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Abstract- Users identification by means of their keystroke pattern is an old and known technique. Several works had analysed 

and solved some of the most important issues in this area, but with the advances of technology, previous techniques have 

quickly become obsolete. Users as well as attackers spend a lot of time typing on their computers, locally and remotely. Their 

keystrokes leave a trace of patterns whose dynamism can be analysed and used to verify their identity. We propose to use 

unsupervised clustering algorithms to group user sessions together in order to correctly identify them. Furthermore, the 

verification of keystroke dynamics techniques has always been difficult because of the lack of a labelled free text dataset. To 

overcome this issue, we capture a large dataset of labelled keystrokes of more than two and a half million digraphs. Results 

show that having a keystroke dynamics dataset of user sessions and knowing the number of users who participated, it is 

possible to group the sessions of the same user, regardless of any previous knowledge about the users. A level of accuracy of at 

least 78% was achieved. If the sessions with fewer digraphs are discarded, a performance that exceeds 90% can be attained. 

 

Keywords- Security; Keystroke Dynamics; Biometrics. 

 

1. Introduction 

 

Since the early days of telegraph 

communications in World War II, when Morse 

code was used to send and receive messages, each 

telegraph operator developed its own typing 

signature. This signature could be learnt from 

closely listening to the typing rhythm of the 

operators in order to identify them. It was even 

possible to precisely differentiate among operators. 

These techniques were the first rudimentary 

keystroke dynamics implementations, from which 

the current algorithms derive [11]. The typing 

pattern on a keyboard is currently considered a 

biometric behavioural characteristic that can be 

used to identify or authenticate users [16]. The 

study of this typing pattern is called keystroke 

dynamics. 

When keystroke dynamics was first 

implemented in a computer environment, 

mainframes were the only computers available, so 

this technique first usage was to help identify users 

in the same computer. Specifically, the intention 

was to detect when the typing session of a logged 

user was used by another person. This problem is 

commonly known as masquerade detection. With 

personal computers and now with ubiquitous 

computing, the problem of masquerade detection 

has become obsolete and keystroke dynamics 

techniques shifted their focus mainly to user 

authentication and user authorization [17]. 

Authentication refers to the action of confirming 

the identity of a user trying to access the system, 

while authorization refers to the action of 

confirming if the already authenticated user is 

authorized to accomplish certain actions. However, 

a new approach to user authentication called 

continuous authentication was created and it refers 

to the ability of a system to constantly verify if the 

current user is the one who logged in. This concept 

is closely related to masquerade detection and 

benefits from its work. 

Keystroke dynamics investigations can focus 

on the analysis of “fixed text” or “free text” [5]. In 

the former, all users type their samples employing 
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the same text (such as passwords or short phrases), 

while in the latter, everything that is written is 

analysed which, although it makes it more 

attractive as it broadens the scope of applications, 

the disadvantage is that free text does not have 

fixed, easily extracted characteristics since what 

users are going to type cannot be obtained a priori.  

Keystroke dynamics techniques had proven to 

be useful for hardening authorization and 

authentication processes [3]. To the best of our 

knowledge, it does not exist yet a successful attack 

against a well implemented keystroke dynamics 

security authentication program. Although not 

perfect, these techniques are growing in 

complexity and reliability and promise to be an 

important part of most secure systems in the near 

future. 

The problem we approach in this paper is 

related to the issue of continuous authentication. 

We have a group of users that types freely, 

generating a large amount of keystrokes. Then, 

each user keystrokes are separated in groups called 

sessions. Finally, we face the problem of correctly 

deciding which typing sessions belongs to the 

same user. We call this problem users separation. 

This type of analysis can be applied to the 

differentiation of a large group of users typing 

continuously or, also, to find out if all the 

keystrokes of one user alone belong to the same 

person. The last description corresponds to the 

former problem of continuous user authentication. 

User separation, then, refers to the ability to 

distinguish which typing session belongs to which 

user and it can be really useful within applications 

that receive text and that are prone to 

impersonation. These include: 

 Webmail applications, 

 Remote console sessions, such as SSH or 

telnet, 

 Temporary abandoned console sessions, 

 Stolen or temporary abandoned cellular 

phones, 

 Chat applications. 

In all of the above situations, user separation 

techniques can help mitigate the problem of 

detecting a masquerade or impersonation attack. 

