
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

Machine Learning Methods for Spamdexing
Detection

Renato M. Silva*, Tiago A. Almeida**, Akebo Yamakami*

*School of Electrical and Computer Engineering, University of Campinas – UNICAMP.
Campinas, São Paulo, Brazil. e-mail: {renatoms, akebo}@dt.fee.unicamp.br

**Department of Computer Science, Federal University of São Carlos – UFSCar.
Sorocaba, São Paulo, Brazil. e-mail: talmeida@ufscar.br

Abstract—In this paper, we present recent contributions for the battle against one of the main problems faced by search engines:

the spamdexing or web spamming. They are malicious techniques used in web pages with the purpose of circumvent the search

engines in order to achieve good visibility in search results. To better understand the problem and finding the best setup and

methods to avoid such virtual plague, in this paper we present a comprehensive performance evaluation of several established

machine learning techniques. In our experiments, we employed two real, public and large datasets: the WEBSPAM-UK2006 and

the WEBSPAM-UK2007 collections. The samples are represented by content-based, link-based, transformed link-based features

and their combinations. The found results indicate that bagging of decision trees, multilayer perceptron neural networks, random

forest and adaptive boosting of decision trees are promising in the task of web spam classification.

Keywords—Spamdexing; web spam; spam host; classification, WEBSPAM-UK2006, WEBSPAM-UK2007.

1. Introduction

The web is growing by leaps and bounds and
becoming an increasingly important source of enter-
tainment, communication, research, news and trade.
More users are having access to the Internet and the
time they remain connected is also increasing. As
a consequence, the competition between websites is
highly motivated since there is a great interest in
keep up in a good position in search results.

The desirable consequence of such competition is
the quality improvement of the services provided.
However, one of the bad resul is the emerging
virtual plague known as web spam or spamdexing,
which are web pages that employ techniques to
circumvent the search engines to achieve better

positions in search results [1], [2].

Web spam can provoke several problems. For
instance, it can degrade the quality of search results
and the nuisance to users by forging undeserved and
unexpected answers, by promoting the announce-
ment of unwanted pages [3]. It can also increase the
computational cost of query processing and search
engine indexing process. Furthermore, it can expose
users to malicious content that installs malwares on
their computers and can steal sensitive information,
as passwords, financial information, or web-banking
credentials, or degrade the performance of comput-
ers and network [4].

Recent studies indicate that the amount of web
spam is dramatically increasing. In a research

86



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

started in August 2010, Johnet. al [5] observed
that 36% of the query results of Google and Bing
contain malicious URLs. Luet. al [6] ranked the
most popular query terms used in Google and Bing,
between September 2010 and April 2011, and they
found that, on average, 50% of them return results
with malicious URLs.

A report produced by the company Websense1

shows that 22.4% of the search results about en-
tertainment present malicious links. Furthermore, a
report published by McAfee2 informs that 49% of
the most popular search terms return some malicious
site in the top 100 search results. The same study
found that 1.2% of the queries return links of the
malicious sites in the top 100 results. According to
the Google Online Security Blog3, Google detects
about 9,500 new malicious web sites every day and
in about 12 to 14 million queries every day.

Given this scenario, this paper presents a com-
prehensive performance evaluation of several well-
known machine learning techniques employed to
automatically detect web spam in order to pro-
vide good baseline results for further comparison.
Separated pieces of this work were presented at
ICAI 2012 [7], IBERAMIA 2012 [8] and IEEE
ICMLA 2012 [9]. Here, we have connected all ideas
in a very consistent way. We have also offered
a lot more details about each study and extended
the performance evaluation using the well-known
WEBSPAM-UK2007 dataset.

This paper is organized as follows: in Section 2
we describe the problem focusing in content-based

1. Websense 2010 Threat Report. See: http://www.websense.com/
assets/reports/report-websense-2010-threat-report-en.pdf

2. McAfee Threats Report: First Quarter 2011. See: http://www.
mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2011.pdf

3. Google Online Security Blog – Safe Browsing: Protecting Web
Users for 5 Years and Counting. See: http://googleonlinesecurity.
blogspot.com.br/2012/06/safe-browsing-protecting-web-users-for.
html

and link-based spam techniques. Section 3 presents
the basic concepts of the methods evaluated in this
paper. In Section 4 we present the database and
settings that we have used in our experiments. Sec-
tion 5 presents the main results. Finally, Section 6
describes the conclusions and guidelines for future
work.

2. Web spamming techniques

There are several different web spamming tech-
niques, such as cloaking spam [1], [10], [11],
redirection spam [1], [12] and click spam [13],
[12]. However, in this paper we addressed only
the two most popular web spamming techniques:
the content-based spam [1], [12] and link-based
spam [13], [3], [14], [1], [12].

2.1 Content-based spam

Some search engines analyze the textual content
of the web pages in order to determine their rele-
vance. In this process, they collect terms in different
positions on the web page. This terms are used to
categorize the web page in one or more groups of
pages that address similar subjects and to determine
the relevance of the web page with respect to a
query term or group of query terms.

The content-based spam is a technique that ma-
nipulates the terms of the spam page textual content
in order to get it categorized into groups of web
pages in which the spammer has interest and, con-
sequently, to achieve a relevance score that does not
match the quality of its content.

According to Gyongyi and Garcia-Molina [1], a
very simple example of content spam is a web
page with pornography and thousands of invisible
keywords that have no connection with the porno-
graphic content. Thus, when a user performs a query

87



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

using one of the terms presented in these keywords,
the search engines may return this pornographic web
page as a result.

There are different types of content spam, such
as [1], [12]:

• Title spam: this category of web spam includes
popular keywords in the title of the web page.
It is mainly because the most of search engines
gives great weight to the terms presented in the
document title.

• Meta tag spam: themeta tagsare HTML code
that describes the web page content or provide
keywords, authors name or other information
that are not visible to users, but can be examined
by search engines. The spammers add keywords
in meta tags because some search engines give
some relevance to them. An example of meta
tag spam is presented in Figure 1.

• Anchor text spam: the anchor text is used
to summarize through keywords the subject
addressed by the target document of a link.
As well as in the title spam technique, the
spammers also include keywords that do not
correspond to the real content of the target
documents of the links.

• URL spam: some search engines break
the URL of a web page in a series of
terms to determine its relevancy. So, for
instance, if a spammer wants to increase
the relevance of a web page of the your
website for the term “cheap smartphones”,
it can create the following URL:cheap-
smartphones.com/cheap/smartphones.html.

• Alt text spam: the alt tag is used to describe
an image in a web page. This description is
seen by the user only when the image is not
loaded by the browser. However, it is always
seen by the search engines and some of them
give some relevance to the terms presented in

this tag. Some spammers add images on web
pages and insert popular keywords in alt tags,
without worrying whether they are related to
the image that they represent. Often, spammers
include many images with minimum sizes or
they make them invisible, because the only
goal is to achieve scores with the keywords
presented in the alt tags. A simple example
of the alt text spam: <img src=“cheap-
smartphones.com/cheap/smartphones.jpg”
alt=“cheap smartphone, smartphone sales,
phone, mobile phone, cellphone, wifi, Internet,
social networking, best smartphone, best
android smartphone, samsung, apple, galaxy,
iphone, lumia, ios” />.

• Body spam: this technique is one of the sim-
plest and most commonly used by spammers.
It consists in including terms in the body of
the web page. Some spammers hide these terms
through of web programming scripts. One of
the basic strategies is to make the text the same
color as of the web page background or put it
inside CSS (Cascading Style Sheets) layers and
thereafter, make this layers invisible. Therefore,
these terms are “seen” by the search engines,
but only the content of interest of the spammer
is presented to the user.

2.2 Link-based spam

Link-based spam is a technique that manipulates
the page link structure in order to increase its score
of relevance. This is because the one important
criteria that search engines determines the relevance
of a web page is by analyzing the amount of
incoming links [13], [3], [14].

One of the main strategies used by the spammers
is to create one or several web sites with thousands
of links pointing to a web page of interest. Thus,
the search engines can be deceived and give high

88



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

Fig. 1: Example of a meta tag spam.

relevance ranking for this web page due to false
popularity created by the web spamming technique.
The main problem in detecting this kind of web
spam is that the web page of interest is often
reputable web pages that sells products or transmit
messages or ideas [14], [1], [12]. Figure 2 presents
an example of a link spam.

Note that, Figure 2a presents a web page without
trace of spam. However, if we observe its source
code, shown in Figure 2b, we can see that the web
page is a link spam because it has several links to
other pages with the single purpose of increasing
their relevance ranking. One of the parts highlighted
in Figure 2b presents the values “-1919px” and “-
2932px”. Such numbers determines the position of
the layer where the links are contained. Since the
values are negative, the links that are in this layer
are not seen by the user, but are “seen” by web
crawlers. We can notice that the link highlighted in
Figure 2b points to URL of the web page shown
in Figure 2c. As can be observed, this site has
commercial purposes and for this reason there is an
interest in increasing its position in query results.
The unethical nature of this site is clearly visible
since it sells medicines without prescription and still
illegally uses the Google company logo.

Another strategy used by spammers is to add links
in several forums, discussion groups and comments
in blogs and sites that points to the web page of

interest. As a consequence, such web page appears
to have a great popularity, since reliable web sites
have links pointing to it [1], [12].

3. Methods

This section presents the main concepts regarding
the following well-known methods that we have
evaluated in this paper: multilayer perceptron neural
networks, support vector machines, methods based
on trees, such as decision trees, random forest, bag-
ging and adaptive boosting of trees, andk-nearest
neighbor. Such methods were chosen because most
of them have been evaluated and presented as the
best machine learning and data mining techniques
currently available [15].

3.1 Multilayer perceptron neural network
(MLP)

A multilayer perceptron neural network is a
perceptron-type network that has a set of sensory
units composed by an input layer, one or more
intermediate (hidden) layers, and an output layer
of neurons [16]. By default, MLP is a supervised
learning method that uses the backpropagation al-
gorithm which can be summarized in two stages:
forward and backward [17].

In the forward stage, the signal propagates
through the network, layer by layer, as follows:

89



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

(a) Apparently ordinary web page. (b) Web page source code.

(c) Web page that the spammer intends to promote.

Fig. 2: Example of link spam.

ul
j(n) =

ml−1
∑

i=0

wl
ji(n)y

l−1
i (n), wherel = 0, 1, 2, ..., L

are the indexes of network layers. So,l = 0

represents the input layer andl = L represents the
output layer. On the other hand,yl−1

i (n) is the output
function relating to the neuroni in the previous
layer, l−1, wl

ji(n) is the synaptic weight of neuron
j in layer l andml corresponds to the number of
neurons in layerl. For i = 0, yl−1

0 (n) = +1 and
wl

j0(n) represent the bias applied to neuronj in
layer l [16].

