
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

156

Proactive Security Framework for Online Business
Web Portals with Implementation Details

Hemraj Saini*‡, Sitanshu Mishra**, Prakhar Prateek**

* Department of Computer Science & ICT, Jaypee University of Information Technology, Wakanaghat-173234 INDIA

**Department of Information Technology, Orissa Engineering College, Bhubaneswar-752050 INDIA

‡ Corresponding Author;

e-mail: hemraj1977@yahoo.co.in; hemraj.saini@juit.ac.in

Abstract- Most of the critical information is stored or travelled throughout the Internet and prone to cyber threats all the time.
The current manuscript provides a process to develop and implement an automated proactive security framework to alert/avoid
such cyber threats for the critical online information. In addition, it also describes a feasibility study towards the adoption of
the proposed process by the current user community with favourable results.

The proposed work is able to help for the development of security add-ons to almost all the embedded software applications
for the better secured services to the users.

Keywords- Cyber defense, SQL injection, Automated Security Framework, Design Methodology, Feasibility Study.

1. Introduction

Related literature explains many of the
strategies to secure the information at different
levels e.g. layered approach of information
security [1, 2, 3, 4], protocol level security [5, 6],
database level security [7, 8] etc. but very few
concentrates over the explanation and
implementation issues of the framework to secure
the online information at the time of attack
detection through user’s involvement [9].
Therefore, the current manuscript focuses over the
point to alert or avoid the cyber threats
automatically and proactively through the web
security portal and user’s involvement.
Throughout the text a special case of cyber threat
i.e. SQL injection [10, 11] has been considered for
the detailed explanation about the secured,
automated and proactive framework.

The proposed system is about automatic and
proactive cyber defense, it means that the cyber
system will be defended automatically. This is the
technique which can be applied to any of the

existing system as an add-on or can be applied in a
completely new developed systems based on cyber
or web technologies. Proposed system will not
only defend the web application, but it will also
intimate or communicate the administrator or
owner of the application system that the
application was trying to be attacked by the
attacker.

The system is about making the web
applications inaccessible to the attacker. This can
be done by tracing the IPs of the attackers and
blocking them. Basically, blocking of IPs is
nothing but adding the attackers IP address in the
database system, therefore, whenever the attacker
tries to access the web application through that IP
address, the system does not give access to the
attacker of web of the web application. Not even a
single content out of the main contents other than
the blocked message is displayed to the attacker.

The communication or intimation process goes
in the manner that the attacker when tries an attack
on the system, a communication by automatic

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

157

email through the e-mail server and a SMS on
mobile is initiated through the SMS gateway
through server system. The attacker is trying to
attack the web application along with its IP
address, therefore, it is sent as the main content of
the intimated e-mail and SMS to the administrator.

After few number of defined attempts (default
3 attempts), the system will automatically add the
attacker’s IP address in the Block IP address list in
the database and also a final communication will
be intimated to the administrator so that the web
application has automatically be secured from the
attacker. Now, whenever intruder next tries to
navigate the web application even if he/she will
not be able to gain access to any of the main
contents of the web application and instead a
message is displayed to him/her that the IP address
has been blocked. Rest of the paper is organized in
different other sections such as section-2 to
section-9 illustrate- Design methodology, Dealing
with unauthorized login process, SQL injection
security (DFD Level-0), SQL injection security
(DFD Level-1), SQL injection security (DFD
Level-2), security against other attacks, main
working (for automatic defense), testing the
proposed system respectively and conclusion
respectively.