This paper has three goals. First, creating a 

new, labelled and large dataset of free text user 

sessions is available for everybody. Second, using 

this dataset verifies and validates the techniques 

employed in our previous papers [20] [21], where 

user sessions were grouped by means of their 

keystroke patterns. Here, “session” stands for a 

group of keystrokes belonging to the same user. 

Third and finally, publishing this dataset allows 

other researchers to compare their techniques. 

Unfortunately, to the best of our knowledge 

there was no known public keystroke dataset of 

free text that could be used for our investigation. 

Consequently, our first task was to create a new, 

large, validated and labelled dataset of digraphs 

and trigraphs for several users. In our previous 

paper, we proposed some grouping techniques but 

it became difficult to verify the results. Our best 

verification technique consisted in separating the 

keystroke sessions in half and verifying that both 

parts got grouped together. Furthermore, we did 

not have labels because the dataset corresponded 

to real attacker keystrokes on a honeypot. 

Consequently, in this paper we needed to verify 

our techniques with a labelled dataset to obtain 

useful performance metrics [7]. 

This paper is organized as follows. In section 2 

we review the state of the art. In Section 3 we 

describe our dataset. In Section 4 we present the 

proposed methods for evaluation. In Section 5 we 

describe each of the experiments done. In Section 

6 final results are presented along with the 

corresponding performance metrics. Finally, in 

Section 7 we present our conclusions.  

 

2. Background 

 

In general terms, investigations have 

demonstrated that each person has their own 

typing pattern which, to a greater or lesser extent, 

can be used to differentiate them. 

Some investigations focus on the extraction of 

characteristics while others directly center on the 

classification or identification of users. Regarding 

the former, it has been analysed which patterns 

must be taken into account in the extraction as well 

as the possible problems that may arise [8]. 

Furthermore, genetic algorithms have been 
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implemented to select the most relevant 

characteristics, thus, significantly reducing 

classification errors [18]. Among those 

characteristics, performance improvements have 

been found with different combined times (for 

example, the times of depressing and releasing of a 

key) [4] [15]. 

The size of the sample and groups of samples 

are important [15] [13]. Some investigations based 

on authentication [6] concluded that the user ID 

and password must have a minimum of eight 

characters. The size of the group of samples varies 

depending on the method employed. An excellent 

performance using Bayesian classification has 

been reported [19] but carefully considering the 

size of the group of samples. In the case of a 

reduced group, the K-Means method is advisable. 

Although neural networks have proved their good 

performance, they require a great quantity of 

samples to operate successfully [1]. 

According to some publications, rhythm in 

writing varies through time [16], and there are a 

number of factors that can alter it: physical, mental 

and environmental conditions. However, once the 

user becomes familiar with their writing, the 

characteristics turn more stable [14]. Another 

investigation also highlights this relationship [4], 

which could more easily help classify experienced 

attackers who operate with a frequent series of 

commands. 

In order to minimize the impact of the 

conditions that may alter user typing factors, it is 

suggested that although the total time spent in 

writing a paragraph can vary, the relations among 

internal times are maintained [5]. Consequently, 

the information entered was divided in trigraphs 

(that is, a cluster of three letters), sorted by time 

and the distance among samples was calculated. 

This system has succeeded in identifying and 

authenticating users. It must be noted that these 

characteristics do not derive from each individual 

user, but from the distances that measure the 

relation between samples; they are not values that 

depend on a single sample but on a pair of them. 

The majority of investigations focus on the 

analysis of words or short phrases which can be 

categorized as “fixed text”, where all persons write 

the same text. Only a few investigations center on 

“free text” [2]. 

One of the first researches carried out on free 

text was able to distinguish the style of four users 

[10]. A deeper investigation can be found in [9] 

which, following the methodology employed in 

[5], applies it to the analysis of free text by only 

considering the times of key depressing. The above 

has demonstrated that just a few lines are enough 

to identify and classify users with a high level of 

accuracy. Following this course of investigation, it 

has been proved that only digraphs and trigraphs 

can be employed [3]. 

The second goal of the present research is to 

apply and verify our previous techniques [21] with 

the new dataset. We can summarize our previous 

paper as follows. We applied different 

unsupervised methods to group user sessions 

together. These methods needed to compute the 

distance between two sessions in order to cluster 

them. We applied three different distance measure 

concepts (A-distance, R-distance and Weighted-

distance) based on digraphs and trigraphs, ending 

with a total of six distance measures. Two 

clustering algorithms were applied, an adapted K-

means and an adapted Subtractive Clustering. 