The output of neuronj in layer l is given by

ylj(n) = ϕj(u
l
j(n)), where ϕj is the activation

function of j. Then, the error can be calculated by
elj(n) = ylj(n) − d(n), where d(n) is the desired
output for an input patternx(n).

In backward stage, the derivation of the backprop-
agation algorithm is performed starting from the
output layer, as follows:δLj (n) = ϕ′

j(u
L
j (n))e

L
j (n),

whereϕ′
j is the derivative of the activation function.

For l = L,L − 1, ..., 2, is calculated:δl−1
j (n) =

ϕ′
j(u

l−1
j (n))

ml
∑

i=1

wl
ji(n) ∗ δ

l
j(n), for j = 0, 1, ...,ml −

1.

90



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

Consult Haykin [16] and Bishop [17] for more
details.

3.1.1 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is usually
employed to optimize and accelerate the conver-
gence of the backpropagation algorithm [17]. It is
considered a second order method because it uses
information about the second derivative of the error
function. Details can be found in Bishop [17] and
Hagan and Menhaj [18].

3.2 Kohonen’s self-organizing map

The Kohonen’s self-organizing map (SOM) is
based on unsupervised competitive learning. Its
main purpose is to transform an input pattern of
arbitrary dimension in a one-dimensional or two-
dimensional map in a topologically ordered fash-
ion [16], [19].

The training algorithm for a SOM can be sum-
marized in two stages: competition and coopera-
tion [16], [19].

In the competition stage, a random input pattern
(xj) is chosen, the similarity between this pattern
and all the neurons of the network is calculated
by the Euclidean distanceid = arg min

∀i

‖xj − wi‖

wherei = 1, ...k, and the index of the neuron with
lowest distance is selected.

In cooperation stage, the synaptic weightswid that
connect the winner neuron in the input patternxi is
updated. The weights of neurons neighboring the
winner neuron are also updated bywi(t + 1) =

wi(t)+α(t)h(t)(xi−wi(t)), wheret is the number
of training iterations,wi(t + 1) is the new weight
vector,wi(t) is the current weight vector,α is the
learning rate,h(t) is the neighborhood function and
xi is the input pattern.

The neighborhood functionh(t) is equal to 1
when the winner neuron is updated. This is because
it determines the topological neighborhood around
the winning neuron, defined by the neighborhood
radiusσ. The amplitude of this neighborhood func-
tion monotonically decreases as the lateral distance
between the neighboring neuron and the winner
neuron increases. There are several ways to cal-
culate this neighborhood function, and one of the
most common is the Gaussian function, defined
by hji(t) = exp

( −d2ji

2σ2(t)

)

, where dji is the lateral
distance between winner neuroni and neuronj. The
parameterσ(t) defines the neighborhood radius and
should be some monotonic function that decreases
over the time. So, the exponential decay function
σ(t) = σ0 exp

(

− t
τ

)

can be used, whereσ0 is the
initial value of σ, t is the current iteration number
and τ is a time constant of the SOM, defined by
τ = 1000

log σ0

The competition and cooperation stages are car-
ried out for all the input patterns. Then, the neigh-
borhood radiusσ and learning rateα are updated.
This parameter should decrease with time and can
be calculated byα(t) = α0 exp

(

− t
τ

)

, where α0

is the initial value ofα, t is the current iteration
number andτ is a time constant of the SOM which
can be calculated as presented in the cooperation
stage.

3.3 Learning vector quantization

The learning vector quantization (LVQ) is a su-
pervised learning technique that aims to improve the
quality of the classifier decision regions, by adjust-
ing the feature map through the use of information
about the classes [16].

According to Kohonen [19], the SOM can be used
to initialize the feature map by defining the set
of weight vectorswij. The next step is to assign
labels to neurons. This assignment can be made by

91



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

majority vote, in other words, each neuron receives
the class label in that it is more activated.

After this initial step, the LVQ algorithm can be
employed. Although, the training process is similar
to the SOM one, it does not use neighborly relations.
Therefore, it is checked if the class of the winner
neuron is equal to the class of the input vectorx,
and it is updated as follows:

wid(t+ 1) =

{

wid(t) + α(t)(xi − wid(t)), same class
wid(t)− α(t)(xi − wid(t)), different class

whereα is the learning rate,id is the index of the
winner neuron andt is the current iteration number.

3.4 Radial basis function neural network

A radial basis function neural network (RBF), in
its most basic form, has three layers. The first one is
the input layer which has sensory units connecting
the network to its environment. The second layer is
hidden and composed by a set of neurons that use
radial basis functions to group the input patterns in
clusters. The third layer is the output one, which
is linear and provides a network response to the
activation function applied to the input layer [16].
The activation function most common for the RBFs
is the Gaussian, defined byh(x) = exp

(

− (x−c)2

r2

)

,
wherex is the input vector,c is the center point and
r is the width of the function.

The procedure for training a RBF is performed
in two stages. In the first one, the parameters of
the basic functions related to the hidden layer are
determined through some method of unsupervised
training, asK-means.

In the second training phase, the weights of
the output layer are adjusted, which corresponds
to solve a linear problem [17]. According to
Bishop [17], considering an input vectorx =

[x1, x2, ..., xn], the network output is calculated by

yk =
m
∑

j=1

wkjhj, wherex = [wk1, wk2, ..., xkm] are

the weights,h = [h1, h2, ..., hm] are the radial basis
functions, calculated by a function of radial basis
activation.

After calculating the outputs, the weights should
be updated. A formal solution to calculate the
weights is given byw = h†d, where h is the
matrix of basis functions,h† represents the pseudo-
inverse of h and d is a vector with the desired
responses [17].

Consult Haykin [16], Bishop [17] and Orr [20]
for more information.

3.5 Support vector machines (SVM)

Support vector machines (SVM) [21] is a machine
learning method that can be used for pattern clas-
sification, regression and others learning tasks [16],
[22]. This method was conceptually implemented
following the idea that input vectors are non-linearly
mapped to a high dimension feature space. In this
feature space is constructed a linear decision surface
which separates the classes of the input patterns.

One of the main elements that the SVM uses
to separate the patterns of distinct classes is a
kernel function. Through it, the SVM constructs a
decision surface nonlinear in the input space, but
linear in the features space [16]. Table 1 presents
the most popular SVM kernel functions, where
the γ parameter controls the shape of the decision
surface,r controls the displacement threshold of the
polynomial and sigmoid kernels andd is the degree
of the polynomial kernel. Theγ, r and d must be
set by the user.

To assist the choice of the SVM parameters, Hsu
et. al [23] recommend the employment of a grid
search. For instance, considering the SVM with
RBF kernel, in which is necessary to define the
regularization parameterC andγ, the authors sug-
gest that the grid search could be used to evaluate

92



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 1: The most popular SVM kernel functions
[16], [23].

Linear k(xi, xj) = xT
i xj

RBF k(xi, xj) = exp(− 1

2γ2 ‖xi − xj‖
2), γ > 0

Polynomial k(xi, xj) = (γxT
i xj + r)d, γ > 0

Sigmoid k(xi, xj) = tanh(γxT
i xj + r)

exponential sequences:C = 2−5, 2−4, 2−3..., 215 and
γ = 2−15, 2−14..., 23.

3.6 Decision trees (C4.5)

The C4.5 [24] is one of the most classical deci-
sion tree algorithms and uses both categorical and
continuous attributes. It uses a divide-and-conquer
approach to increase the predictive ability of the
decision trees. Thus, a problem is divided in several
sub-problems, by creating sub-trees in the path
between the root and the leaves of the decision tree.

3.7 Random forest

A random forest [25] is a combination of decision
trees in which each tree depends on the values of a
random vector sampled independently and equally
distributed for all trees in the forest. In this method,
after generating a large number of trees, each one
votes for one class of the problem. Then, the class
with more number of votes is chosen.

3.8 K-nearest neighbors (IBK)

The IBK is an instance-based learning algorithm
(IBL) [26]. Such method, derived from thek-nearest
neighbors (KNN) classifier, is a non-incremental
algorithm and aims to keep a perfect consistency
with the initial training set. On the other hand,
the IBL algorithm is incremental and one of its
goals is maximizing classification accuracy on new
instances [26].

As well as in the KNN, in IBK, the classification
generated for the samplei is influenced by the
outcome of the classification of itsk-nearest neigh-
bors, because similar samples often have similar
classifications [26], [27].

3.9 Adaptive boosting (AdaBoost)

The adaptive boosting [28] is a boosting algorithm
widely used in pattern classification problems. In
general, as any boosting method, it makes a combi-
nation of classifiers. However, it has some properties
that make it more practical and easier to implement
than the boosting algorithms that preceded it. One of
these properties is that it does not require any prior
knowledge of the predictions achieved by weak
classifiers. Instead, it adapts to the bad predictions
and generates a weighted majority hypothesis in
which the weight of the each prediction achieved
by weak classifiers it is a function of its prediction.

3.10 Bagging

The bagging [29] is a method for generating
multiple versions of a classifier that are combined
to achieve an aggregate classifier. The classification
process is similar to the boosting methods, but
according to Wittenet. al [27], unlike what occurs in
the second one, in the bagging, the different models
of classifiers get the same weight in the generation
of a prediction.

3.11 LogitBoost

The LogitBoost method [30] is a statistical version
of the boosting method and, according to Witten
et. al [27], it has some similarities with Adaboost,
but it optimizes the likelihood of a class, while the
Adaboost optimizes an exponential cost function.

93



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

Friedmanet. al [30] defines this method as an al-
gorithm for assembly of additive logistic regression
models.

3.12 OneR

The OneR method or 1R (1-rules) [31] can be
considered a 1-level decision tree because it gen-
erates a set of rules, one for each feature of the
dataset, and classifies a sample based on a single
feature. The chosen is one whose rule produces the
smallest error rates.

3.13 Naive Bayes

The naive Bayes method [32] is a simple prob-
abilistic classifier based on Bayes theorem. This
method is termed “naive” because it assumes that
the features contribute independently to the proba-
bility of occurrence of a class. Therefore, according
to Wittenet. al [27] the redundant features can skew
the learning process.

4. Database and Experiment Settings

To give credibility to the found results and in
order to make the experiments reproducible, all
the tests were performed with two large, public
and well-known datasets: the WEBSPAM-UK2006
and WEBSPAM-UK2007 collections4. The first col-
lection is composed by 77.9 million web pages
in 11,000 hosts in the UK domains. The second
one is composed by 105,896,555 web pages in
114,529 hosts. Both of them were used inWeb Spam
Challenge5, that is a well-known competition of web
spam detection techniques.