2. Design Methodology
The explanation with implementation of the

whole designing process, represented by Data
Flow Diagrams (DFDs) at different levels, can be
divided into different phases as below-
� Dealing with Unauthenticated Login Process
� SQL Injection Security (DFD LEVEL-0)
� SQL Injection Security (DFD LEVEL-1)
� SQL Injection Security (DFD LEVEL-2)
� Security against other attacks
� IP Blocking (Process from a particular IP)

� Main Working (for Automatic Defense)

3. Dealing With Unauthorized Login Process
Unauthorized login can be possible by many of

the ways such as SQL Injection, Phishing request,
DDoS, etc. but SQL injection will be of our more
concern due to the extreme usage of query systems
for online processing. An authorized login process
must be having Pre-Conditions like- Username and
Password posted to the proposed system and Post-
Conditions like- Username and Password checked
for SQL injection attack. Both of pre-conditions
and post-conditions must be satisfied for the
process of handling the unauthorized login
attempts. Fig. 1 depicts the authenticated login
process and Appendix-1 [line no.35 to line no. 44]

represents the corresponding segment of code.

4. SQL Injection Security (DFD Level-0)
Some of the user inputs might be used in

framing SQL statements that are then executed by
the application on the database. It is possible for an
application not to handle the inputs given by the
user properly. If this is the case, a malicious user
could provide unexpected inputs to the application
that are then used to frame and execute SQL
statements on the database. This is called SQL
injection.

Fig. 2 depicts the security process against SQL
Injection Attack. The process has two states, first,
state-1: the intruder attached the injection for
attack and second, state-2: the injection is to be
checked. The proposed system has the Pre-
Conditions for state-1 like- Username and
password remain unchanged where Injection
attached by attacker and Post-Conditions for state-
1 such as Username and password remain
unchanged where Injection attached by attacker.

Fig. 1. Authenticated Login.

Fig. 2. Security process against SQL Injection
Attack.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

158

Pre-Conditions for state-2 are Username string
and Password string received from the user, these
two strings are to be gone through the process of
checking injection individually and if injection
string tempered with Stripslashes it has to be
detected by the check function. But as the Post
conditions for state-2: the tempered string if
injection else clean string for further processing.

5. SQL Injection Security (DFD Level-1)
In process to achieve the security against SQL

injection, it is required to identify the source IP of
the attack. It can be done by IP tracing. IP tracing
is done by predefined PHP global variable
‘$_SERVER” which contains both clients and
server’s address. In the IP tracing, pre conditions
are like- updated records in the database are in
consistent state from the respective IP and post
conditions are like- updated records in the database
must be in consistent state from the respective IP
and initiate e-mail or SMS raising process if
number unauthorized attempt to access database is
increased beyond the threshold as shows in fig. 3.

This can be handled by PHP Stripslashes.
Stripslashes are predefined library function in
PHP. It checks for unusual characters like- “’” etc.
and adds “\” slashes with them and make them
useless. Whole process is depicted in the Fig. 4.

Appendix-1 [line no. 47 to line no. 61] and
Appendix-1 [line no. 62 to line no. 70] represent
the required segment of code for the process.
6. SQL Injection Security (DFD LEVEL-2)

After getting the IP containing SQL injection,

the IP has to be blacklisted at the next level
depicted in Fig. 5 where number of attempts stands
for total number of attempts made for attack by
that IP.
7. Security against Other Attacks

Before displaying home or login page to the
user, IP is tracked and is checked if present in the
blocked list; the system has already secured and
will not allow access to home or login page to the
user. It is depicted in Fig. 6 and Appendix-1 [line
no. 01 to line no. 24] represents the corresponding
segment of code. Further Appendix-1 [line no. 79
to line no. 107] and Appendix-1 [line no. 04 to line
no. 08] shows the e-mail alert and SMS alert, if
attempts to database access are beyond the
threshold.

8. Main Working (for Automatic Defense)
Abstract working of the proposed framework is

depicted by the Fig. 7. Intruder attacks on a system
having the proposed system, through the proposed
framework, number of database access attempts is
to be checked in addition to blocked IP list. If
attempts are beyond the threshold (here, 03) an
alert in the form of (email or SMS) has been
forwarded and the IP is blocked for the automatic
defense.