Finally, the performance evaluation was carried 

out with four ad-hoc metrics: Success Rate, 

Proximity, Within and P. The most important 

problem of our previous paper was the lack of a 

large and labelled dataset that could be used to 

verify the results and techniques. The creation of 

such a dataset was included in our further work.  

Based on the results of the investigation, the 

following steps were: 

 Obtain a large group of samples that allow 

investigations on the analysis of free text. 

As an available online dataset could not be 

found, it became an ideal opportunity to 

create one that could be used in multiple 

investigations. 

 Perform for the first time a group of user 

sessions with a set of labelled data and 

verify that this group coincides with the 

original data classification. 

  

3. Dataset 

 

The previous section analysed the state of the 

art of free text keystroke dynamics analysis and 
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free text keystroke dynamics dataset areas. This 

section describes the main features and design 

decisions of our dataset and the details of the data 

capture phase. 

The primary motivation for obtaining a 

labelled dataset of free text keystrokes was the 

need to verify your previous detection algorithms. 

In the absence of labels, our previous method 

relied upon ad-hoc performance metrics. Results 

were promising, but no significant performance 

metrics could be obtained. To complete our work, 

we decided to design and create a new labelled and 

large dataset of free text keystrokes. 

It is not easy to obtain keystrokes from users, 

especially free text keystrokes. The most common 

problems to obtain such a dataset are: First, users 

may not want to share their keystrokes because of 

privacy concerns. Second, users should type freely 

and not under supervision, because their actions 

and mood should be as real as possible. 

Consequently, we had to find some way to obtain a 

large number of keystrokes of real users typing 

freely, without undermining their privacy. 

With these restrictions in mind, the required 

features of the dataset were designed: 

 Have a quite large number of users. 

 The user has to type during their everyday 

computer work, regardless of the program, 

operating system and date. 

 Have a large number of keystrokes for each 

user. Preferably for several days. 

 Have the digraphs and trigraphs for each 

user. 

 Respect the privacy of users. There should 

be no way to find out what the user has 

typed from the post analysis of the 

keystrokes. 

 The user should not share their computer 

during the capture of the keystrokes. 

To accomplish these design goals, a new and 

public keylogger utility was developed. In the 

following subsection we describe our keylogger 

program. 

 

3.1. KEasyLogger 

 

A new keylogger application, called 

KEasyLogger, was developed to capture user 

keystrokes. Its aim is to present a friendly graphic 

user interface that allows the user to completely 

control the capture process. The user needs to trust 

this project and this keylogger in order to 

voluntarily cooperate. The KEasyLogger 

application has no malicious intentions and was 

designed to respect the privacy of the user and to 

only capture the user’s own keys. 

The keylogger was designed according to the 

following requirements: 

 It should execute both on Linux and 

Windows operating systems. 

 It should capture all the keystrokes typed in 

the graphical window system. 

 The user should be able to see the complete 

text recorded at any moment in a 

meaningful and clear way. 

 The user should be able to delete any 

keystrokes and words at any moment. 

 The user should be able to see the state of 

the keylogger at any moment. 

 The user should be able to change the state 

of the keylogger at any moment. 

 The user should be able to generate and 

store the digraphs and trigraphs at will. 

 The user should only send the digraphs and 

trigraphs to us by hand. 

 We should not be able to recover the 

original text from the digraphs and 

trigraphs. 

At first, the keylogger was mostly distributed 

among friends and co-workers, because trust was 

important to obtain useful keystrokes. After 

several weeks, the keylogger was also given to 

everyone that wanted to cooperate with the project. 

The KEasyLogger application allows us to 

obtain very useful keystrokes. Users can capture 

their everyday work including mail typing, chat 

sessions, web browsing, programs development, 

administration tasks and document writing. Most 

of the users forget about the keylogger after some 

time and we can capture the inner characteristics of 

their keystroke behaviour. The keylogger was 

successfully implemented and it gave us a very 

large number of real keystrokes from real users. 
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The KEasyLogger is composed of three main 

subsystems: 

 The KEasyLogger.jar file, which is the java 

GUI frontend. 

