
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

26

Advances in Keystroke Dynamics Techniques to

Group User Sessions

Sebastián Sznur*‡, Sebastián García*

* Information Security, Faculty of Engineering, FASTA University, Gascon 3145 (B7600FNK) Mar del Plata, Argentina. Tel.

/ Fax (54223) 499-0400

‡
Corresponding Author; Tel: +54 223 9 426 7166, e-mail: szsebas@gmail.com

Abstract- Users identification by means of their keystroke pattern is an old and known technique. Several works had analysed

and solved some of the most important issues in this area, but with the advances of technology, previous techniques have

quickly become obsolete. Users as well as attackers spend a lot of time typing on their computers, locally and remotely. Their

keystrokes leave a trace of patterns whose dynamism can be analysed and used to verify their identity. We propose to use

unsupervised clustering algorithms to group user sessions together in order to correctly identify them. Furthermore, the

verification of keystroke dynamics techniques has always been difficult because of the lack of a labelled free text dataset. To

overcome this issue, we capture a large dataset of labelled keystrokes of more than two and a half million digraphs. Results

show that having a keystroke dynamics dataset of user sessions and knowing the number of users who participated, it is

possible to group the sessions of the same user, regardless of any previous knowledge about the users. A level of accuracy of at

least 78% was achieved. If the sessions with fewer digraphs are discarded, a performance that exceeds 90% can be attained.

Keywords- Security; Keystroke Dynamics; Biometrics.

1. Introduction

Since the early days of telegraph

communications in World War II, when Morse

code was used to send and receive messages, each

telegraph operator developed its own typing

signature. This signature could be learnt from

closely listening to the typing rhythm of the

operators in order to identify them. It was even

possible to precisely differentiate among operators.

These techniques were the first rudimentary

keystroke dynamics implementations, from which

the current algorithms derive [11]. The typing

pattern on a keyboard is currently considered a

biometric behavioural characteristic that can be

used to identify or authenticate users [16]. The

study of this typing pattern is called keystroke

dynamics.

When keystroke dynamics was first

implemented in a computer environment,

mainframes were the only computers available, so

this technique first usage was to help identify users

in the same computer. Specifically, the intention

was to detect when the typing session of a logged

user was used by another person. This problem is

commonly known as masquerade detection. With

personal computers and now with ubiquitous

computing, the problem of masquerade detection

has become obsolete and keystroke dynamics

techniques shifted their focus mainly to user

authentication and user authorization [17].

Authentication refers to the action of confirming

the identity of a user trying to access the system,

while authorization refers to the action of

confirming if the already authenticated user is

authorized to accomplish certain actions. However,

a new approach to user authentication called

continuous authentication was created and it refers

to the ability of a system to constantly verify if the

current user is the one who logged in. This concept

is closely related to masquerade detection and

benefits from its work.

Keystroke dynamics investigations can focus

on the analysis of “fixed text” or “free text” [5]. In

the former, all users type their samples employing

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

27

the same text (such as passwords or short phrases),

while in the latter, everything that is written is

analysed which, although it makes it more

attractive as it broadens the scope of applications,

the disadvantage is that free text does not have

fixed, easily extracted characteristics since what

users are going to type cannot be obtained a priori.

Keystroke dynamics techniques had proven to

be useful for hardening authorization and

authentication processes [3]. To the best of our

knowledge, it does not exist yet a successful attack

against a well implemented keystroke dynamics

security authentication program. Although not

perfect, these techniques are growing in

complexity and reliability and promise to be an

important part of most secure systems in the near

future.

The problem we approach in this paper is

related to the issue of continuous authentication.

We have a group of users that types freely,

generating a large amount of keystrokes. Then,

each user keystrokes are separated in groups called

sessions. Finally, we face the problem of correctly

deciding which typing sessions belongs to the

same user. We call this problem users separation.

This type of analysis can be applied to the

differentiation of a large group of users typing

continuously or, also, to find out if all the

keystrokes of one user alone belong to the same

person. The last description corresponds to the

former problem of continuous user authentication.

User separation, then, refers to the ability to

distinguish which typing session belongs to which

user and it can be really useful within applications

that receive text and that are prone to

impersonation. These include:

 Webmail applications,

 Remote console sessions, such as SSH or

telnet,

 Temporary abandoned console sessions,

 Stolen or temporary abandoned cellular

phones,

 Chat applications.

In all of the above situations, user separation

techniques can help mitigate the problem of

detecting a masquerade or impersonation attack.

This paper has three goals. First, creating a

new, labelled and large dataset of free text user

sessions is available for everybody. Second, using

this dataset verifies and validates the techniques

employed in our previous papers [20] [21], where

user sessions were grouped by means of their

keystroke patterns. Here, “session” stands for a

group of keystrokes belonging to the same user.

Third and finally, publishing this dataset allows

other researchers to compare their techniques.

Unfortunately, to the best of our knowledge

there was no known public keystroke dataset of

free text that could be used for our investigation.

