
rightmost 6-bit parts D2 and D3 respectively. The
output of the S62 is XORed to the rightmost 6-
bit of D1, then the resulting value is passed to the
S61. The output of S61 is XORed to the rightmost
6-bit of the current state at D2. After that, Ki+1 is
XORed to the state at D1. Similar operations applied
between D3 and D4.

The analyzed cipher is constructed in a way that
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Fig. 4. The fictious block cipher’s overall struc-
ture.
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there is a linear hull with two dominating linear
characteristics. To provide this property, first we
draw the paths of these two characteristics, then we
construct an 8 bit S-box –namely S8– in a way
that this S-box have the desired linear approxima-
tions with high biases. Bits not entering into these
approximations distributed randomly, causing other
linear approximations to have smaller biases.

5.2. Construction of the linear hull

Let the input bits of the S8 be written as
x1||x2 . . . ||x8, and output bits as y1||y2 . . . ||y8. Then
we have:

Pr(x1 = y1) = Pr(x1 = y8) =
3

4
,

Pr(x2 = y1) = Pr(x2 = y8) =
3

4
,

Pr(x1 = y1 ∩ x1 6= y8) =
1

4
,

Pr(x1 = y8 ∩ x1 6= y1) =
1

4
,

Pr(y8 = x1|x1 6= x2) =
1

2
,

Pr(x1 = y1 ∩ x1 = y8) =
1

2
,

Pr(x1 6= y1 ∩ x1 6= y8) = 0,

Pr(y8 = x1|x1 = x2) = 1.

Using the equations above, we construct a pair
of linear characteristics. For any data block, X ,
X[j] denotes the leftmost j−th bit of X , where
indices begin at 1. P and C denote the plaintext
and ciphertext respectively. The round keys Kj’s are
assumed to be independent, i.e., the key length of
the cipher is 160-bit.

P [1]⊕ C[8] = K1[1]⊕K5[1]⊕
K9[1]⊕K13[1]⊕K17[1] (5)

P [1]⊕ C[8] = K1[1]⊕K8[2]⊕
K11[2]⊕K14[2]⊕K17[2] (6)

The pair of the linear characteristics given in
Equation 5 and Equation 6 is constructed in order
to form an example for the model in Figure 3. F
can be seen as the leftmost S-box of the first round
whereas the leftmost S-box of the final S-box layer
plays the role of G. U , on the other hand, is the
middle 3 rounds which are the independent part of
our characteristics. Call the right hand side of (5)
and (6)–i.e. the key bits– KL and KR respectively.

If we call the ouput of the ith cyclic rotate
operation by Xi (i = 1, . . . 4), the variables used
in Theorem 1 and Theorem 2 can be assigned to
our case in the following manner:

x = P [1], t1 = X1[1], t2 = X1[26],

y1 = X4[1], y2 = X4[2], and z = C[8].

5.3. Mounting linear attack

Using the classical assumptions of linear crypt-
analysis and the piling-up lemma, we can calculate
the overall biases of (5) and (6) as follows;

ε1 = ε2 = 24(2−2)5 = 2−6

where ε1 and ε2 are the biases of (5) and (6)
respectively. Here, each characteristics have 5 active
S-boxes and all active S-boxes have a bias of 2−2.
So both characteristics have probability 1

2
+ 2−6 by

the piling-up lemma.

We implement Algorithm 1 of [12] and see that
the plaintext-ciphertext mask has the bias different
then the bias, 2−6, computed by the piling-up lemma
for any key. The actual bias of P [1] ⊕ C[8] (the
left hand side of the linear characteristics) is around
2−5 for some keys. We classified these keys. On the
other hand, the bias perishes for some other keys.
Indeed, when both biases in both characteristics are
positive, then the overall bias is increased to 2−5.
Otherwise, it perishes. The results of the experi-
ments are depicted in Table I. The success rate of
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Algorithm 1 is 50% whereas it is expected to be
almost one since we use much more than 212 data.

TABLE 1
Experimental results on the fictious cipher.

Biases are computed according to Equation
(5), i.e for the event P [1]⊕ C[8] = KL

Biases for (KL,KR) pair (see Sec. 5.2)

Exp Data (0,0) (0,1) (1,0) (1,1)

1 220 2−5.0086 2−12.3276 −2−10.2154 2−4.9830

2 220 2−5.0192 2−10.3598 2−10.3927 2−4.9866

3 220 2−5.0023 2−11.8605 2−11.2252 2−5.0199

4 220 2−5.0195 −2−10.8102 2−10.7426 2−5.0207

5 224 2−5.0109 2−14.5344 −2−13.8251 2−4.9955

6 224 2−5.0093 2−11.8148 −2−13.0028 2−4.9993

7 224 2−5.0187 2−12.4594 −2−15.3634 2−4.9877

8 224 2−5.0034 2−12.3449 2−12.3276 2−5.0046

Table I shows that if the linear combination of
the key bits of two characteristics are equal then
the bias is increased by a factor of two. If the linear
combination of the key bits are not equal, then the
bias becomes 0.

The case in which the linear combinations of the
key bits are not equal is explained through Theorem
1. The difference in the linear combinations of the
key bits causes two approximations having biases
of opposite signs, i.e., one of them has probability
1
2
+ ε, and the other one has 1

2
− ε, where ε = 2−4.

Other assumptions of the theorem are also satisfied
by the S-box. So the overall bias is expected to be
zero by Theorem 1. Indeed, the experimental results
have been verified the result. We have observed a
bias of less then 2−10 when 220 data were used and
a bias of less then 2−12 when 224 data were used as
in Table I.

When two linear combinations of the key bits are

both zero or both one simultaneously, that is, when
the biases of the both approximations are positive
or negative then we observe an increase of factor
two in each bias as given in Theorem 2. We saw
that the bias of one approximation is doubled as the
theorem states. That is, the overall bias is calculated
by summing the biases. In our example, ρ = 1

2
, σ =

1 and ε = 2−4. So, the overall bias is calculated as
2−5 as we have observed in the experiments.

6. Conclusion

In this paper, we examined Matsui’s linear crypt-
analysis and the bias calculation for the extended
linear masks through the piling-up lemma. By intro-
ducing a case study, we have proved that the lemma
does not work all the time . We also have shown
the existence of linear hull in the case study. We
have derived new statements to calculate the actual
biases for our case study and verified our results by
conducting some experiments. To do that, we have
designed a toy cipher and mount the linear attack
on the cipher, yielding two linear approximations
whose random variables comply with the assump-
tions given in the statements derived for the case
study.
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