4. Yahoo! Research: “Web Spam Collections”. Available at http:
//barcelona.research.yahoo.net/webspam/datasets/.

5. Web Spam Challenge:http://webspam.lip6.fr/

In our experiments, we followed the same compe-
tition guidelines. In this way, three sets of features
were employed to discriminate the hosts as spam
or ham: the first one is composed by 96 content-
based features [33], the second one is composed
by 41 link-based features [34] and the third one
is composed by 138 transformed link-based fea-
tures [33], which are the simple combination or
logarithm operation of the link-based features.

We have first preprocessed the data by remov-
ing all feature vectors with no label or labeled
as undefined. After this, the set of features vec-
tors extracted from WEBSPAM-UK2006 collection
stayed with 6,509 (76.6%) hosts labeled as ham
and 1,978 (23.4%) as spam. Further, the set of
feature vectors extracted from WEBSPAM-UK2007
collection stayed with 5,476 (94.5%) hosts labeled
as ham and 321 (5.5%) as spam.

To address the algorithms performance, we used
a random sub-sampling validation, which is also
known as Monte Carlo cross-validation [35]. Such
method provides more freedom to define the size of
training and testing subsets. Unlike the traditional
k-fold cross-validation, the random sub-sampling
validation allows to do as many repetitions were
desired, using any percentage of data for training
and testing.

Despite the Web Spam Challenge has provided
pre-defined train and test split sets, we have not
used them because we wanted to do at least ten
experiments with each classifier in order to make a
more consistent statistical analysis. With the original
partition provided by the competition it would be
possible to make no more than five experiments with
each method. In this way, we divided each simula-
tion in 10 tests in which we randomly selected 80%
of the samples of each class to be presented to the
algorithms in the training stage and the remaining
ones were separated for testing. At the end, we cal-

94



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

culated the arithmetic mean and standard deviation
of the following well-known measures [27]:

• Accuracy: the overall hit rate, in others words,
the proportion of correct predictions. This mea-
sures is defined by: TP+TN

TP+TN+FP+FN
, whereTP

(true positives) refers to the number of examples
correctly classified as spam,FP (false posi-
tives) refers to the examples that were incor-
rectly classified as spam,TN (true negatives)
refers to the number of examples correctly clas-
sified as ham, andFN (false negatives) refers
to the number of examples incorrectly classified
as ham.

• Recall: proportion of spam correctly identified.
Indicates how good the classifier is to identify
the positive class. It is defined by: TP

TP+FN
.

• Specificity: is the proportion of ham correctly
identified. Indicates how good the classifier is
to identify the negative class. It is defined by:

TP
TN+FP

.
• Precision: is the percentage of patterns clas-

sified as belonging to positive class and that
really belong to positive class. It is defined by:

TP
TP+FP

.
• F-measure: is the harmonic mean between pre-

cision and recall. This measures is defined by:
2 ∗ precision∗recall

precision+recall
.

4.1 Settings

In the following, we describe the main parameters
we have used for each classifier.

4.1.1 MLP

We evaluated the following well-known artificial
neural networks: multilayer perceptron trained with
the gradient descent method (MLP-GD) and multi-
layer perceptron trained with Levenberg-Marquardt
method (MLP-LM).

We have implemented all the MLPs with a single
hidden layer and with one neuron in the output layer.
In addition, we have employed a linear activation
function for the neuron of output layer and a hy-
perbolic tangent activation function for the neurons
of the intermediate layer. Thus, we normalized the
data for the interval[−1, 1]. Furthermore, one of the
stopping criteria that we have used was the increas-
ing of the validation set error (checked every 10
iterations). The others parameters were empirically
calibrated and are the following:

• MLP-GD:

– θ = 10, 000

– γ = 0.001

– Step learningα = 0.005

– Number of neurons in the hidden layer: 100

• MLP-LM:

– θ = 500

– γ = 0.001

– Step learningα = 0.001

– Number of neurons in the hidden layer: 50

• SOM + LVQ:

– SOM step:

∗ θ = 2, 000

∗ Step learningα = 0.01

∗ Min step learningαmin = 0.01

∗ Number of neurons in the hidden layer:
150

∗ Neighborhood function: one-dimensional
∗ Initial neighborhood radiusσ = 4

– LVQ step:

∗ θ = 2, 000

∗ Step learningα = 0.01

∗ Number of neurons in the hidden layer:
120

• RBF:

– Number of neurons in the hidden layer: 50

In the experiments with RBF neural network we

95



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

have not employed any stopping criteria because
the training is not iterative, since it employs the
pseudo-inverse method [17]. Further, the dispersion
of the each neuron of the RBF neural network
was calculated by the following equation:dispi =
1
m

m
∑

j=1

dist(Ci, Cj), wherem is the number of neu-

rons or centers anddist(Ci, Cj) is the Euclidean
distance of the centerCi to centerCj.

4.1.2 SVM

We have implemented the SVM using the LIB-
SVM library [22] available for the MATLAB tool.
We performed simulations with the linear, RBF,
sigmoid and polynomial kernel functions and we
have used grid search to define the parameters.
However, in the SVMs with polynomial and sigmoid
kernel, that have a larger number of parameters,
we have performed the grid search only on the
parametersC andγ, due to excessive computational
cost. In this case, we have set the default values of
the LIBSVM for the others parameters.

We have performed the grid search using the
random sub-sampling validation with 80% of the
samples for training and 20% for test. Then, we have
chosen the best parameters – those that achieved
the highest f-measures, and we have used them to
perform the experiments. In such experiments we
evaluated all types of mentioned kernels. However,
due to space limit, we decided to present only the
results achieved by SVM with RBF kernel since it
achieved the best performance. Table 2 presents the
parameters used in the simulations with the SVM.

4.1.3 Remaining methods

We have implemented the remaining classifiers
using the WEKA tool [36]. The AdaBoost and

TABLE 2: Best parameters found by grid search and
used by the SVM method with RBF kernel.

Types of feature vectors C γ

WEBSPAM-UK2006
Unbalanced classes

Content 215 23

Links 215 2−1

Transformed links 210 2−9

Content + links 215 2−2

Links + transformed links 215 20

Content + transformed links 215 23

Content + links + transformed links 215 2−3

Balanced classes
Content 214 23

Links 215 2−1

Transformed links 25 2−5

Content + links 214 2−4

Links + transformed links 215 2−3

Content + transformed links 215 23

Content + links + transformed links 215 2−3

WEBSPAM-UK2007
Balanced classes

Content 210 23

Links 211 23

Transformed links 27 2−1

Content + links 215 21

Links + transformed links 212 22

Content + transformed links 210 23

Content + links + transformed links 212 21

bagging algorithms were trained with 100 iterations
and both of them employ aggregation of multiple
versions of C4.5 method. For all other approaches
we have used the default parameters.

5. Results

In this section we report the results achieved
by the machine learning methods presented in
Section 3. The experiments were performed with
WEBSPAM-UK2006 and WEBSPAM-UK2007
datasets.

96



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

5.1 Results under WEBSPAM-UK2006

Regarding the experiments with WEBSPAM-
UK2006 dataset, for each evaluated method and
feature set, we have performed a simulation using
unbalanced classes, as originally provided in the
web spam competition, with 6,509 (76.6%) samples
of ham hosts and 1,978 (23.4%) of spam ones.
Moreover, to evaluate if the unbalance impacts on
the classifiers performance, we have also performed
simulations using the same number of instances
in each class. For this, we have used the random
undersampling [37], [38]. It balances the classes
through a random elimination of samples belonging
the majority class. After this, both classes were
composed by 1,978 representatives.

Tables 3 and 4 present the results achieved by
each classifier using content, links and transformed
links-based features, respectively. In each table, the
results are sorted by the F-measure achieved for
each feature set. Each column shows the arithmetic
means and the standard deviations of the results
achieved using the random sub-sampling validation
with 10 iterations. The bold values preceded by
the symbol “↑” indicate the highest score and the
bold values preceded by the symbol “↓” indicate the
lowest score for each performance measure. Further,
values preceded by the symbol “*” indicate the
highest or lowest score considering the three set of
features.

The results indicate that the evaluated classi-
fiers are superior when are trained using balanced
classes. Therefore, we have noted that the methods
tend to be biased to the benefit of the class with
the largest amount of samples. We can see that,
in general, the specificity rate is higher than recall
rate, which indicates that the classifiers have more
successful to identify ham hosts since such class has
more representatives.

The method used to balance the classes (random
undersampling) did not affect the learning process
of the algorithms. Otherwise, the standard devia-
tions were expected to be much higher because the
random undersampling method can select different
instances to compose the test set at each repeti-
tion. Therefore, we can conclude that the balancing
method is suitable for our purpose, because besides
generating results with small standard deviations, it
also greatly improved the performance of learning
methods if compared to the accuracy achieved in
the experiments with unbalanced classes.

Regarding the machine learning approaches, the
results indicate that bagging of decision trees
achieved the best overall performance. In average,
it was able to detect 82.2% of the spam hosts with
a precision rate of 82.7%. On the other hand, the
naive Bayes and the neural network RBF achieved
the worst results. However, is important to note that
the naive Bayes method achieved satisfactory results
for at least one of the features set – the link-based
features.

With respect to the set of features, we can note
that the best results were achieved when trans-
formed link-based features were employed (Ta-
ble 4).

5.1.1 Combinations of feature vectors ex-
tracted from WEBSPAM-UK2006 dataset.

One of the problems in spam host detection is
that spammers generally employ more than one
spamming technique. Often, spammers create web
pages with both content and link spam because the
search engines usually give a high score to web
pages with a link structure that indicates that it is
important for the web community with respect to
one or more search queries at the same time that its
content addresses such queries appropriately.

97



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 3: Results achieved by each classifier using features extracted from WEBSPAM-UK2006 dataset
with unbalanced classes.