Consequently, our first task was to create a new,

large, validated and labelled dataset of digraphs

and trigraphs for several users. In our previous

paper, we proposed some grouping techniques but

it became difficult to verify the results. Our best

verification technique consisted in separating the

keystroke sessions in half and verifying that both

parts got grouped together. Furthermore, we did

not have labels because the dataset corresponded

to real attacker keystrokes on a honeypot.

Consequently, in this paper we needed to verify

our techniques with a labelled dataset to obtain

useful performance metrics [7].

This paper is organized as follows. In section 2

we review the state of the art. In Section 3 we

describe our dataset. In Section 4 we present the

proposed methods for evaluation. In Section 5 we

describe each of the experiments done. In Section

6 final results are presented along with the

corresponding performance metrics. Finally, in

Section 7 we present our conclusions.

2. Background

In general terms, investigations have

demonstrated that each person has their own

typing pattern which, to a greater or lesser extent,

can be used to differentiate them.

Some investigations focus on the extraction of

characteristics while others directly center on the

classification or identification of users. Regarding

the former, it has been analysed which patterns

must be taken into account in the extraction as well

as the possible problems that may arise [8].

Furthermore, genetic algorithms have been

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

28

implemented to select the most relevant

characteristics, thus, significantly reducing

classification errors [18]. Among those

characteristics, performance improvements have

been found with different combined times (for

example, the times of depressing and releasing of a

key) [4] [15].

The size of the sample and groups of samples

are important [15] [13]. Some investigations based

on authentication [6] concluded that the user ID

and password must have a minimum of eight

characters. The size of the group of samples varies

depending on the method employed. An excellent

performance using Bayesian classification has

been reported [19] but carefully considering the

size of the group of samples. In the case of a

reduced group, the K-Means method is advisable.

Although neural networks have proved their good

performance, they require a great quantity of

samples to operate successfully [1].

According to some publications, rhythm in

writing varies through time [16], and there are a

number of factors that can alter it: physical, mental

and environmental conditions. However, once the

user becomes familiar with their writing, the

characteristics turn more stable [14]. Another

investigation also highlights this relationship [4],

which could more easily help classify experienced

attackers who operate with a frequent series of

commands.

In order to minimize the impact of the

conditions that may alter user typing factors, it is

suggested that although the total time spent in

writing a paragraph can vary, the relations among

internal times are maintained [5]. Consequently,

the information entered was divided in trigraphs

(that is, a cluster of three letters), sorted by time

and the distance among samples was calculated.

This system has succeeded in identifying and

authenticating users. It must be noted that these

characteristics do not derive from each individual

user, but from the distances that measure the

relation between samples; they are not values that

depend on a single sample but on a pair of them.

The majority of investigations focus on the

analysis of words or short phrases which can be

categorized as “fixed text”, where all persons write

the same text. Only a few investigations center on

“free text” [2].

One of the first researches carried out on free

text was able to distinguish the style of four users

[10]. A deeper investigation can be found in [9]

which, following the methodology employed in

[5], applies it to the analysis of free text by only

considering the times of key depressing. The above

has demonstrated that just a few lines are enough

to identify and classify users with a high level of

accuracy. Following this course of investigation, it

has been proved that only digraphs and trigraphs

can be employed [3].

The second goal of the present research is to

apply and verify our previous techniques [21] with

the new dataset. We can summarize our previous

paper as follows. We applied different

unsupervised methods to group user sessions

together. These methods needed to compute the

distance between two sessions in order to cluster

them. We applied three different distance measure

concepts (A-distance, R-distance and Weighted-

distance) based on digraphs and trigraphs, ending

with a total of six distance measures. Two

clustering algorithms were applied, an adapted K-

means and an adapted Subtractive Clustering.

Finally, the performance evaluation was carried

out with four ad-hoc metrics: Success Rate,

Proximity, Within and P. The most important

problem of our previous paper was the lack of a

large and labelled dataset that could be used to

verify the results and techniques. The creation of

such a dataset was included in our further work.

Based on the results of the investigation, the

following steps were:

 Obtain a large group of samples that allow

investigations on the analysis of free text.

As an available online dataset could not be

found, it became an ideal opportunity to

create one that could be used in multiple

investigations.

 Perform for the first time a group of user

sessions with a set of labelled data and

verify that this group coincides with the

original data classification.

3. Dataset

The previous section analysed the state of the

art of free text keystroke dynamics analysis and

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

29

free text keystroke dynamics dataset areas. This

section describes the main features and design

decisions of our dataset and the details of the data

capture phase.

The primary motivation for obtaining a

labelled dataset of free text keystrokes was the

need to verify your previous detection algorithms.

In the absence of labels, our previous method

relied upon ad-hoc performance metrics. Results

were promising, but no significant performance

metrics could be obtained. To complete our work,

we decided to design and create a new labelled and

large dataset of free text keystrokes.