Fig. 4. SQL injection DFD (Level-2)

Fig. 5. Other different attacks

Fig. 6. IP Blocking
 Intruder

Prepare Data entry format (record (P))

Initiate e-mail or SMS

Database update

IP related information

Injection found

Attacks with injection

Sends user data

If no injection

found, access

granted

Database (Login database) check

Proposed System

PHP Stripslashes function

Update no. of attempts for that IP

Fig. 3. SQL injection DFD (Level-1)

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

159

9. Testing the Proposed System

A user Acceptance Testing (UAT) [12, 13, 14]
has been carried out to evaluate whether the
proposed system/framework is accepted widely
among the users or not. UAT is the software
testing process where system tested
for acceptability & validates the end to end
business flow [15]. UAT is executed by client in
separate environment and confirms whether
system/framework meets the requirement as per
the SRS [16] or not. UAT is performed after all the
enhancements in the system have been done after a
rigorous testing process. It is to be carried out at
the final phase of the SDLC [17] but prior to the
system being delivered to a live environment.

 The User Acceptance Testing is a “black box”
tests, means UAT users doesn’t aware of internal
structure of the code, they just specify the input to
the system & check whether systems respond with
correct result. UAT users or end users are
concentrating on end to end scenarios & typically

involves running a suite of tests on the completed
system. Fig. 8 depicts the sample test cases used to
test the proposed framework under UAT and Fig. 9
shows the position of UAT in a testing suit.

The completion of User Acceptance Testing

(UAT) is the significant milestone for traditional
testing method. The following key deliverable of
User Acceptance Testing phase:

Test Plan: Outlines of the Testing Strategy
used to test the proposed system.

� UAT Test cases: The Test cases help the team
to effectively test the application in UAT
environment.

Fig. 7. Automatic Defense (Main Working)

Fig. 9. Position of System Testing in a testing
suit

Fig. 8: Sample test cases used to test the proposed framework under UAT

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

160

� Test Results and Error Reports: This is a log
of all the test cases executed and the actual
results.

� User Acceptance Sign-off: This is the system,
documentation, and training materials have
passed all tests within acceptable margins.

� Installation Instructions: This is document
which helps to install the system in production
environment.

10. Conclusion
A significant level of proactive defense has

been achieved at the user level through the usage
of web portal. A complete framework has been
discussed with implementation to secure the web
resources. Specifically the security against SQL
injection attacks is discussed. However, the usage
of the proposed framework is not restricted up to
SQL injection attack; it can be used to secure the
web resources against other attacks. The purpose
of the proposed framework is of two fold, first, it
provides proactive defense and second, it informs
to the user about the unwanted situation.

In addition to the implementation of the
proposed framework a User Acceptance Testing
(UAT) is also carried out by considering various
test cases to ensure the acceptability of the
proposed framework among the users. The testing
results are favourable and due to the simplicity of
implementation the framework must become a
successful tool for the proactive defense of the web
resources.

References

[1] H. Saini and T. C. Panda, “Extended Cyber Defense

Architecture for a University –A Case study”, The IUP
Journal of Science & Technology, 6(2):33-47, 2010.

[2] H. Saini and D. Saini, “Proactive cyber Defense and
Reconfigurable Framework of Cyber Security”,
International journal named International Review on
Computer and Software (IRECOS), 2(2):89-97, 2007.

[3] S. Bayat, R.H.Y. Louie, Z. Han, B. Vucetic and Y. Li,
“Physical-Layer Security in Distributed Wireless
Networks Using Matching Theory”,
Information Forensics and Security, IEEE Transactions
on, Volume: 8, Issue: 5, pp.- 717-732, 2013.

[4] E. Harrin, “Taking a Layered Approach to IT Security”,
Retrieved on 30th April, 2013, Available at:
http://www.esecurityplanet.com/network-security/taking-
a-layered-approach-to-it-security.html

[5] I. Lien, Y. Lin, J. Shieh and J. Wu, “A Novel Privacy
Preserving Location-Based Service Protocol with Secret
Circular Shift for k-NN Search”, Information Forensics

and Security, IEEE Transactions on , Volume: PP ,
Issue: 99, 2013, DOI: 10.1109/TIFS.2013.2252011.