 The logkeys file, which is the original C++ 

keylogger. 

 The keasylogger-analyser.py file, which is 

the python log text processor and analyser. 

It was important for the KEasyLogger to be 

useful and visually simple. Figure 1 shows a 

screenshot of the main frontend, where there are 

only three menus. Figure 2 shows the File menu, 

where the user can choose to see or delete content. 

When a log file is shown, the original text is 

recreated from the keystrokes. The user can edit 

the captured keystrokes and can control the 

keylogger. 

As maintaining privacy was paramount for 

obtaining more users, the application randomly 

sorted the digraphs and trigraphs from the 

keystrokes before storing them on disk. Also, the 

application never connected to internet directly, so 

the user had to manually send us the text file with 

the information. Therefore, it was impossible for 

us to recover the original text from the digraphs 

and trigraphs received. The keylogger can be 

downloaded from: 

 http://www.szsebas.com.ar/keasylogger. 

 

 
Fig. 1. KEasyLogger frontend 

 
Fig. 2. KEasyLogger File Menu 

 

3.2.  Dataset Characteristics and publication 

 

After some time, we managed to obtain a large 

dataset of real user keystrokes. The main 

characteristics are: 

 17 unique different users. 

 379 sessions. Each session last one day. 

 2,726,203 total digraphs. 

 2,553,494 total trigraphs. 

The dataset was made public in at 

http://www.szsebas.com.ar/keasylogger. 

This is, to the best of our knowledge, the larger 

public keystroke labelled dataset available to date. 

 

4. Proposed Method 

 

In the previous section we have described the 

dataset and its main characteristics. In this section 

we propose a method to analyse the keystroke 

dataset. The main idea is to use unsupervised 

algorithms on the data in order to seek natural 

grouping patterns. Our hypothesis is that every 

user has their own behavioural pattern which can 

be used to group user keystrokes together. Our 

proposal includes modified versions of common 

clustering algorithms and new distance measures.  

Our method is composed of four phases. First, 

we prepare our dataset by separating keystrokes 

into sessions, which constitute the minimal 

comparison unit among users. Second, we 

compute a set of distance measures among all 

sessions. These distances were created according 

to our past experiences in grouping user 

http://www.szsebas.com.ar/keasylogger
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keystrokes. Third, we apply several modified 

clustering algorithms to identify natural session 

groups. Finally, we evaluate the algorithms using 

the ground-truth labels in the dataset. 

In subsection 4.1 we present the dataset 

preparation for our analysis. In subsection 4.2 we 

present the dataset distances used to compare the 

sessions against each other. In subsection 4.3 we 

specify the algorithms that we use in order to 

cluster the sessions and obtain the alleged users. In 

subsection 4.4 we evaluate the quality of the 

formed clusters to compare and select the best 

distance measures and clustering algorithm. 

 

4.1.  Dataset preparation 

 

Upon receiving all the keystrokes from the 

users, we needed to pre-process them in order to 

create our dataset. 

To test different hypothesis the dataset was 

separated into different groups which are described 

as follows: 

 J-1, 5 users only. Users that have the 

similar amount of sessions (15 to 20). 

 J-2, 10 users only. Limited to 18 sessions 

each. Sessions sorted by the number of 

digraphs. 

 J-3, 10 users only. Limited to 18 sessions 

each. No sorting. 

 J-4, 16 users only. Users have between 1 

and 10 sessions. Sessions sorted by the 

number of digraphs. 

 J-5, 16 users only. Users have between 1 

and 10 sessions. No sorting. 

 J-6, 16 users only. Users have between 1 

and 2 sessions. Sessions sorted by the 

number of digraphs. 

 J-7, 10 users only. Users have between 15 

and 79 sessions. 

 J-8, all the users with all sessions. 

The intention was to test the influence of 

different factors: the number of users and the 

difference between the number of sessions of each 

user and the number of digraphs in each session. In 

this way, we can get a clearer idea of the minimum 

requirements needed for the system to function. 

The prepared data was also stored in a database 

and some of it was dynamically calculated when 

the tests were performed. 

  

4.2. Distance Measures 

 

In the previous subsection we described the 

pre-processing steps in our dataset. At this point, 

the dataset is a collection of user sessions, each of 

them having digraphs and trigraphs, with their 

respective time between key presses. However, the 

clustering algorithms proposed in the next 

subsection need a proper way to compute the 

distance between two sessions. In this section, we 

focus on analysing and creating new distance 

measures between sessions. 