It is not easy to obtain keystrokes from users,

especially free text keystrokes. The most common

problems to obtain such a dataset are: First, users

may not want to share their keystrokes because of

privacy concerns. Second, users should type freely

and not under supervision, because their actions

and mood should be as real as possible.

Consequently, we had to find some way to obtain a

large number of keystrokes of real users typing

freely, without undermining their privacy.

With these restrictions in mind, the required

features of the dataset were designed:

 Have a quite large number of users.

 The user has to type during their everyday

computer work, regardless of the program,

operating system and date.

 Have a large number of keystrokes for each

user. Preferably for several days.

 Have the digraphs and trigraphs for each

user.

 Respect the privacy of users. There should

be no way to find out what the user has

typed from the post analysis of the

keystrokes.

 The user should not share their computer

during the capture of the keystrokes.

To accomplish these design goals, a new and

public keylogger utility was developed. In the

following subsection we describe our keylogger

program.

3.1. KEasyLogger

A new keylogger application, called

KEasyLogger, was developed to capture user

keystrokes. Its aim is to present a friendly graphic

user interface that allows the user to completely

control the capture process. The user needs to trust

this project and this keylogger in order to

voluntarily cooperate. The KEasyLogger

application has no malicious intentions and was

designed to respect the privacy of the user and to

only capture the user’s own keys.

The keylogger was designed according to the

following requirements:

 It should execute both on Linux and

Windows operating systems.

 It should capture all the keystrokes typed in

the graphical window system.

 The user should be able to see the complete

text recorded at any moment in a

meaningful and clear way.

 The user should be able to delete any

keystrokes and words at any moment.

 The user should be able to see the state of

the keylogger at any moment.

 The user should be able to change the state

of the keylogger at any moment.

 The user should be able to generate and

store the digraphs and trigraphs at will.

 The user should only send the digraphs and

trigraphs to us by hand.

 We should not be able to recover the

original text from the digraphs and

trigraphs.

At first, the keylogger was mostly distributed

among friends and co-workers, because trust was

important to obtain useful keystrokes. After

several weeks, the keylogger was also given to

everyone that wanted to cooperate with the project.

The KEasyLogger application allows us to

obtain very useful keystrokes. Users can capture

their everyday work including mail typing, chat

sessions, web browsing, programs development,

administration tasks and document writing. Most

of the users forget about the keylogger after some

time and we can capture the inner characteristics of

their keystroke behaviour. The keylogger was

successfully implemented and it gave us a very

large number of real keystrokes from real users.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

30

The KEasyLogger is composed of three main

subsystems:

 The KEasyLogger.jar file, which is the java

GUI frontend.

 The logkeys file, which is the original C++

keylogger.

 The keasylogger-analyser.py file, which is

the python log text processor and analyser.

It was important for the KEasyLogger to be

useful and visually simple. Figure 1 shows a

screenshot of the main frontend, where there are

only three menus. Figure 2 shows the File menu,

where the user can choose to see or delete content.

When a log file is shown, the original text is

recreated from the keystrokes. The user can edit

the captured keystrokes and can control the

keylogger.

As maintaining privacy was paramount for

obtaining more users, the application randomly

sorted the digraphs and trigraphs from the

keystrokes before storing them on disk. Also, the

application never connected to internet directly, so

the user had to manually send us the text file with

the information. Therefore, it was impossible for

us to recover the original text from the digraphs

and trigraphs received. The keylogger can be

downloaded from:

 http://www.szsebas.com.ar/keasylogger.

Fig. 1. KEasyLogger frontend

Fig. 2. KEasyLogger File Menu

3.2. Dataset Characteristics and publication

After some time, we managed to obtain a large

dataset of real user keystrokes. The main

characteristics are:

 17 unique different users.

 379 sessions. Each session last one day.

 2,726,203 total digraphs.

 2,553,494 total trigraphs.

The dataset was made public in at

http://www.szsebas.com.ar/keasylogger.

This is, to the best of our knowledge, the larger

public keystroke labelled dataset available to date.

4. Proposed Method

In the previous section we have described the

dataset and its main characteristics. In this section

we propose a method to analyse the keystroke

dataset. The main idea is to use unsupervised

algorithms on the data in order to seek natural

grouping patterns. Our hypothesis is that every

user has their own behavioural pattern which can

be used to group user keystrokes together. Our

proposal includes modified versions of common

clustering algorithms and new distance measures.

Our method is composed of four phases. First,

we prepare our dataset by separating keystrokes

into sessions, which constitute the minimal

comparison unit among users. Second, we

compute a set of distance measures among all

sessions. These distances were created according

to our past experiences in grouping user

http://www.szsebas.com.ar/keasylogger

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

31

keystrokes. Third, we apply several modified

clustering algorithms to identify natural session

groups. Finally, we evaluate the algorithms using

the ground-truth labels in the dataset.