Accuracy Recall Specificity Precision F-measure

C
on

te
nt

-b
as

ed
fe

at
ur

es

Bagging ↑89.7± 0.5 68.7± 2.3 96.1± 0.6 *↑84.4± 1.9 ↑0.757± 0.014
Random forest 88.9± 1.0 65.7± 4.4 96.0± 1.2 83.4± 3.7 0.734± 0.024
MLP-LM 88.6 ± 1.4 69.3± 4.2 94.2± 1.2 77.6± 4.6 0.731± 0.032
AdaBoost 87.9± 0.9 66.6± 3.2 94.4± 0.7 78.4± 2.3 0.720± 0.024
IBK 86.2 ± 0.8 64.6± 1.3 92.7± 0.7 72.8± 2.0 0.685± 0.011
C4.5 85.1± 1.2 67.7± 4.6 90.4± 0.5 68.0± 0.6 0.678± 0.024
MLP-GD 86.2± 1.2 57.0± 4.6 95.0± 0.4 77.5± 2.7 0.656± 0.039
LogitBoost 84.3± 1.0 54.2± 3.9 93.5± 1.1 71.6± 3.2 0.616± 0.023
SVM 82.5± 0.6 36.0± 2.4 *↑96.6± 0.5 76.2± 2.8 0.488± 0.023
OneR 80.8± 0.7 38.3± 2.4 93.7± 0.6 65.0± 2.7 0.482± 0.023
SOM + LVQ 35.3± 3.7 94.7± 0.9 80.9± 0.7 67.0± 2.7 0.461± 0.033
RBF 80.7± 0.6 ↓30.3± 2.7 96.1± 0.4 70.0± 2.2 0.422± 0.028
Naive Bayes ↓32.3± 4.6 *↑97.4± 1.0 *↓12.5± 6.2 *↓25.4± 1.3 ↓0.402± 0.015

Li
nk

-b
as

ed
fe

at
ur

es

Bagging ↑89.7± 0.6 79.2± 1.6 92.8± 0.9 ↑77.2± 2.0 ↑0.781± 0.009
Random forest 89.1± 0.9 76.5± 7.9 92.8± 2.2 77.0± 3.7 0.764± 0.027
AdaBoost 87.9± 0.8 72.6± 3.0 92.6± 0.8 74.9± 1.9 0.737± 0.019
C4.5 87.2± 0.5 73.2± 2.1 91.5± 0.8 72.3± 1.4 0.727± 0.011
MLP-LM 88.1 ± 1.6 70.8± 6.6 93.0± 0.7 74.1± 3.7 0.723± 0.049
LogitBoost 86.7± 0.5 71.8± 4.0 91.2± 1.4 71.4± 2.1 0.715± 0.009
MLP-GD 86.4± 1.3 61.6± 3.1 93.9± 0.9 75.3± 2.9 0.677± 0.026
IBK 83.7 ± 1.4 67.8± 2.8 88.5± 1.3 64.2± 2.4 0.659± 0.023
Naive Bayes 73.4± 1.2 ↑94.6± 1.3 ↓66.9± 1.5 ↓46.5± 1.2 0.624± 0.012
SVM 81.2± 0.7 47.1± 2.5 91.5± 0.6 62.8± 1.9 0.538± 0.021
OneR 78.6± 0.8 49.4± 3.5 87.5± 1.2 54.7± 1.9 0.518± 0.023
SOM + LVQ *↓21.8± 3.6 94.3± 1.3 77.4± 0.6 54.0± 3.3 0.309± 0.035
RBF 77.7± 0.5 *↓17.2± 1.1 ↑96.1± 0.7 57.4± 4.3 *↓0.264± 0.015

T
ra

ns
fo

rm
ed

lin
k-

ba
se

d
fe

at
ur

es Bagging *↑89.8± 0.7 78.9± 1.2 93.1± 0.8 ↑77.6± 2.1 *↑0.782± 0.014
Random forest 88.8± 0.4 76.5± 3.1 92.5± 1.5 75.8± 4.1 0.760± 0.012
MLP-LM 89.0 ± 0.8 74.9± 3.9 93.1± 0.5 76.1± 2.1 0.754± 0.027
SVM 88.3± 0.6 76.6± 2.3 91.8± 0.8 73.9± 1.6 0.752± 0.012
MLP-GD 88.3± 0.9 75.2± 2.2 92.1± 1.4 73.9± 3.1 0.745± 0.014
AdaBoost 87.9± 0.8 72.6± 3.0 92.6± 0.8 74.9± 1.9 0.737± 0.019
LogitBoost 86.4± 0.4 70.2± 4.9 91.5± 1.5 72.3± 3.2 0.711± 0.019
C4.5 86.3± 0.4 73.5± 1.8 90.0± 0.7 68.5± 2.2 0.709± 0.016
SOM + LVQ 66.6± 2.6 92.2± 0.9 86.2± 0.6 72.2± 2.0 0.692± 0.015
IBK 84.7 ± 0.7 67.5± 2.4 90.0± 1.5 67.3± 3.5 0.673± 0.011
OneR 82.9± 1.0 ↓64.3± 2.1 88.6± 1.3 63.2± 2.8 0.637± 0.018
RBF 84.7± 1.0 52.4± 6.2 ↑94.5± 1.1 74.3± 2.6 0.612± 0.043
Naive Bayes ↓35.9± 1.0 ↑96.5± 1.0 ↓17.5± 1.5 ↓26.2± 0.3 ↓0.412± 0.004

Therefore, this section presents the results
achieved in experiments performed with all possible
combinations of the feature vectors. The goal is to
improve the results of the web spam classification
by identifying hosts that employ content and link
spam simultaneously.

Tables 5 and 6 present the results achieved by
each method with the following features combina-
tions: content and links, content and transformed

links, links and transformed links, and content, links
and transformed links. Bold values preceded by
the symbol “↑” indicate the highest score and the
bold values preceded by the symbol “↓” indicate
the lowest score for each performance measure.
Further, values preceded by the symbol “*” indicate
the highest or lowest score considering all feature
combinations.

The results indicate that using combinations of

98



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 4: Results achieved by each classifier using features extracted from WEBSPAM-UK2006 dataset
with balanced classes.

Accuracy Recall Specificity Precision F-measure

C
on

te
nt

-b
as

ed
fe

at
ur

es

MLP-LM ↑87.6± 1.5 ↑86.5± 2.0 *↑88.8± 1.9 *↑89.1± 2.4 ↑0.877± 0.017
Bagging 85.0± 1.2 83.5± 2.3 86.5± 1.5 86.1± 1.3 0.848± 0.013
MLP-GD 84.7± 1.6 82.9± 2.0 86.4± 2.4 86.1± 2.4 0.845± 0.015
AdaBoost 82.7± 1.3 81.8± 2.5 83.6± 1.9 83.3± 1.6 0.825± 0.014
Random forest 82.8± 1.5 81.8± 3.3 83.8± 3.1 83.4± 2.3 0.825± 0.015
IBK 79.9 ± 1.4 77.0± 2.6 82.7± 1.5 81.4± 1.5 0.791± 0.017
C4.5 78.7± 0.4 79.2± 2.5 78.2± 1.9 78.3± 1.6 0.787± 0.012
LogitBoost 78.3± 1.6 77.0± 3.2 79.7± 0.6 78.9± 1.1 0.779± 0.015
Naive Bayes ↓63.6± 7.5 83.6± 17.7 ↓43.6± 30.5 ↓62.8± 10.2 0.694± 0.039
SOM + LVQ 65.6± 2.4 74.9± 2.5 70.3± 0.8 72.4± 1.5 0.688± 0.011
SVM 71.1± 1.4 60.6± 2.7 81.6± 1.5 76.7± 1.5 0.677± 0.019
OneR 66.5± 1.5 61.6± 1.0 71.4± 2.4 68.3± 2.0 0.648± 0.013
RBF 68.9± 1.7 *↓55.6± 1.9 82.3± 2.2 75.9± 2.6 *↓0.641± 0.019

Li
nk

-b
as

ed
fe

at
ur

es

Bagging ↑87.7± 1.3 91.7± 1.9 83.7± 1.7 84.9± 1.4 ↑0.882± 0.013
Random forest ↑87.7± 0.7 88.8± 2.5 ↑86.7± 2.1 ↑87.1± 1.6 0.879± 0.010
MLP-LM 86.4 ± 1.7 92.1± 3.8 81.1± 2.6 82.3± 2.6 0.868± 0.019
AdaBoost 85.5± 0.8 87.7± 1.7 83.2± 1.0 83.9± 0.8 0.858± 0.009
MLP-GD 83.9± 1.9 90.2± 2.6 77.9± 3.0 80.0± 2.9 0.848± 0.019
LogitBoost 83.2± 1.5 88.0± 3.7 78.4± 1.7 80.4± 1.0 0.840± 0.018
C4.5 83.4± 0.9 85.4± 2.2 81.5± 1.7 82.3± 1.4 0.838± 0.011
Naive Bayes 80.5± 1.8 ↑94.8± 0.9 ↓66.1± 3.3 73.7± 2.0 0.829± 0.014
OneR 81.4± 1.2 88.7± 1.0 74.2± 2.2 77.5± 1.5 0.827± 0.010
IBK 78.3 ± 0.4 80.8± 1.4 75.8± 1.6 77.1± 0.8 0.789± 0.003
SVM 76.3± 1.4 77.1± 2.2 75.4± 2.4 75.8± 1.7 0.765± 0.014
SOM + LVQ 70.1± 3.5 70.0± 2.8 70.0± 1.1 ↓70.0± 1.3 0.700± 0.017
RBF ↓70.0± 1.3 ↓69.5± 2.8 70.6± 2.7 70.3± 1.7 ↓0.699± 0.015

T
ra

ns
fo

rm
ed

lin
k-

ba
se

d
fe

at
ur

es Bagging *↑88.3± 1.1 91.3± 1.6 85.3± 1.2 ↑86.2± 1.1 *↑0.886± 0.011
MLP-GD 87.4± 1.6 89.6± 2.2 85.2± 1.1 85.9± 2.0 0.877± 0.019
Random forest 87.4± 1.4 89.5± 3.7 85.3± 2.4 86.0± 1.7 0.876± 0.016
AdaBoost 87.1± 1.2 88.8± 0.9 ↑85.5± 2.0 85.9± 1.7 0.873± 0.011
MLP-LM 86.3 ± 2.7 87.5± 4.0 85.2± 3.6 85.8± 3.3 0.866± 0.027
SVM 86.0± 0.7 88.5± 1.7 83.5± 1.8 84.4± 1.3 0.864± 0.007
LogitBoost 84.4± 2.2 87.6± 3.7 81.3± 1.3 82.7± 1.0 0.850± 0.021
C4.5 84.1± 1.9 85.6± 2.4 82.5± 1.8 83.1± 1.8 0.844± 0.020
SOM + LVQ 85.2± 2.1 ↓81.3± 2.1 83.3± 1.1 82.1± 1.5 0.836± 0.011
OneR 82.7± 0.7 86.5± 2.0 79.0± 1.9 80.5± 1.2 0.834± 0.008
RBF 81.3± 0.9 82.0± 2.2 80.6± 2.0 80.9± 1.4 0.814± 0.010
IBK 80.7 ± 0.1 81.6± 0.7 79.8± 0.6 80.2± 0.4 0.809± 0.002
Naive Bayes *↓61.0± 4.7 *↑96.8± 0.8 *↓25.2± 9.6 *↓56.6± 3.2 ↓0.714± 0.025

features is more effective than use individual feature
set. The combination that acquired the best results
was content and transformed link-based features
with balanced classes. However, in the experiments
with unbalanced classes, the combination of content
and link-based features was more effective. The re-
sults also indicate that the combination of all feature
sets also achieved good results. Nevertheless, such
combination has the largest dimensionality and thus

requires more computational resources.