A distance measure is the distance between 

two sessions. This distance should be computed 

using the information on each session, that is, 

digraphs and trigraphs. Defining distance is not an 

easy task and it determines the way in which the 

algorithms will behave. Its purpose is to define the 

degree of similarity of the typing pattern between 

two sessions. If such distance is 0, it means that 

both sessions have the same typing pattern. The 

further the distance, the more different the typing 

pattern. The best distance would be that which 

provides a closer distance measure to those 

sessions belonging to the same user and a more 

distant one for different user sessions. 

The base distances were defined by [5], but 

they can be combined in different ways (by adding 

or multiplying them) in order to obtain better 

results. 

In our previous investigation, some of these 

combinations had been tested [20] [21]. 

Below is a list of the distances employed. The 

first six refer to distances created following the 

paper [5]. 

From the seventh onwards, they are 

combinations of the previously described 

distances. Tests using other combinations 

alternating different mathematical operators and 

base distances were carried out, but produced 

worse results. 

 I-1, R-distance digraphs 

 I-2, R-distance trigraphs 

 I-3, Cumulative-R 

 I-4, A-distance digraphs 

 I-5, A-distance trigraphs 
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 I-6, Cumulative-A 

 I-7, A-distance digraphs + R-distance 

digraphs 

 I-8, A-distance digraphs + A-distance 

trigraphs 

 I-9, digraphs-A + trigraphs-A + digraphs-R 

 I-10, Ponderada-A 

 I-11, A-distance digraphs * R-distance 

digraphs 

 I-12, A-distance digraphs + R-distance 

digraphs * R-distance digraphs 

 I-13, A-distance digraphs * A-distance 

digraphs + R-distance digraphs 

 I-14, 2 * A-distance digraphs * R-distance 

digraphs 

The basic idea behind R-distance was 

introduced in [5] and used in [9]. Given an array V 

of K elements, a simple measure of the degree of 

disorder (or, simply, the disorder) of V with regard 

to its ordered counterpart V’ can be computed as 

the sum of the distances between the position of 

each element in V and the position of the same 

element in V’. Given an array of K elements, it is 

convenient to normalize its disorder by dividing it 

by the value of the maximum disorder of an array 

of K elements. In this way, it is possible to 

compare the disorder of arrays of different size. 

After this normalization, the disorder of any array 

V falls between 0 (if V is ordered) and 1 (if V is in 

reverse order). 

R-distance fails to discriminate between the 

typing samples of two typists that have very 

similar typing rhythms, even if one of the typists is 

much faster than the other one. Unlike R-distance, 

A-distance only considers the absolute value of the 

typing speed of each pair of identical n-graphs in 

the two samples under comparison. 

Let GS1;d1 and GS2;d2 be the same n-graph 

occurring in two typing samples S1 and S2, with 

durations d1 and d2, respectively. The A-distance 

between S1 and S2 with regard to the n-graphs 

they share and for a certain value of t is then 

defined as: 

A(S1, S2) = 1 - (number of similar n-graphs 

between S1 and S2)/(total number of n-graphs 

shared by S1 and S2) 

Where we say that two digraphs are similar if 1 

< max(d1; d2)/min(d1; d2) ≤ t for some constant t 

greater than 1. 

It is possible to compute a cumulative absolute 

distance between two typing samples with regard 

to n-graphs of different length: 

An,m(S1; S2) = A(S1, S2)n +A(S1, S2)mM/N 

for M m-graphs and N n-graphs shared by S1 

and S2 and N > M. We compute Cumulative-R 

and Cumulative-A using digraphs and trigraphs. 

These distances were previously used to 

compare sessions and performed very well [5] 

[21]. We decided to carry out an exhaustive search 

for their combinations and use them in a clustering 

algorithm, which has not been done before by 

other researchers.  

 

4.3. Clustering Algorithms 

 

The proposed clustering method had to be 

adapted in order to be meaningful in our context. 

We decided to use for the context of clustering, 

features that were good solving other situations. 

Since there was no classification method that 

allows using as distance a feature that emerges 

from the comparison between observations, we 

had to adapt the K-means algorithm to use a proper 

distance measure between sessions. 