In subsection 4.1 we present the dataset

preparation for our analysis. In subsection 4.2 we

present the dataset distances used to compare the

sessions against each other. In subsection 4.3 we

specify the algorithms that we use in order to

cluster the sessions and obtain the alleged users. In

subsection 4.4 we evaluate the quality of the

formed clusters to compare and select the best

distance measures and clustering algorithm.

4.1. Dataset preparation

Upon receiving all the keystrokes from the

users, we needed to pre-process them in order to

create our dataset.

To test different hypothesis the dataset was

separated into different groups which are described

as follows:

 J-1, 5 users only. Users that have the

similar amount of sessions (15 to 20).

 J-2, 10 users only. Limited to 18 sessions

each. Sessions sorted by the number of

digraphs.

 J-3, 10 users only. Limited to 18 sessions

each. No sorting.

 J-4, 16 users only. Users have between 1

and 10 sessions. Sessions sorted by the

number of digraphs.

 J-5, 16 users only. Users have between 1

and 10 sessions. No sorting.

 J-6, 16 users only. Users have between 1

and 2 sessions. Sessions sorted by the

number of digraphs.

 J-7, 10 users only. Users have between 15

and 79 sessions.

 J-8, all the users with all sessions.

The intention was to test the influence of

different factors: the number of users and the

difference between the number of sessions of each

user and the number of digraphs in each session. In

this way, we can get a clearer idea of the minimum

requirements needed for the system to function.

The prepared data was also stored in a database

and some of it was dynamically calculated when

the tests were performed.

4.2. Distance Measures

In the previous subsection we described the

pre-processing steps in our dataset. At this point,

the dataset is a collection of user sessions, each of

them having digraphs and trigraphs, with their

respective time between key presses. However, the

clustering algorithms proposed in the next

subsection need a proper way to compute the

distance between two sessions. In this section, we

focus on analysing and creating new distance

measures between sessions.

A distance measure is the distance between

two sessions. This distance should be computed

using the information on each session, that is,

digraphs and trigraphs. Defining distance is not an

easy task and it determines the way in which the

algorithms will behave. Its purpose is to define the

degree of similarity of the typing pattern between

two sessions. If such distance is 0, it means that

both sessions have the same typing pattern. The

further the distance, the more different the typing

pattern. The best distance would be that which

provides a closer distance measure to those

sessions belonging to the same user and a more

distant one for different user sessions.

The base distances were defined by [5], but

they can be combined in different ways (by adding

or multiplying them) in order to obtain better

results.

In our previous investigation, some of these

combinations had been tested [20] [21].

Below is a list of the distances employed. The

first six refer to distances created following the

paper [5].

From the seventh onwards, they are

combinations of the previously described

distances. Tests using other combinations

alternating different mathematical operators and

base distances were carried out, but produced

worse results.

 I-1, R-distance digraphs

 I-2, R-distance trigraphs

 I-3, Cumulative-R

 I-4, A-distance digraphs

 I-5, A-distance trigraphs

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

32

 I-6, Cumulative-A

 I-7, A-distance digraphs + R-distance

digraphs

 I-8, A-distance digraphs + A-distance

trigraphs

 I-9, digraphs-A + trigraphs-A + digraphs-R

 I-10, Ponderada-A

 I-11, A-distance digraphs * R-distance

digraphs

 I-12, A-distance digraphs + R-distance

digraphs * R-distance digraphs

 I-13, A-distance digraphs * A-distance

digraphs + R-distance digraphs

 I-14, 2 * A-distance digraphs * R-distance

digraphs

The basic idea behind R-distance was

introduced in [5] and used in [9]. Given an array V

of K elements, a simple measure of the degree of

disorder (or, simply, the disorder) of V with regard

to its ordered counterpart V’ can be computed as

the sum of the distances between the position of

each element in V and the position of the same

element in V’. Given an array of K elements, it is

convenient to normalize its disorder by dividing it

by the value of the maximum disorder of an array

of K elements. In this way, it is possible to

compare the disorder of arrays of different size.

After this normalization, the disorder of any array

V falls between 0 (if V is ordered) and 1 (if V is in

reverse order).

R-distance fails to discriminate between the

typing samples of two typists that have very

similar typing rhythms, even if one of the typists is

much faster than the other one. Unlike R-distance,

A-distance only considers the absolute value of the

typing speed of each pair of identical n-graphs in

the two samples under comparison.

Let GS1;d1 and GS2;d2 be the same n-graph

occurring in two typing samples S1 and S2, with

durations d1 and d2, respectively. The A-distance

between S1 and S2 with regard to the n-graphs

they share and for a certain value of t is then

defined as:

A(S1, S2) = 1 - (number of similar n-graphs

between S1 and S2)/(total number of n-graphs

shared by S1 and S2)

Where we say that two digraphs are similar if 1

< max(d1; d2)/min(d1; d2) ≤ t for some constant t

greater than 1.