Again, we observed that the learning methods
achieved better performance with balanced classes.
For example, in the experiments shown in Table 6,
for the combination of content and link-based fea-
tures, the precision and recall rate were on average,
respectively, 9.6% and 14.8% higher than the results
achieved in the same experiment with unbalanced
classes.

99



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 5: Results achieved by each classifier using combinationof features extracted from WEBSPAM-
UK2006 dataset with unbalanced classes.

Accuracy Recall Specificity Precision F-measure

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost *↑92.5± 0.6 80.4± 1.9 ↑96.1± 0.4 *↑86.3± 1.2 *↑0.832± 0.014
MLP-LM 92.1 ± 0.6 81.7± 2.0 95.3± 0.2 84.4± 1.9 0.830± 0.008
Bagging 92.0± 0.7 81.1± 1.8 95.3± 0.6 84.0± 1.7 0.825± 0.016
Random forest 91.0± 0.3 74.4± 2.5 96.0± 1.1 85.0± 2.4 0.793± 0.006
MLP-GD 89.3± 0.6 74.0± 3.4 94.1± 0.9 79.7± 2.7 0.767± 0.017
C4.5 88.2± 0.5 75.9± 2.3 91.9± 0.3 73.8± 0.9 0.748± 0.014
LogitBoost 88.5± 0.6 70.2± 2.6 93.9± 0.7 77.7± 2.3 0.737± 0.019
IBK 86.7 ± 0.6 68.7± 2.3 92.1± 0.7 72.5± 2.0 0.705± 0.015
Naive Bayes 72.7± 0.9 95.3± 1.0 ↓65.8± 1.3 ↓45.9± 0.8 0.620± 0.008
SVM 83.6± 0.8 52.4± 2.0 93.0± 0.8 69.6± 2.5 0.598± 0.018
OneR 78.5± 0.9 50.1± 2.4 87.2± 1.2 54.4± 2.2 0.521± 0.018
SOM + LVQ *↓24.2± 2.3 ↑95.7± 0.9 79.1± 0.7 63.5± 4.7 0.349± 0.027
RBF 77.8± 0.5 *↓20.1± 1.0 95.2± 0.4 56.3± 2.7 *↓0.296± 0.014

C
om

bi
na

tio
n

of
lin

k
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

Bagging ↑89.7± 0.8 78.5± 3.0 93.1± 0.5 ↑77.6± 1.5 ↑0.780± 0.020
Random forest 89.0± 1.0 78.7± 2.2 92.2± 0.9 75.4± 2.3 0.770± 0.020
MLP-GD 89.1± 1.5 76.9± 3.8 92.7± 1.5 76.1± 4.5 0.764± 0.031
MLP-LM 88.8 ± 1.8 75.8± 4.7 92.9± 1.2 76.6± 4.1 0.761± 0.038
AdaBoost 88.3± 0.6 73.9± 2.2 92.6± 0.5 75.3± 1.3 0.746± 0.015
C4.5 86.4± 0.9 71.8± 3.3 90.9± 1.1 70.6± 2.2 0.712± 0.019
LogitBoost 86.4± 0.7 69.9± 4.5 91.4± 1.7 71.4± 2.7 0.705± 0.018
IBK 84.3 ± 0.8 67.2± 2.0 89.5± 0.7 66.0± 1.8 0.666± 0.017
SVM 83.6± 1.0 62.5± 2.1 90.0± 1.3 65.6± 2.8 0.639± 0.018
Naive Bayes 73.5± 0.8 ↑94.9± 1.1 ↓67.0± 1.0 ↓46.7± 0.8 0.626± 0.008
OneR 82.4± 0.7 61.6± 2.0 88.7± 0.7 62.4± 1.6 0.620± 0.015
SOM + LVQ ↓27.6± 2.6 94.3± 0.7 78.8± 0.5 59.6± 2.3 0.377± 0.025
RBF 78.4± 0.8 ↓22.6± 1.2 ↑95.4± 0.8 60.0± 4.9 ↓0.328± 0.019

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost ↑92.4± 0.8 81.1± 2.7 95.8± 0.5 ↑85.6± 1.6 *↑0.832± 0.018
Bagging 92.1± 0.7 82.2± 2.4 95.1± 0.4 83.6± 1.4 0.829± 0.017
Random forest 91.0± 0.3 81.0± 2.0 94.1± 0.3 80.7± 0.6 0.808± 0.010
MLP-GD 90.3± 0.8 78.5± 2.1 94.0± 0.8 79.8± 3.2 0.791± 0.021
MLP-LM 89.9 ± 1.1 77.3± 4.3 93.7± 1.5 79.0± 4.2 0.780± 0.032
LogitBoost 88.9± 0.5 73.0± 3.5 93.7± 0.8 77.9± 1.7 0.753± 0.016
C4.5 87.5± 0.8 72.9± 1.8 91.9± 1.0 73.4± 2.3 0.731± 0.015
IBK 87.1 ± 0.4 68.0± 1.8 92.9± 0.6 74.5± 1.4 0.711± 0.010
OneR 83.4± 1.3 63.3± 2.1 89.5± 1.3 64.9± 3.3 0.641± 0.024
SVM 85.1± 0.6 50.7± 2.0 95.6± 0.5 77.7± 2.2 0.613± 0.018
SOM + LVQ ↓33.2± 3.8 *↑96.0± 0.6 81.4± 0.7 71.5± 2.5 0.452± 0.037
RBF 81.0± 0.6 ↓29.9± 2.4 *↑96.5± 0.4 71.9± 2.8 0.422± 0.027
Naive Bayes 36.1± 0.9 *↑96.0± 1.1 *↓17.9± 1.1 *↓26.2± 0.3 ↓0.412± 0.005

C
om

bi
na

tio
n

of
al

l
fe

at
ur

es

AdaBoost ↑92.1± 0.7 81.6± 1.2 95.3± 0.9 ↑84.2± 2.7 ↑0.829± 0.014
Bagging 91.8± 1.0 82.1± 2.0 94.8± 1.0 82.7± 2.9 0.824± 0.019
Random forest 91.2± 0.7 82.4± 1.1 93.9± 0.9 80.4± 2.3 0.814± 0.012
MLP-LM 90.6 ± 1.0 81.7± 3.7 93.3± 0.7 79.2± 2.5 0.804± 0.027
MLP-GD 90.2± 1.0 79.9± 2.7 93.4± 0.9 78.9± 3.3 0.793± 0.024
LogitBoost 89.3± 0.9 75.9± 2.3 93.3± 0.8 77.6± 2.2 0.767± 0.020
C4.5 87.4± 0.6 73.4± 2.7 91.7± 1.0 73.0± 2.0 0.731± 0.014
IBK 86.4 ± 0.6 69.2± 1.4 91.7± 0.6 71.6± 1.6 0.704± 0.013
OneR 82.9± 0.7 63.5± 2.5 88.8± 0.8 63.3± 1.6 0.634± 0.017
SVM 84.4± 0.7 55.9± 2.0 93.1± 0.5 71.1± 1.9 0.626± 0.018
Naive Bayes 73.4± 0.7 94.8± 1.2 ↓66.9± 1.0 ↓46.6± 0.7 0.625± 0.006
SOM + LVQ ↓25.5± 4.1 ↑95.4± 1.6 79.2± 0.8 63.8± 6.0 0.361± 0.040
RBF 78.3± 0.5 ↓20.2± 3.2 ↑95.9± 0.4 60.0± 2.5 ↓0.302± 0.039

100



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 6: Results achieved by each classifier using combinationof features extracted from WEBSPAM-
UK2006 dataset with balanced classes.

Accuracy Recall Specificity Precision F-measure

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost ↑90.3± 0.6 92.5± 1.3 ↑88.1± 1.3 ↑88.7± 1.0 ↑0.905± 0.006
Bagging 90.1± 0.6 ↑93.2± 0.8 87.1± 1.2 87.8± 1.0 0.904± 0.005
MLP-GD 89.2± 1.0 93.0± 1.7 85.5± 2.2 86.4± 2.2 0.895± 0.011
Random forest 89.0± 0.7 92.1± 2.1 85.7± 1.9 86.9± 1.2 0.894± 0.008
MLP-LM 88.4 ± 2.1 91.9± 3.5 85.0± 3.3 85.6± 2.7 0.886± 0.021
LogitBoost 86.4± 0.5 89.9± 1.3 82.9± 2.0 84.3± 1.2 0.870± 0.005
C4.5 85.7± 0.8 86.9± 2.2 84.5± 1.4 85.1± 0.9 0.860± 0.009
IBK 83.1 ± 0.8 84.7± 2.7 81.5± 1.6 82.4± 1.0 0.835± 0.012
Naive Bayes 80.8± 1.2 92.7± 6.5 68.9± 6.7 75.2± 3.5 0.828± 0.016
OneR 81.5± 1.2 88.8± 1.7 74.2± 1.8 77.5± 1.3 0.827± 0.012
SVM 76.0± 1.5 71.4± 1.7 80.6± 2.6 78.7± 2.3 0.749± 0.015
RBF 68.7± 2.3 ↓65.0± 1.6 72.4± 4.5 70.3± 3.4 0.675± 0.018
SOM + LVQ ↓64.6± 3.6 70.7± 3.8 ↓67.7± 2.4 ↓68.9± 3.0 ↓0.666± 0.026