[6] H. Saini, K. D. Sharma, P. Dadheech and T. C. Panda,
“Enhanced 4-way Handshake Process in IEEE802.11i
with Cookies”, International Journal of Information &
Network Security (IJINS), 2(3), pp. 229~238, 2013.

[7] L. Sankar, S. Rajagopalan and H. Poor, “Utility-Privacy
Tradeoff in Databases: An Information-theoretic
Approach”, Information Forensics and Security, IEEE
Transactions on,Volume: PP , Issue: 99, pp.-1-15, 2013.

[8] J. Han, W. Susilo, and Y. Mu, “Identity-Based Secure
Distributed Data Storage Schemes”, Computers, IEEE
Transactions on, Volume: PP , Issue: 99, 2013,
DOI: 10.1109/TC.2013.26.

[9] H. Saini, B. K. Mishra and T. C. Panda, “Computing the
Spreading Power of a Business Portal to Propagate the
Malicious Information in the Network”, International
Journal of Web Protals, 3(2), 14-22, 2011.

[10] B. Simic and J. Walden, “Eliminating SQL injection and
cross site scripting using aspect oriented programming”,
Proceedings of the 5th international conference on
Engineering Secure Software and Systems (ESSoS'13),
Jan Jürjens, Benjamin Livshits, and Riccardo
Scandariato (Eds.). Springer-Verlag, Berlin, Heidelberg,
213-228, 2013.

[11] V. Shanmughaneethi, R. Yagna Pravin, C. Emilin Shyni
and S. Swamynathan, “SQLIVD - AOP: Preventing SQL
Injection Vulnerabilities Using Aspect Oriented
Programming through Web Services”, A Mantri et al.
(Eds): HPAGC 2011, CCIS 169, pp.-327-337, 2012,
Springer-Verlag, Berlin, Heidelberg.

[12] Z. M. Jiang, A. Avritzer, E. Shihab, A.E. Hassan and
P. Flora, “An Industrial Case Study on Speeding
Up User Acceptance Testing by Mining Execution
Logs”, Secure Software Integration and Reliability
Improvement (SSIRI), 2010 Fourth International
Conference on , OI: 10.1109/SSIRI.2010.15 , Page(s):
131 – 140.

[13] L. Yu, W. Di X. Zhao, C. Kong, W. Zhao, Q. Wang
and J. Zhu, “Towards Call for Testing: An Application
to User Acceptance Testing of Web Applications”,
Computer Software and Applications Conference,
COMPSAC '09. 33rd Annual IEEE International,
Volume: 1, DOI: 10.1109/COMPSAC.2009.31, Page(s):
166 – 171, 2009.

[14] K. R. P. Leung and W. L. Yeung,
“Generating User Acceptance Test Plans from
Test Cases”, Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual
International, Volume: 2,
DOI: 10.1109/COMPSAC.2007.125, Page(s): 737 - 742.

[15] All about UAT, Retrieved on 30th April, 2013, Available
at: http://www.guru99.com/user-acceptance-testing.html

[16] C. J. Date, “An Introduction to Database Systems”,
Addison-Wesley Professional, 2003, Ed. 8th, ISBN:
0321197844

[17] Jeffrey D. Ullman and Jennifer D. Widom, “Database
Systems: The Complete Book”, Prentice Hall, 2008, Ed.
2nd, ISBN: 0130319953.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

161

Appendix-I: index.php
1. <?php
2. if(isset($_GET['info']) && $_GET['info']=="logout")
3. {
4. session_start();
5. session_destroy();
6. }
7. if(isset($_POST['submit']) &&