It is possible to compute a cumulative absolute

distance between two typing samples with regard

to n-graphs of different length:

An,m(S1; S2) = A(S1, S2)n +A(S1, S2)mM/N

for M m-graphs and N n-graphs shared by S1

and S2 and N > M. We compute Cumulative-R

and Cumulative-A using digraphs and trigraphs.

These distances were previously used to

compare sessions and performed very well [5]

[21]. We decided to carry out an exhaustive search

for their combinations and use them in a clustering

algorithm, which has not been done before by

other researchers.

4.3. Clustering Algorithms

The proposed clustering method had to be

adapted in order to be meaningful in our context.

We decided to use for the context of clustering,

features that were good solving other situations.

Since there was no classification method that

allows using as distance a feature that emerges

from the comparison between observations, we

had to adapt the K-means algorithm to use a proper

distance measure between sessions.

The general idea is to take all sessions, group

them and then verify whether those automatically

generated and unsupervised groups coincide with

the users of the original sessions. As a result, we

combined a method that worked well with the

problem of identification (comparing a user against

all users) with a grouping method (comparing all

users against all). Then, sessions were grouped by

means of a binary comparison measure. The

distances proposed by [5], and consequently, those

calculated in this investigation, return an intrinsic

value to the comparison between two sessions. An

isolated session cannot be obtained; all values arise

from the comparison between two (and only two)

sessions. As no grouping method of these

characteristics could be found, an existent

grouping method was adapted. K-Means was

selected because of its simplicity and effectiveness

and it follows these steps:

1. K sessions are randomly selected so as

to obtain the initial cluster centers

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

33

2. The distance of each session to each

cluster center is calculated

3. Which cluster belongs to each data

(session) is determined

4. New cluster centers are determined

5. If there is no variation with respect to

step 4, it is interrupted

6. It goes back to step 2

The proposed adaptation was made in step 2.

While the original method tends to use the

Euclidean distance, we employ one of our metrics

used to compare sessions. For the center of each

cluster in step 4, one of the sessions had always to

be chosen, since an average point that represents

the center cannot be calculated (the data

components cannot be averaged nor the distance of

this point to the sessions can be calculated). The

chosen session was the one whose sum of the

values of the distances with the rest of the sessions

was the lowest.

A distinctive feature of the original method is

that results can differ significantly if there is a

“bad” selection of the initial cluster centers. That is

the reason why throughout the years, the selection

of the initial cluster centers has not been left

randomly and a smart method has been adopted.

We proposed two techniques that showed far better

results than random initialization. The first one

consists of randomly selecting the first center.

Then, for each instance we multiply its distances to

the rest of the cluster centers. The instance with the

larger value is picked as next cluster centroid. This

is done to favour the most far away instances. In

this way, the chosen cluster centers are distant

from the already picked center, which at first

favours the creation of homogenous, equidistant

groups. The second pursues the same concept but

instead of multiplying the distance to the centers,

the minimum distance is picked. In summary:

 K-Means

 Adapted K-Means 0 (K-0)

 Adapted K-Means 1 (K-1)

 Adapted K-Means 2 (K-2)

K-Means-type represents the different ways to

initialize K-means.

K-0: Random initialization of centers.

K-1: The first center is random. Then, for each

instance we multiply its distances to the rest of the

cluster centers. The instance with the larger value

is picked as next cluster centroid.

K-2: The first center is random. Then, for each

instance we compute the minimum distance to the

rest of the cluster centers. The maximum of these

distances is picked as next cluster center.

4.4. Evaluation Techniques

There are different ways to verify whether the

created clusters coincide with those which were to

be created. In our case, we must confirm if the

sessions have been grouped per user. Since

unsupervised learning methods have been used, the

created clusters lack labels; consequently, it cannot

be ascertained whether the sessions fell in the

“correct” cluster or not and besides, the True

Positive Rate or False Positive Rate cannot be

employed. On the contrary, other functions which

measure how good the groups were formed must

be followed.

Following [12], the functions employed to

measure the performance of the different tests

were: Purity, NMI and RI.

Purity is a simple and transparent evaluation

measure. To compute purity, each cluster is

assigned to the class which is most frequent in the

cluster, and then the accuracy of this assignment is

measured by counting the number of correctly

assigned documents and dividing by N. Formally:

 (1)

where Ω = ω1, ω1,…, ωk is the set of clusters and C

= c1, c2,…, cj is the set of classes. We interpret ωk

as the set of sessions in ωk and cj as the set of

sessions in cj. High purity is easy to achieve when

the number of clusters is large – in particular,

purity is 1 if each session gets its own cluster.

Thus, we cannot use purity to trade off the quality

of the clustering against the number of clusters. A

measure that allows us to make this trade-off is

normalized mutual information.

Normalized Mutual Information (NMI) is a

measure that allows to trade off the quality of the

clustering against the number of clusters. The

function measures the amount of information by

which our knowledge about the classes increases

when we are told what the clusters are.