C
om

bi
na

tio
n

of
lin

k
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

Bagging ↑88.2± 1.2 91.6± 1.3 84.9± 1.9 ↑85.8± 1.6 ↑0.886± 0.011
Random forest 87.7± 0.6 92.1± 0.6 83.3± 1.5 84.7± 1.1 0.882± 0.005
MLP-GD 87.6± 2.5 91.7± 1.6 83.4± 3.9 84.6± 3.4 0.880± 0.023
AdaBoost 86.9± 0.9 89.7± 0.9 84.2± 1.4 85.0± 1.2 0.873± 0.008
LogitBoost 85.8± 0.8 90.3± 1.3 81.4± 2.2 83.0± 1.5 0.864± 0.006
MLP-LM 86.7 ± 2.7 87.7± 2.9 ↑85.8± 3.7 85.2± 3.5 0.863± 0.026
OneR 84.0± 0.9 87.8± 2.0 80.1± 1.9 81.6± 1.3 0.846± 0.009
C4.5 84.2± 1.1 84.7± 1.5 83.6± 1.5 83.8± 1.3 0.842± 0.011
Naive Bayes 80.8± 1.5 ↑94.7± 0.7 ↓66.9± 3.0 74.1± 1.7 0.832± 0.011
SVM 80.9± 1.0 84.0± 1.7 77.7± 1.2 79.0± 0.9 0.814± 0.010
IBK 80.6 ± 1.4 83.2± 1.6 78.0± 1.6 79.1± 1.4 0.811± 0.014
SOM + LVQ ↓69.8± 3.7 72.7± 1.9 71.3± 1.7 71.9± 1.4 0.708± 0.023
RBF 69.9± 2.0 ↓68.5± 1.7 71.3± 3.4 ↓70.6± 2.6 ↓0.695± 0.018

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost *↑91.4± 0.7 93.7± 1.2 ↑89.2± 1.4 ↑89.7± 1.1 *↑0.916± 0.007
Bagging 90.0± 0.8 92.7± 1.1 87.3± 1.2 88.0± 1.0 0.903± 0.008
MLP-GD 89.6± 1.6 91.2± 2.0 88.0± 2.4 88.2± 2.6 0.897± 0.016
Random forest 89.1± 0.7 92.5± 0.8 85.6± 1.1 86.6± 0.9 0.894± 0.006
MLP-LM 89.1 ± 1.8 90.5± 2.9 87.8± 2.8 88.2± 2.1 0.893± 0.017
LogitBoost 87.2± 1.1 90.8± 1.7 83.7± 2.1 84.8± 1.6 0.877± 0.011
C4.5 85.9± 1.1 86.8± 1.5 85.0± 1.9 85.3± 1.5 0.860± 0.010
OneR 83.1± 0.7 87.3± 2.0 78.9± 1.8 80.6± 1.1 0.838± 0.008
IBK 83.3 ± 1.1 81.5± 2.0 85.1± 1.5 84.6± 1.3 0.830± 0.012
SVM 77.9± 1.1 66.5± 2.4 ↑89.2± 1.7 86.1± 1.7 0.750± 0.015
Naive Bayes *↓61.7± 4.7 *↑96.5± 0.9 *↓26.9± 9.9 *↓57.1± 3.5 0.717± 0.026
SOM + LVQ 63.8± 4.6 77.4± 2.9 70.6± 1.7 73.9± 1.9 0.684± 0.026
RBF 69.1± 1.2 *↓51.6± 3.1 86.6± 3.1 79.6± 3.2 *↓0.625± 0.019

C
om

bi
na

tio
n

of
al

l
fe

at
ur

es

AdaBoost ↑91.3± 1.0 93.2± 0.9 *↑89.4± 1.5 *↑89.8± 1.3 ↑0.915± 0.010
MLP-GD 90.4± 1.0 92.4± 1.4 88.3± 1.6 88.8± 1.5 0.906± 0.010
Bagging 90.2± 1.1 92.5± 1.3 87.9± 1.6 88.4± 1.3 0.904± 0.010
Random forest 89.4± 0.8 92.7± 1.5 86.1± 1.6 87.0± 1.2 0.897± 0.008
MLP-LM 87.5 ± 3.7 89.7± 4.6 85.2± 5.4 86.1± 4.0 0.878± 0.034
LogitBoost 86.9± 1.1 89.8± 2.2 84.0± 1.9 84.9± 1.5 0.873± 0.011
C4.5 85.6± 1.6 86.3± 2.6 84.9± 2.0 85.1± 1.7 0.857± 0.017
OneR 83.1± 0.8 86.8± 2.0 79.4± 1.4 80.9± 0.9 0.837± 0.009
Naive Bayes 81.0± 1.5 ↑93.8± 1.2 ↓68.2± 2.6 74.7± 1.6 0.832± 0.012
IBK 83.0 ± 1.7 83.0± 2.3 82.9± 2.5 83.0± 2.1 0.830± 0.017
SVM 80.4± 1.1 78.2± 1.4 82.6± 1.9 81.9± 1.5 0.800± 0.011
SOM + LVQ ↓67.1± 3.2 71.0± 3.7 69.0± 1.3 ↓69.9± 2.1 0.684± 0.015
RBF 69.5± 1.7 ↓64.6± 1.5 74.5± 2.7 71.8± 2.3 ↓0.679± 0.016

101



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

The classifier that achieved the best overall results
was the AdaBoost. The bagging method performed
better than AdaBoost just for the combination of
link and transformed link-based features (Table 5).
The MLP neural networks and random forest also
achieved good results, staying in the top five meth-
ods. On the other hand, the RBF neural network and
SOM + LVQ achieved the worst results and were in-
ferior than one of the simplest pattern classification
methods, the OneR.

5.2 Results under WEBSPAM-UK2007

This section presents the results achieved by the
machine learning methods described in Section 3 us-
ing sets of pre-computed features vectors extracted
from WEBSPAM-UK2007 dataset and made avail-
able by the organizers of the Web Spam Challenge
2008. Each set contains 5,476 (94.5%) samples of
ham hosts and 321 (5.5%) of spam ones.

We can note that the imbalance class problem
for the WEBSPAM-UK2007 dataset is much worse
than WEBSPAM-UK2006. It was infeasible to use
only the random undersampling method to balance
the classes because would be necessary to discard
5,155 samples of ham. This high number of dis-
carded instances could affect the learning process
of the classifiers due to the great loss of infor-
mation. Therefore, we used the synthetic minority
oversampling technique (SMOTE) [39]. This is a
well-known balancing method that creates synthetic
instances of the minority class using knowledge of
the existing instances.

Using only the SMOTE method would be nec-
essary to create 5,155 synthetic instances of spam.
This high number could cause overfitting. In order
to avoid this, we used the SMOTE to create 1,605
new samples of the spam and we applied the random
undersampling method in each simulation discard-
ing 3,550 instances of the ham class. In this way, we

kept the classes balanced with 1,926 representatives
each one.

After applying the SMOTE and random under-
sampling methods was possible to perform exper-
iments using balanced classes. However, it was
infeasible to perform experiments with unbalanced
classes because some classification methods were
not able to detect any spam instance during the
test step, since only 321 instances were insufficient
for learning. For this reason, for the WEBSPAM-
UK2007 dataset we performed experiments only
with balanced classes.

Table 7 presents the results achieved by each clas-
sifier exploring the content, links and transformed
links-based features, respectively. The results are
sorted by F-measure for each feature set. Each
column of the table shows the average and the
standard deviation of the results achieved using the
random sub-sampling validation with 10 iterations.
The bold values preceded by the symbol “↑” indi-
cate the highest score and the bold values preceded
by the symbol “↓” indicate the lowest score for each
performance measure. Further, values preceded by
the symbol “*” indicate the highest or lowest score
considering the three set of features.

The results indicate that the evaluated methods
acquired better performance in the simulations with
content-based features. Moreover, the results pre-
sented in Table 7 indicate that the bagging of
decision trees has outperformed other methods. We
can note that in all scenarios it achieved the best
accuracy, precision and f-measure rates.

5.2.1 Combinations of feature vectors ex-
tracted from WEBSPAM-UK2007 dataset.

This section presents the results achieved by the
combinations of features. As previously described,

102



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 7: Results achieved by each classifier using features extracted from WEBSPAM-UK2007 dataset
with balanced classes.

Accuracy Recall Specificity Precision F-measure

C
on

te
nt

-b
as

ed
fe

at
ur

es

Bagging *↑89,7± 1,3 89,2± 1,3 90,2± 1,7 *↑90,0± 2,0 *↑0,896± 0,014
AdaBoost 88,0± 2,2 88,1± 2,9 87,9± 2,3 87,9± 2,2 0,880± 0,022
Random forest 86,6± 1,2 89,5± 1,4 83,8± 1,7 84,6± 1,4 0,870± 0,011
IBK 85,8 ± 1,3 83,8± 2,7 87,8± 2,0 87,3± 1,6 0,855± 0,015
MLP-LM 82,9 ± 2,1 83,1± 4,1 82,5± 4,0 82,2± 2,5 0,826± 0,023
C4.5 79,6± 1,6 79,6± 1,8 79,6± 2,5 79,6± 2,1 0,796± 0,015
OneR 80,1± 2,2 74,8± 4,6 85,3± 4,1 83,7± 3,6 0,789± 0,026
MLP-GD 76,2± 1,8 74,8± 2,9 77,7± 4,3 77,2± 3,3 0,759± 0,019
OneR 75,0± 0,9 75,3± 2,9 74,6± 3,0 74,8± 1,7 0,750± 0,011
Naive Bayes *↓52,6± 2,0 *↑95,0± 2,3 *↓10,2± 4,4 *↓51,4± 1,1 0,667± 0,011
SOM + LVQ 56,7± 2,3 83,0± 3,2 69,9± 1,4 77,1± 3,2 0,653± 0,016
RBF 68,8± 2,3 53,4± 3,0 84,3± 2,3 77,3± 3,1 0,631± 0,029
SVM 70,6± 0,9 ↓49,8± 2,0 *↑91,5± 1,1 85,4± 1,5 ↓0,628± 0,016

Li
nk

-b
as

ed
fe

at
ur

es

Bagging ↑88,5± 1,6 87,6± 1,5 ↑89,4± 2,2 ↑89,2± 2,1 ↑0,884± 0,015
Random forest 84,7± 1,3 ↑88,9± 1,4 80,5± 2,3 82,0± 1,7 0,853± 0,011
AdaBoost 85,2± 2,0 85,4± 2,0 84,9± 3,3 85,0± 2,9 0,852± 0,019
OneR 80,9± 2,7 80,4± 7,0 81,3± 8,9 82,1± 7,7 0,807± 0,025
MLP-LM 80,4 ± 1,4 78,6± 3,7 82,3± 3,7 82,2± 3,3 0,803± 0,012
IBK 79,9 ± 0,9 78,2± 2,2 81,6± 1,8 81,0± 1,3 0,795± 0,011
SVM 80,0± 1,1 75,7± 4,2 84,4± 4,2 83,1± 3,3 0,791± 0,015
C4.5 78,8± 1,4 78,5± 2,6 79,1± 2,6 79,0± 1,9 0,787± 0,015
OneR 70,8± 1,6 71,5± 4,0 70,0± 3,8 70,5± 2,1 0,709± 0,020
MLP-GD 66,7± 2,2 66,3± 3,5 ↓67,2± 3,2 ↓67,5± 3,1 0,668± 0,024
RBF 70,1± 1,7 52,3± 3,3 88,0± 2,3 81,4± 2,8 0,636± 0,027
SOM + LVQ ↓53,3± 2,2 82,1± 3,4 67,7± 1,6 75,0± 3,4 0,622± 0,017
Naive Bayes 54,1± 3,4 *↓20,3± 24,3 87,8± 17,9 67,8± 9,3 *↓0,250± 0,201