$_POST['submit']=='Login')
8. {
9. session_start();
10. require('connect.php');
11. $ip=$_SERVER['REMOTE_ADDR'];
12. $ip2=quote_smart($ip, $sqlinject);
13.
14. $query="SELECT * from blockedip WHERE

ip=$ip2";
15. //echo $query;
16. $result=mysqli_query($con, $query);
17. if($result)
18. {
19. $nnr=mysqli_num_rows($result);
20. if($nnr>0)
21. {
22. header('Location: blockedip.php');
23. }
24. }
25. $login=0;
26. $email=$_POST['email'];
27. $passen=$_POST['pass'];
28. $email2= quote_smart($email, $sqlinject);
29. $pass2= quote_smart($passen, $sqlinject);
30. $quer="select * from userlogin where

email=".$email2." and pass=".$pass2;
31. //echo $quer;
32. $result=mysqli_query($con, $quer);
33. $numrows=mysqli_num_rows($result);
34. $row=mysqli_fetch_array($result);
35. if($numrows>0)
36. {
37. $safequery="UPDATE attempts SET

num='0' WHERE ip=$ip2";
38. $r=mysqli_query($con, $query);
39. $login=1;
40. $_SESSION['login']=1;
41. $_SESSION['email']=$row['email'];
42. $_SESSION['pass']=$row['pass'];
43. header('Location: home.php');
44. }
45. else
46. {
47. $ch="SELECT * from attempts WHERE

ip=$ip2";
48. $r=mysqli_query($con, $ch);
49. if($r)
50. {
51. $nkr=mysqli_num_rows($r);
52. if($nkr>0)
53. {
54. $roks=mysqli_fetch_array($r);
55. if($roks['num']=="3")

56. {
57. $hih="INSERT

into blockedip (ip) values ($ip2)";
58. $rcoh=mysqli_query($con, $hih);
59. require('bemail.php');
60. require('bsms.php');
61. header('Location: index.php');
62. }
63. else
64. {
65. $t=++$roks['num'];
66. $t2=quote_smart($t, $sqlinject);
67. $upquery="UPDATE attempts SET num=$t2

WHERE ip=$ip2";
68. $rejk=mysqli_query($con, $upquery);
69. require('hemail.php');
70. require('hsms.php');
71. }
72. }
73. }
74.
75. }
76. }
77.else
78.{
79.require('connect.php');
80.$ip=$_SERVER['REMOTE_ADDR'];
81.$ip2=quote_smart($ip, $sqlinject);
82.$query="SELECT * from blockedip WHERE ip=$ip2";
83.//echo $query;
84.$result=mysqli_query($con, $query);
85.if($result)
86. {
87. $nnr=mysqli_num_rows($result);
88. if($nnr>0)
89. {
90. require('alreadyblocked.php');
91. require('alreadybsms.php');
92. header('Location: blockedip.php');
93. }
94. }
95.$checkquery="SELECT * from attempts WHERE

ip=$ip2";
96.$checkresult=mysqli_query($con, $checkquery);
97.if($checkresult)
98. {
99. $nnn=mysqli_num_rows($checkresult);
100. if($nnn<=0)
101. {
102. $query="INSERT into attempts (ip, num)

values ($ip2, '0')";
103. $result=mysqli_query($con, $query);
104. }
105. }
106.}
107.?>
108.<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd">

109.<html xmlns="http://www.w3.org/1999/xhtml">

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

162

110.<head>
111.<meta http-equiv="content-type" content="text/html;

charset=utf-8" />
112.<title>Automated Cyber Defense System</title>
113.<meta name="keywords" content="" />
114.<meta name="description" content="" />
115.<link href="default.css" rel="stylesheet"

type="text/css" />
116.</head>
117.<body>
118.<div id="wrapper">
119. <div id="header">
120. <div id="logo">
121. <h1>Cyber Defense</h1>
122. </div>
123. <!-- end div#logo -->
124. </div>
125. <!-- end div#header -->
126. <!-- end div#menu -->
127. <div id="page">
128. <div id="page-bgtop">
129. <div id="content">
130.
131. Main Contents of the Website can be floated

here...
132.