 (2)

where I is mutual information:

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

34

and H is entropy:

An alternative to this information-theoretic

interpretation of clustering is to view it as a series

of decisions, one for each of the N(N-1)=2 pairs of

sessions in the collection. We want to assign two

sessions to the same cluster if and only if they are

similar. The Rand Index (RI) measures the

percentage of decisions that are correct. A true

positive (TP) decision assigns two similar sessions

to the same cluster, a true negative (TN) decision

assigns two dissimilar sessions to different

clusters. There are two types of errors we can

commit. A false positive (FP) decision assigns two

dissimilar sessions to the same cluster. A false

negative (FN) decision assigns two similar

sessions to different clusters.

 (3)

5. Experiments

Given the few investigations published on the

analysis of keystroke dynamics in free text and the

novelty of implementing comparative

characteristics for clustering, we decided to carry

out a thorough analysis of all the possible

combinations.

5.1. Choosing distances

We started carrying out a basic comparison

regarding which distance performed better. Taking

basic distances (I-1 to I-6) a large variety of

distances combined with different mathematical

operators can be obtained, for instance, I-1 + I-4 is

a new distance which has, at the time of the

clustering, different results if compared to an

analysis of I-1 and I-4 separately. A complete

search was performed using the combination of

two or three distances with the mathematical

operations of addition, subtraction, multiplication

and division. The ones which performed better

(according to evaluation functions) in an average

of 10 groups were I-7 to I-14. I-10 was obtained

and introduced in the experiments because of its

good results in previous investigations.

The same group, J-5, was used in all the tests

since it was quite heterogeneous and a half-way

point with regards to the rest of the groups. K-0

was employed as a grouping method.

Having the 14 distances selected, a

comparative analysis of all distances was

performed resulting in the average of grouping 20

times each of the 8 groups. As shown in table 1,

the best distances so far are number 4 (A-distance

digraphs), 12 (A-distance digraphs + R-distance

digraphs * R-distance digraphs) and 7 (A-distance

digraphs + R-distance digraphs). In table 2 we also

compared the distance which performed better in

each of the groups. Results vary according to the

group, even though the general performance of

distances 4, 7 and 12 is good (if they are not the

bests, they are among the first best ones), each

group seems to have its “favourite” distance.

 Table 1. Comparison of distances for all groups

i Purity NMI RI FI

4 0.706 0.790 0.926 0.684

12 0.704 0.790 0.923 0.685

7 0.701 0.792 0.926 0.685

13 0.698 0.791 0.922 0.689

9 0.694 0.786 0.920 0.682

14 0.692 0.779 0.920 0.669

11 0.688 0.776 0.919 0.666

8 0.678 0.767 0.918 0.662

1 0.669 0.751 0.913 0.642

5 0.621 0.693 0.900 0.571

2 0.588 0.633 0.884 0.508

10 0.587 0.696 0.851 0.624

6 0.476 0.586 0.803 0.481

3 0.386 0.449 0.710 0.385

5.2. Comparing groups

In order to understand how the data to be

analysed should be formed, which conditions are

better and what must be avoided, a comparative

analysis of groups J-1 to J-8 was carried out: a

comparison among groups with an average of

performance in each of the 14 distances (Table 3),

a comparison among groups with the best 3

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

35

distances obtained from the previous step (Tables

4, 5 and 6). The average results of 20 groups for

each distance are shown.

Table 2. Best distance for each group.

i j Purity NMI RI FI

7 1 0.863 0.908 0.944 0.901

7 2 0.742 0.838 0.935 0.780

7 6 0.721 0.905 0.964 0.622

7 4 0.716 0.849 0.949 0.724

7 5 0.672 0.795 0.941 0.652

7 3 0.660 0.744 0.914 0.670

7 7 0.635 0.650 0.870 0.624

7 8 0.589 0.642 0.886 0.499

Table 3. Comparison among groups, all distances.