T
ra

ns
fo

rm
ed

lin
k-

ba
se

d
fe

at
ur

es Bagging ↑87,0± 1,2 89,2± 1,6 84,7± 2,3 ↑85,4± 1,8 ↑0,872± 0,012
Random forest 84,5± 1,2 ↑90,6± 1,5 78,5± 2,4 80,8± 1,7 0,854± 0,010
IBK 84,9 ± 1,1 88,2± 1,2 81,6± 1,9 82,7± 1,5 0,853± 0,010
SVM 85,1± 1,2 85,2± 2,1 85,0± 1,8 85,1± 1,5 0,851± 0,012
AdaBoost 83,8± 1,5 85,0± 2,2 82,6± 2,2 83,0± 1,9 0,840± 0,015
OneR 81,3± 1,7 84,4± 2,9 78,2± 2,3 79,4± 1,8 0,818± 0,018
MLP-LM 81,4 ± 3,3 81,2± 5,9 81,9± 2,7 81,8± 3,6 0,814± 0,038
C4.5 78,5± 1,5 79,9± 1,5 77,2± 3,0 77,8± 2,2 0,788± 0,013
MLP-GD 74,1± 1,3 74,8± 1,6 73,4± 2,8 74,4± 2,6 0,746± 0,015
OneR 71,6± 2,0 68,9± 3,3 74,4± 3,4 72,9± 2,6 0,708± 0,022
SOM + LVQ 71,2± 2,9 69,3± 2,8 70,3± 1,7 69,9± 1,9 0,705± 0,018
RBF 64,6± 1,8 59,6± 4,2 ↓69,6± 2,4 ↓66,2± 1,7 0,627± 0,027
Naive Bayes ↓58,6± 1,8 ↓28,2± 5,9 ↑89,0± 3,2 72,0± 2,8 ↓0,402± 0,058

we have performed the experiments with balanced
classes.

Table 8 presents the results sorted by F-measure
for each used feature set. The bold values preceded
by the symbol “↑” indicate the highest score and the
bold values preceded by the symbol “↓” indicate
the lowest score for each performance measure.
Further, values preceded by the symbol “*” indicate
the highest or lowest score considering all features

combinations.

The results indicate that the combination of fea-
ture vectors improves the classifiers performance.
Only the combination of links and transformed
link-based features did not achieved better results
than the ones achieved without combination of
features. Furthermore, as well as in the experiments
with WEBSPAM-UK2006 dataset, the classifiers
performed better using the combination of content

103



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

TABLE 8: Results achieved by each classifier using combinationof features extracted from WEBSPAM-
UK2007 dataset with balanced classes.

Accuracy Recall Specificity Precision F-measure

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost ↑93,5± 0,5 ↑94,5± 0,7 ↑92,6± 1,2 ↑92,7± 1,1 ↑0,936± 0,005
Bagging 89,5± 1,3 91,4± 1,1 87,7± 2,4 88,1± 2,0 0,897± 0,012
MLP-LM 87,2 ± 2,4 87,2± 3,2 87,3± 3,3 86,3± 4,4 0,866± 0,029
Random forest 85,8± 1,0 90,3± 1,8 81,3± 1,5 82,8± 1,1 0,864± 0,010
IBK 85,6 ± 1,5 85,9± 2,1 85,4± 1,4 85,4± 1,4 0,857± 0,016
OneR 84,3± 1,9 79,0± 4,0 89,5± 5,7 88,7± 5,5 0,834± 0,017
C4.5 79,4± 1,7 79,0± 1,6 79,8± 3,2 79,7± 2,5 0,793± 0,015
MLP-GD 78,4± 1,8 78,5± 3,5 78,4± 2,5 78,1± 2,6 0,783± 0,020
SVM 78,2± 1,6 72,6± 2,6 83,6± 1,6 81,6± 1,6 0,769± 0,019
OneR 76,3± 1,1 75,5± 3,4 77,1± 3,3 76,8± 2,0 0,761± 0,014
Naive Bayes ↓59,5± 4,8 81,6± 19,0 *↓37,4± 25,7 *↓58,8± 8,7 0,660± 0,057
SOM + LVQ 61,2± 3,6 73,9± 4,3 67,6± 1,5 70,3± 2,7 0,653± 0,018
RBF 65,8± 1,3 ↓58,8± 1,6 72,9± 3,0 68,5± 2,1 ↓0,632± 0,011

C
om

bi
na

tio
n

of
lin

k
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

Bagging ↑88,7± 1,5 86,5± 2,2 ↑90,9± 2,0 ↑90,5± 1,9 ↑0,885± 0,016
Random forest 86,4± 1,0 ↑89,5± 1,3 83,3± 2,1 84,3± 1,6 0,868± 0,009
IBK 86,1 ± 0,8 87,2± 0,6 85,1± 1,5 85,4± 1,2 0,863± 0,007
AdaBoost 85,5± 0,7 84,9± 1,5 86,2± 1,0 86,0± 0,8 0,854± 0,008
MLP-LM 83,4 ± 2,8 83,2± 4,4 83,8± 4,0 84,2± 3,4 0,836± 0,028
C4.5 81,3± 1,2 80,3± 2,6 82,3± 1,3 81,9± 1,0 0,811± 0,014
OneR 81,1± 0,8 78,5± 6,2 83,6± 6,5 83,3± 5,2 0,805± 0,014
MLP-GD 79,8± 2,2 78,5± 3,1 81,2± 2,2 80,9± 2,5 0,797± 0,025
SVM 79,8± 1,5 73,0± 4,5 86,6± 2,8 84,6± 2,1 0,783± 0,021
OneR 76,7± 1,7 78,7± 3,6 74,6± 2,9 75,6± 1,9 0,771± 0,020
SOM + LVQ 62,7± 3,2 76,2± 2,5 ↓69,5± 1,8 72,5± 2,2 0,672± 0,022
RBF 67,8± 2,7 57,6± 1,9 78,0± 4,1 72,5± 4,1 0,641± 0,025
Naive Bayes *↓56,3± 1,5 *↓23,8± 3,2 88,6± 2,4 ↓67,8± 4,5 *↓0,352± 0,036

C
om

bi
na

tio
n

of
co

nt
en

t
an

d
tr

an
sf

or
m

ed
lin

k-
ba

se
d

fe
at

ur
es

AdaBoost *↑94,4± 0,7 *↑94,9± 0,7 ↑94,0± 1,3 ↑94,0± 1,2 *↑0,944± 0,007
Bagging 92,2± 0,9 92,8± 1,4 91,7± 0,7 91,8± 0,7 0,923± 0,009
Random forest 88,0± 1,1 91,9± 0,9 84,0± 1,7 85,1± 1,4 0,884± 0,010
IBK 87,9 ± 1,5 88,9± 2,0 86,9± 1,9 87,1± 1,6 0,880± 0,015
MLP-LM 85,7 ± 2,4 85,3± 3,0 86,1± 2,8 85,8± 2,8 0,855± 0,025
MLP-GD 82,7± 2,8 84,0± 3,2 81,4± 3,5 81,6± 4,3 0,827± 0,033
C4.5 82,3± 1,4 82,4± 2,8 82,2± 2,0 82,2± 1,5 0,823± 0,015
OneR 82,9± 2,4 76,1± 2,7 89,7± 6,1 88,6± 6,1 0,817± 0,020
OneR 79,1± 1,6 79,9± 2,8 78,3± 1,4 78,6± 1,3 0,792± 0,018
SVM 72,5± 1,1 60,7± 3,0 84,3± 2,3 79,5± 2,0 0,688± 0,018
Naive Bayes 69,3± 3,8 63,8± 12,1 74,8± 10,1 ↓72,4± 4,6 0,670± 0,066
SOM + LVQ ↓58,0± 6,2 81,0± 3,8 ↓69,5± 1,9 75,5± 2,5 0,654± 0,036
RBF 67,9± 1,8 ↓53,3± 2,6 82,6± 1,8 75,4± 2,4 ↓0,624± 0,024

C
om

bi
na

tio
n

of
al

l
fe

at
ur

es

AdaBoost ↑94,1± 0,8 ↑94,0± 1,0 *↑94,2± 1,2 *↑94,2± 1,2 ↑0,941± 0,008
Bagging 90,9± 1,2 91,0± 1,7 90,8± 1,6 90,8± 1,5 0,909± 0,012
IBK 88,9 ± 1,2 90,6± 1,9 87,2± 2,1 87,6± 1,7 0,890± 0,012
Random forest 87,8± 1,0 91,2± 1,4 84,4± 1,7 85,3± 1,3 0,881± 0,010
MLP-LM 87,9 ± 1,4 88,4± 2,8 87,3± 2,7 87,1± 2,4 0,877± 0,016
MLP-GD 83,7± 2,0 85,5± 2,3 81,9± 2,8 83,1± 3,1 0,842± 0,020
OneR 84,1± 1,9 77,0± 3,6 91,1± 4,6 90,0± 4,7 0,828± 0,019
C4.5 82,5± 1,3 82,6± 3,3 82,5± 1,4 82,5± 0,9 0,825± 0,016
OneR 79,3± 1,4 79,2± 2,9 79,4± 1,4 79,3± 1,1 0,792± 0,017
SVM 78,6± 1,4 72,1± 2,4 85,1± 2,2 82,9± 2,0 0,771± 0,017
Naive Bayes 66,6± 5,6 69,8± 11,1 ↓63,4± 20,3 ↓67,8± 8,9 0,675± 0,032
RBF 68,0± 1,6 ↓60,7± 1,8 75,4± 2,1 71,2± 2,1 0,655± 0,017
SOM + LVQ ↓58,4± 3,0 76,1± 3,5 67,2± 1,5 71,0± 2,7 ↓0,640± 0,018

104



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

and transformed link-based features. However, the
results achieved with the combination of all features
were also satisfactory but the high dimensional
feature space (275 dimensions) requires more com-
putational cost.