133. <h2>Your Current IP Address is:
134. <?php
135. echo $_SERVER['REMOTE_ADDR'];
136. if(isset($_POST['submit']) &&

$_POST['submit']=="Login")
137. {
138. if(isset($login) && $login==0)
139. echo '

Incorrect

Username/Password';
140. }
141. ?>
142.
143. </div>
144. <!-- end div#content -->
145. <div id="sidebar">
146.
147.
148.
149.
150.
151.
152.
153. <h2>Login</h2>
154.
155.
156. <form method="post" name="loginform"

action="">
157. <table width="100%">
158. <tr>
159. <td><i>Username:</i></td>
160. <td><input type="email" name="email" /></td>
161. </tr>
162. <tr>
163. <td><i>Password:</i></td>
164. <td><input type="password" name="pass" /></td>

165. </tr>
166. <tr>
167. <td colspan="2" align="center">
168. <input type="submit" name="submit"

value="Login" />
169. </td>
170. </tr>
171. </table>
172. </form>
173.
174.
175.
176.
177. </div>
178. <!-- end div#sidebar -->
179. <div style="clear: both; height: 1px"></div>
180. </div>
181. </div>
182. <!-- end div#page -->
183. <div id="footer">
184. <p>Copyright © 2012. All Rights Reserved.

Designed by Prakhar
Prateek.</p>

185. </div>
186. <!-- end div#footer -->
187.</div>
188.<!-- end div#wrapper -->
189.</body>
190.</html>

Appendix-II: bmail.php
1.<?php
2. $fname="Sitansu";
3. $lname="Mishra";
4. $website="http://cyberdefense.prakharprateek.in";
5. $to="iiitk.sitansu@gmail.com";
6. $sender='cyberdefense@prakharprateek.in';
7. $message='<html><head></head><body>Dear

'.$fname.' '.$lname.',
The website '.$website.' is
being tried to be accessed from IP Address:
'.$ip.'.
The Website is automatically secured now by
Automatic Cyber Defense System and the IP has been
blocked.

';

8. $message.='<h2>Thank You</h2>';
9. $message.='
Admin,
'.$website;
10.$message.= '</body></html>';
11.//echo $message;
12.$headers='';
13.$headers = "

MIME-Version: 1.0" . "\r\n";
14.$headers .= "Content-type:text/html;charset=iso-8859-1"

. "\r\n";
15.// More headers
16.//$headers .= 'From:'.$EmpMialId."\r\n";

17.$subject= 'Cyber Defense Alert';
18.$headers .= 'From:'.$sender."\r\n";
19.mail($to,$subject,$message,$headers);
20.?>

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

163

Appendix-III: bsms.php
1.<?php
2.$api='http://www.nettechsms.comule.com/sms/send.php?s
end=true';
3.$uname='9337590003';
4.$gateway='160by2';
5.$pass='nettech';
6.$to='9668144556';
7.$msg='Alert: Your Website is automatically secured now.
Check Mail for more details.';
8.$msg=str_ireplace(" ","%20",$msg);
9.$link=$api."&user=".$uname."&pass=".$pass."&to=".$to.
"&msg=".$msg."&gateway=".$gateway;
10.$sms = file_get_contents($link);
11.if($sms)
12.{
13.//echo 'sms done';
14.}
15.?>

Appendix-IV: hemail.php
1.<?php
2.$fname="Sitansu";
3.$lname="Mishra";
4.$website="http://cyberdefense.prakharprateek.in";
5.$to="iiitk.sitansu@gmail.com";
6.$sender='cyberdefense@prakharprateek.in';
7.$message='<html><head></head><body>Dear '.$fname.'
'.$lname.',
The website '.$website.' is being tried to be
hacked from IP Address: '.$ip.'.
The Website will secure
itself automatically after few attempts by Automatic Cyber
Defense System and the IP has been blocked.