i j Purity NMI RI FI

A 1 0.751 0.763 0.877 0.790

A 6 0.706 0.884 0.951 0.560

A 4 0.681 0.806 0.927 0.680

A 2 0.661 0.757 0.900 0.695

A 3 0.594 0.665 0.876 0.600

A 5 0.591 0.700 0.902 0.534

A 7 0.542 0.539 0.826 0.532

A 8 0.520 0.568 0.852 0.457

Table 4. Comparison among groups. Distance 12

i j Purity NMI RI FI

12 1 0.802 0.860 0.915 0.865

12 6 0.738 0.901 0.965 0.607

12 4 0.737 0.854 0.951 0.737

12 2 0.730 0.829 0.934 0.762

12 5 0.704 0.805 0.948 0.670

12 3 0.683 0.759 0.915 0.693

12 7 0.621 0.640 0.866 0.612

12 8 0.606 0.654 0.888 0.520

Table 5. Comparison among groups. Distance 4

i j Purity NMI RI FI

4 1 0.802 0.822 0.906 0.836

4 4 0.756 0.863 0.956 0.755

4 2 0.744 0.830 0.934 0.770

4 6 0.741 0.903 0.964 0.611

4 5 0.673 0.784 0.940 0.632

4 3 0.665 0.742 0.913 0.665

4 7 0.577 0.577 0.858 0.553

4 8 0.558 0.621 0.880 0.491

Table 6. Comparison among groups. Distance 7

i j Purity NMI RI FI

7 1 0.863 0.908 0.944 0.901

7 2 0.742 0.838 0.935 0.780

7 6 0.721 0.905 0.964 0.622

7 4 0.716 0.849 0.949 0.724

7 5 0.672 0.795 0.941 0.652

7 3 0.660 0.744 0.914 0.670

7 7 0.635 0.650 0.870 0.624

7 8 0.589 0.642 0.886 0.499

The first conclusion is probably the most

expected: a small group like J-1 (5 users) with a

large and similar amount of data (all users had

between 15 and 20 sessions) is the best option.

These results greatly improve (even up to 50%)

from those where no previous data analysis is

performed. The fact that groups 2, 4 and 6 have the

following positions in all the cases demonstrates

another expected behaviour: what is important is

the number of digraphs in a session and the more

of them, the better. The generalized bad

performance of 7 and 8 with respect to the rest

gives us a remarkable and not that trivial note: it is

preferable to discard sessions so as to equal the

number of sessions of each user rather than

considering all of them. The results obtained from

4, 5 and 6 are always better although they have to

evaluate a 60% more of users.

5.3. Comparing k-means

Table 7 first shows a general comparison

among the different ways of initializing k-means,

taking into account all groups and distances I-4, I-

7 and I-12.

Table 7. K-means comparisons for distances I-4, I-

7 and I-12

Purity NMI RI FI K-Means

0.763 0.822 0.932 0.785 2

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

36

0.704 0.791 0.925 0.684 0

0.656 0.722 0.902 0.652 1

At first sight, K-2 has the best performance. In

order to carry out a more detailed analysis tables 8,

9 and 10 have been elaborated, where the best

average performance for each type of k-means and

each group is shown, as well as with which

distance the performance was carried out. 20

groupings for each distance were performed,

which were then averaged to obtain the

representative value for each distance and the one

that best performed was chosen.

Table 8. Best distance for each group, using K-0

i j Purity NMI RI FI

7 1 0.863 0.908 0.944 0.901

11 2 0.747 0.847 0.936 0.788

9 3 0.693 0.773 0.918 0.713

4 4 0.756 0.863 0.956 0.755

12 5 0.704 0.805 0.948 0.670

8 6 0.751 0.912 0.966 0.649

7 7 0.635 0.650 0.870 0.624

12 8 0.606 0.654 0.888 0.520

Table 9. Best distance for each group, using K-1

i j Purity NMI RI FI

12 1 0.878 0.933 0.946 0.941

7 2 0.807 0.887 0.950 0.835

8 3 0.669 0.736 0.899 0.685

14 4 0.782 0.891 0.952 0.824

12 5 0.692 0.793 0.938 0.678

2 6 0.789 0.923 0.971 0.691

9 7 0.533 0.498 0.825 0.539

9 8 0.543 0.507 0.864 0.494

Table 10. Best distance for each group, using K-2

i j Purity NMI RI FI

7 1 0.982 0.990 0.992 0.991

7 2 0.836 0.932 0.960 0.901

7 3 0.787 0.856 0.945 0.818

7 4 0.855 0.940 0.974 0.913

7 5 0.770 0.863 0.959 0.784

13 6 0.941 0.978 0.991 0.906

7 7 0.721 0.726 0.886 0.722

7 8 0.725 0.733 0.910 0.692

By observing the tables, one can notice about

the utilization of K-2:

 Its performance improved considerably.

 The best distance was unified: in all the

cases was I-7, except for J-6. However, in

this case, I-7 had the 4th position and a

performance superior to 0.90 in all the

functions.

6. Final Results

The distance with the best performance was I-

7: Adistance digraphs + Rdistance digraphs. Table

11 shows the average value of all functions for

each group (from now onwards called

“performance”).

Groups J-1, J-2, J-4 and J-6 had a performance

above 90%, which results in the fact that no matter

the number of users to be grouped, sessions with a

high number of digraphs should be preferred. The

performance does not decrease much when users

are added but when sessions contain few digraphs.

Likewise in the case of J-8, where all sessions

with all users are considered, the performance

exceeds 78%.

Table 11. Final results for each group using I-7

and K-2

J Average Performance

1 0.988

2 0.909

3 0.863

4 0.923

5 0.864

6 0.955

7 0.778

8 0.789

7. Conclusions

The initial objective of the investigation was to

group (by means of unsupervised methods) user

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

37

sessions writing in free text through the analysis of

user typing patterns.

A group of labelled data belonging to 17 users

was obtained and published, which allowed the

validation of previously used methods and which

could be utilized to compare further investigations.