Regarding the methods, the AdaBoost achieved
the best results and the bagging was the second best
method with no significant statistical difference. On
the other hand, the group of the four methods with
the worst performance is composed by the naive
Bayes, RBF, SOM + LVQ and LogitBoost.

5.3 Statistical analysis of results

In order to support our claims, we also performed
a statistical analysis of the results (Table 9). For
that, we ranked the methods by F-measure using the
Wilcoxon rank-sum test [40] and 95% of confidence
interval. Such method is a statistical hypothesis test
which is also sometimes called the Mann-Whitney
test [40]. The methods that are at the same level in
the table have statistically equivalent results.

Note that, for WEBSPAM-UK2006 dataset with
unbalanced classes, the bagging of decision trees is
statistically equal to random forest and superior than
other evaluated methods. However, in the scenario
with balanced classes it is statistically equal to
AdaBoost, MLP neural networks and random forest.
On the other hand, the OneR, SVM, naive Bayes,
SOM + LVQ and RBF are statistically inferior than
all evaluated methods.

In the experiments with WEBSPAM-UK2007
dataset, the statistical analysis shows that the bag-
ging and AdaBoost were superior than other eval-
uated learning algorithms. Nevertheless, the Logit-
Boost, SOM + LVQ, RBF neural network and naive
Bayes were statistically inferior.

TABLE 9: Statistical analysis of the results using
the Wilcoxon rank-sum test

Results achieved for WEBSPAM-UK2006 dataset
Level Methods

Unbalanced classes Balanced classes

1 Bagging and Random forest
Bagging, AdaBoost,

Random forest,
MLP-GD and MLP-LM

2
Random forest,

C4.5 and LogitBoost
AdaBoost and MLP-LM

3 MLP-GD IBK
4 C4.5 and LogitBoost OneR
5 IBK SVM and Naive Bayes
6 SVM and RBF SOM+LVQ
7 OneR RBF
8 Naive Bayes
9 SOM + LVQ
10

Results achieved for WEBSPAM-UK2007 dataset
Level Methods

Balanced classes
1 Bagging and AdaBoost
2 Random forest and IBK
3 MLP-LM
4 OneR
5 C4.5
6 MLP-GD and SVM
7 LogitBoost
8 SOM + LVQ
9 RBF
10 Naive Bayes

6. Conclusions and future work

In this paper, we presented a comprehensive per-
formance evaluation of different established ma-
chine learning algorithms used to automatically
identify spam hosts based on features extracted from
their web pages. For this, we employed two real,
public and large datasets composed by samples rep-
resented by content-based, link-based, transformed
link-based features and their combinations.

In general, the bagging of decision trees achieved

105



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

the best overall results in the scenarios in which we
did not combine features. In experiments with com-
bination of feature vectors, the AdaBoost achieved
the highest performance. However, through a sta-
tistical analysis we note that, in the experiment
with WEBSPAM-UK2006 dataset with balanced
classes, the random forest and the MLP neural
networks achieved results statistically equal to the
ones achieved by the bagging and AdaBoost. For
WEBSPAM-UK2007 dataset, the MLP-LM and ran-
dom forest also stayed in the group of the top
five methods. This shows that they are promising
techniques for web spam detection.

The results also indicated that all the evaluated
techniques are superior when trained with balanced
classes. Therefore, we can conclude that the learning
algorithms tend to be biased to the benefit of the
majority class.

For future work, we intend to create new feature
sets composed by the fusion of the three types
of features adopted in this work. We also aim to
propose new approaches to combine the predictions
achieved by the learning algorithms trained with
each feature set.

Acknowledgment

The authors would like to thank the financial
support of Brazilian agencies FAPESP, Capes and
CNPq.

References

[1] Z. Gyongyi and H. Garcia-Molina, “Spam: It’s not just for
inboxes anymore,”Computer, vol. 38, no. 10, pp. 28–34, 2005.

[2] K. M. Svore, Q. Wu, and C. J. Burges, “Improving web
spam classification using rank-time features,” inProceedings
of the 3rd International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb’07), Banff, Alberta, Canada,
2007, pp. 9–16.

[3] G. Shen, B. Gao, T. Liu, G. Feng, S. Song, and H. Li, “Detecting
link spam using temporal information,” inProceedings of the
6th IEEE International Conference on Data Mining (ICDM’06),
Hong Kong, China, 2006, pp. 1049–1053.

[4] M. Egele, C. Kolbitsch, and C. Platzer, “Removing web spam
links from search engine results,”Journal in Computer Virology,
vol. 7, pp. 51–62, 2011.

[5] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi,
“deSEO: combating search-result poisoning,” inProceedings of
the 20th USENIX conference on Security (SEC’11), Berkeley,
CA, USA, 2011, pp. 20–20.

[6] L. Lu, R. Perdisci, and W. Lee, “SURF: detecting and measuring
search poisoning,” inProceedings of the 18th ACM Conference
on Computer and Communications Security (CCS’11), New
York, NY, USA, 2011, pp. 467–476.

[7] R. M. Silva, T. A. Almeida, and A. Yamakami, “Artificial
neural networks for content-based web spam detection,” inProc.
of the 14th International Conference on Artificial Intelligence
(ICAI’12), Las Vegas, NV, USA, 2012, pp. 209–215.

[8] ——, “Towards web spam filtering with neural-based ap-
proaches,” inAdvances in Artificial Intelligence – IBERAMIA
2012, ser. Lecture Notes in Computer Science, vol. 7637.
Cartagena de Indias, Colombia: Springer Berlin Heidelberg,
2012, pp. 199–209.

[9] ——, “An analysis of machine learning methods for spam host
detection,” in Proc. of the 11th International Conference on
Machine Learning and Applications (ICMLA’12), Boca Raton,
FL, USA, 2012, pp. 227–232.

[10] J. Lin, “Detection of cloaked web spam by using tag-based
methods,”Expert Systems with Applications: An International
Journal, vol. 36, no. 4, pp. 7493–7499, 2009.

[11] A. V. Sunil and A. Sardana, “A reputation based detection
technique to cloaked web spam,”Procedia Technology, vol. 4,
no. 0, pp. 566–572, 2012.

[12] N. Spirin and J. Han, “Survey on web spam detection: princi-
ples and algorithms,”ACM SIGKDD Explorations Newsletter,
vol. 13, no. 2, pp. 50–64, 2012.

[13] M. Najork, “Web spam detection,” inEncyclopedia of Database
Systems. Springer US, 2009, vol. 1, pp. 3520–3523.

[14] M. R. Henzinger, R. Motwani, and C. Silverstein, “Challenges
in web search engines,”SIGIR Forum, vol. 36, no. 2, pp. 11–22,
2002.

[15] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
McLachlan, A. Ng, B. Liu, P. S. Yu, Z. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg, “Top 10 algorithms in data
mining,” Knowledge and Information Systems, vol. 14, no. 1,
pp. 1–37, 2008.

[16] S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd ed. New York, NY, USA: Prentice Hall, 1998.

[17] C. M. Bishop,Neural Networks for Pattern Recognition, 1st ed.
Oxford, UK: Oxford Press, 1995.

[18] M. T. Hagan and M. B. Menhaj, “Training feedforward net-
works with the marquardt algorithm,”IEEE Transactions on
Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

106



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
R. M. Silva et al., Vol.2, No.3

[19] T. Kohonen, “The self-organizing map,” inProceedings of the
IEEE, vol. 9, no. 78, 1990, pp. 1464–1480.

[20] M. J. L. Orr, “Introduction to radial basis function networks,”
1996.

[21] C. Cortes and V. N. Vapnik, “Support-vector networks,” in
Machine Learning, 1995, pp. 273–297.

[22] C. Chang and C. Lin, “LIBSVM: A library for support vec-
tor machines,”ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011.

[23] C. Hsu, C. Chang, and C. Lin, “A practical guide to support
vector classification,” National Taiwan University, Tech. Rep.,
2003.

[24] J. R. Quinlan,C4.5: programs for machine learning, 1st ed.
San Mateo, CA, USA: Morgan Kaufmann, 1993.

[25] L. Breiman, “Random forests,”Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[26] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based
learning algorithms,”Machine Learning, vol. 6, no. 1, pp. 37–
66, 1991.

[27] I. H. Witten, E. Frank, and M. A. Hall,Data Mining: Prac-
tical Machine Learning Tools and Techniques, 3rd ed. San
Francisco, CA, USA: Morgan Kaufmann, 2011.

[28] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” inProceedings of the 13th International Conference
on Machine Learning (ICML’96). Bari, Italy: Morgan Kauf-
mann, 1996, pp. 148–156.

[29] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24,
pp. 123–140, 1996.

[30] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic
regression: a statistical view of boosting,”Annals of Statistics,
vol. 28, no. 2, pp. 337–407, 1998.

[31] R. C. Holte, “Very simple classification rules perform well on
most commonly used datasets,”Machine Learning, vol. 11,
no. 1, pp. 63–90, 1993.

[32] G. H. John and P. Langley, “Estimating continuous distributions

in bayesian classifiers,” inProceedings of the 11th Conference
on Uncertainty in Artificial Intelligence (UAI’95), Montreal,
Quebec, Canada, 1995, pp. 338–345.

[33] C. Castillo, D. Donato, and A. Gionis, “Know your neighbors:
Web spam detection using the web topology,” inProceedings
of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’07),
Amsterdam, The Netherlands, 2007, pp. 423–430.

[34] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-
Yates, “Using rank propagation and probabilistic counting for
link-based spam detection,” inProceedings of the 2006 Work-
shop on Web Mining and Web Usage Analysis (WebKDD’06),
Philadelphia,USA, 2006.

[35] J. Shao, “Linear model selection by cross-validation,”Journal
of the American Statistical Association, vol. 88, no. 422, pp.
486–494, 1993.

[36] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,”
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18,
2009.

[37] H. He and E. A. Garcia, “Learning from imbalanced data,”IEEE
Transactions on Knowledge and Data Engineering, vol. 21,
no. 9, pp. 1263–1284, 2009.

[38] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and
F. Herrera, “A Review on Ensembles for the Class Imbalance
Problem: Bagging-, Boosting-, and Hybrid-Based Approaches,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 42, no. 4, pp. 463–484, 2012.

[39] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,”Journal
of Artificial Intelligence Research, vol. 16, no. 1, pp. 321–357,
2002.

[40] D. C. Montgomery and G. C. Runger,Applied Statistics and
Probability for Engineers, 3rd ed. New York, NY, USA: John
Wiley & Sons, 2002.

107