';
8.$message.='<h2>Thank You</h2>';
9.$message.='
Admin,
'.$website;
10.$message.= '</body></html>';
11.//echo $message;
12.$headers='';
13.$headers = "

MIME-Version: 1.0" . "\r\n";
14.$headers .= "Content-type:text/html;charset=iso-8859-1"
. "\r\n";
15.// More headers
16.//$headers .= 'From:'.$EmpMialId."\r\n";
17.$subject= 'Cyber Defense Alert';
18.$headers .= 'From:'.$sender."\r\n";
19.mail($to,$subject,$message,$headers);
20.?>

Appendix-V: hsms.php
1.<?php
2.$api='http://www.nettechsms.comule.com/sms/send.php?s
end=true';
3.$uname='9337590003';
4.$gateway='160by2';
5.$pass='nettech';
6.$to='9668144556';
7.$msg='Alert: Someone is trying to hack the Website.
Check Mail for more details.';
8.$msg=str_ireplace(" ","%20",$msg);
9.$link=$api."&user=".$uname."&pass=".$pass."&to=".$to.
"&msg=".$msg."&gateway=".$gateway;
10.$sms = file_get_contents($link);

11.if($sms)
12.{
13.//echo 'sms done';
14.}
15.?>

Appendix-VI: connect.php
1.<?php
2.$username="a2157854_syber";
3.$password="syber123";
4.$database="a2157854_syber";
5.$server="mysql2.000webhost.com";
6.$sqlinject=mysql_connect($server,$username,$password)
;
7.$con=mysqli_connect($server,$username,$password);
8.if(!$con)
9.die('Server Connection Failed');
10.$db=mysqli_select_db($con,$database);
11.if(!$db)
12.die('Database Connection Failure');
13.function quote_smart($value, $handle)
14.{
15. if (get_magic_quotes_gpc())
16. {
17. $value = stripslashes($value);
18. }
19. if (!is_numeric($value))
20. {
21. $value = "'" . mysql_real_escape_string($value,
$handle) . "'";
22. }
23. return $value;
24.}
25.?>

Appendix-VII: alreadyblocked.php
1.<?php
2.$fname="Sitansu";
3.$lname="Mishra";
4.$website="http://cyberdefense.prakharprateek.in";
5.$to="iiitk.sitansu@gmail.com";
6.$sender='cyberdefense@prakharprateek.in';
7.$message='<html><head></head><body>Dear '.$fname.'
'.$lname.',
The website '.$website.' is being tried to be
accessed from IP Address: '.$ip.' which is already a blocked
IP Address by Cyber Defense System.

';
8.$message.='<h2>Thank You</h2>';
9.$message.='
Admin,
'.$website;
10.$message.= '</body></html>';
11.//echo $message;
12.$headers='';
13.$headers = "

MIME-Version: 1.0" . "\r\n";
14.$headers .= "Content-type:text/html;charset=iso-8859-1"
. "\r\n";
15.// More headers
16.//$headers .= 'From:'.$EmpMialId."\r\n";
17.subject= 'Cyber Defense Alert';
18.$headers .= 'From:'.$sender."\r\n";
19.mail($to,$subject,$message,$headers);
20.?>

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

H. Saini et al. ,Vol. 3, No. 2

164

Appendix-VIII: alreadybsms.php
1. <?php
2.$api='http://www.nettechsms.comule.com/sms/send.php?s
end=true';
3.$uname='9337590003';
4.$gateway='160by2';
5.$pass='nettech';
6.$to='9668144556';
7.$msg='Alert: Website is being accessed from a blocked
IP. Check Mail for more details.';
8.$msg=str_ireplace(" ","%20",$msg);
9.$link=$api."&user=".$uname."&pass=".$pass."&to=".$to.
"&msg=".$msg."&gateway=".$gateway;
10.$sms = file_get_contents($link);
11.if($sms)
12. {
13. //echo 'sms done';
14. }
15.?>