A comparison measure that had achieved good

results in the identification of users was employed

and then adapted to fit the case of grouping.

Several alternatives and combinations of that

measure were tested to find the best one.

A classic grouping method was adapted to be

used with a relational method and improvements to

enhance its performance were defined.

It is concluded that having a keystroke

dynamics dataset of user sessions and knowing the

number of users who participated, it is possible to

a great extent, to group the sessions of the same

user, regardless of any previous knowledge about

the users. A level of accuracy of at least 78% was

achieved. If the sessions with fewer digraphs are

discarded, a performance that exceeds 90% can be

attained, and in the case of fewer users, it can

reach 100%.

In summary:

 User sessions can be grouped according to

their free text typing pattern.

 The best feature to group sessions is

Adistance digraphs + Rdistance digraphs.

 The K-means adapted algorithm generates

useful results and is a good algorithm to

employ.

 The K-means adapted algorithm with

selected initial centres is the best algorithm.

 Sessions with more keywords can be better

grouped.

 With new users added to the grouping

problem, the performance of the method

decreases a little.

8. Future Work

Many questions still need to be answered or

expanded. Now that we have a trustable data set

and we know that the technique developed works,

further experiments could be made.

If this method could be implemented within

continuous monitoring software and what could

happen if we applied the same distances to a

supervised method are the questions that we are

planning to answer in future work.

References

[1] Obaidat M. S. and Sadoun B. Verification of computer

users using keystroke dynamics. IEEE COMPUTER

SOCIETY. 1997.

[2] Ahmed I and Traore A.A. Biometric recognition based on

free-text keystroke dynamics. Cybernetics, IEEE

Transactions on, 99, 2013. doi:

10.1109/TCYB.2013.2257745.

[3] Warwick A. and Alsultan K. Keystroke dynamics

authentication: A survey of free-text methods. IJCSI

International Journal of Computer Science Issues, Vol.

10, Issue 4, No 1, 2013.

[4] Aráujo L. C. F., Lizárraga M. G. et al. Autentificación

personal por dinámica de tecleo basada en lógica difusa.

IEEE COMPUTER SOCIETY, 2005.

[5] Gunetti D. Picardi C. Bergadano, F. User authentication

through keystroke dynamics. ACM Transactions on

Information and System Security, 5(4):367–397, 2002.

doi: 10.1145/581271.581272.

[6] Cheng-Huang J. and Shiuhpyng S. et al. Keystroke

statistical learning model for web authentication.

Proceedings of the 2nd ACM symposium on Information,

computer and communications security. Singapore,

ACM, 2007.

[7] Devijver P. A. and Kittler J. Pattern Recognition: A

Statistical Approach. Prentice-Hall, Londres, 1982.

[8] Hart P. E., Stork D. G. and Duda R. O. Pattern

classification. New York: Wiley, 2001.

[9] Picardi C. and Gunetti, D. Keystroke analysis of free text.

ACM Transactions on Information and System Security,

8(3):312–347, 2005. doi: 10.1145/1085126.1085129.

[10] Shepherd S. J. Continuous authentication by analysis of

keyboard typing characteristics. IEEE COMPUTER

SOCIETY, 1995.

[11] Narendra K. S. and Parthsarathy K. Identification and

control of dynamical system using neural networks.

IEENN, 1(1):4–27, 1990.

[12] Prabhakar R. M., Christopher D. and Hinrich S.

Introduction to Information Retrieval. Cambridge:

Cambridge University Press. Cambridge Books Online,

2012.

[13] Paeckock A, Ke X. et al. Typing patterns: A key to user

identification. IEEE COMPUTER SOCIETY, 2004.

[14] Mroczkowski P. Identity verification using keyboard

statistics. Linkoping University, Electronic Press, 2004.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Sznur Sebastian et al. ,Vol. 4, No. 2

38

[15] Liang V., Chambers J., Mackenzie C. and Robinson, J.

Computer user verification using login string keystroke

dynamics. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 28(2):236–

241, 1998. doi: 10.1109/3468.661150.

[16] Kacholia V. and Pandit S. Biometric authentication

using random distributions (bioart). 2004.

shashankpandit.com.

[17] Mark S. Information Security: Principles and Practice,

2nd edition. Wiley, 2011.

[18] Yu Enzhe and Cho Sungzoon. Biometrics-based

password identity verification: Some practical issues and

solutions. 2003. Http://dmlab.snu.ac.kr.

[19] Cho Tai-Hoon. Pattern classification methods for

keystroke analysis. SICE-ICASE International Joint

Conference, 2006.

[21] Sorondo G., Garcıa S., Meschino G. J., Zamonsky

Pedernera G. and Sznur S. Revisiting clustering methods

to their application on keystroke dynamics for intruder

classification. In IEEE Workshop on Biometric

Measurements and Systems for Security and Medical

Applications, volume 9, pages 36–40, 2010. Taranto,

Italia.