The general idea is to take all sessions, group 

them and then verify whether those automatically 

generated and unsupervised groups coincide with 

the users of the original sessions. As a result, we 

combined a method that worked well with the 

problem of identification (comparing a user against 

all users) with a grouping method (comparing all 

users against all). Then, sessions were grouped by 

means of a binary comparison measure. The 

distances proposed by [5], and consequently, those 

calculated in this investigation, return an intrinsic 

value to the comparison between two sessions. An 

isolated session cannot be obtained; all values arise 

from the comparison between two (and only two) 

sessions. As no grouping method of these 

characteristics could be found, an existent 

grouping method was adapted. K-Means was 

selected because of its simplicity and effectiveness 

and it follows these steps: 

 

1. K sessions are randomly selected so as 

to obtain the initial cluster centers 
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2. The distance of each session to each 

cluster center is calculated 

3. Which cluster belongs to each data 

(session) is determined 

4. New cluster centers are determined 

5. If there is no variation with respect to 

step 4, it is interrupted 

6. It goes back to step 2 

 

The proposed adaptation was made in step 2. 

While the original method tends to use the 

Euclidean distance, we employ one of our metrics 

used to compare sessions. For the center of each 

cluster in step 4, one of the sessions had always to 

be chosen, since an average point that represents 

the center cannot be calculated (the data 

components cannot be averaged nor the distance of 

this point to the sessions can be calculated). The 

chosen session was the one whose sum of the 

values of the distances with the rest of the sessions 

was the lowest. 

A distinctive feature of the original method is 

that results can differ significantly if there is a 

“bad” selection of the initial cluster centers. That is 

the reason why throughout the years, the selection 

of the initial cluster centers has not been left 

randomly and a smart method has been adopted. 

We proposed two techniques that showed far better 

results than random initialization. The first one 

consists of randomly selecting the first center. 

Then, for each instance we multiply its distances to 

the rest of the cluster centers. The instance with the 

larger value is picked as next cluster centroid. This 

is done to favour the most far away instances. In 

this way, the chosen cluster centers are distant 

from the already picked center, which at first 

favours the creation of homogenous, equidistant 

groups. The second pursues the same concept but 

instead of multiplying the distance to the centers, 

the minimum distance is picked. In summary: 

 K-Means 

 Adapted K-Means 0 (K-0) 

 Adapted K-Means 1 (K-1) 

 Adapted K-Means 2 (K-2) 

K-Means-type represents the different ways to 

initialize K-means. 

K-0: Random initialization of centers. 

K-1: The first center is random. Then, for each 

instance we multiply its distances to the rest of the 

cluster centers. The instance with the larger value 

is picked as next cluster centroid. 

K-2: The first center is random. Then, for each 

instance we compute the minimum distance to the 

rest of the cluster centers. The maximum of these 

distances is picked as next cluster center. 

 

4.4. Evaluation Techniques 

 

There are different ways to verify whether the 

created clusters coincide with those which were to 

be created. In our case, we must confirm if the 

sessions have been grouped per user. Since 

unsupervised learning methods have been used, the 

created clusters lack labels; consequently, it cannot 

be ascertained whether the sessions fell in the 

“correct” cluster or not and besides, the True 

Positive Rate or False Positive Rate cannot be 

employed. On the contrary, other functions which 

measure how good the groups were formed must 

be followed. 

Following [12], the functions employed to 

measure the performance of the different tests 

were: Purity, NMI and RI. 

Purity is a simple and transparent evaluation 

measure. To compute purity, each cluster is 

assigned to the class which is most frequent in the 

cluster, and then the accuracy of this assignment is 

measured by counting the number of correctly 

assigned documents and dividing by N. Formally: 

  (1) 

where Ω = ω1, ω1,…, ωk is the set of clusters and C 

= c1, c2,…, cj is the set of classes. We interpret ωk 

as the set of sessions in ωk and cj as the set of 

sessions in cj. High purity is easy to achieve when 

the number of clusters is large – in particular, 

purity is 1 if each session gets its own cluster. 

Thus, we cannot use purity to trade off the quality 

of the clustering against the number of clusters. A 

measure that allows us to make this trade-off is 

normalized mutual information. 

Normalized Mutual Information (NMI) is a 

measure that allows to trade off the quality of the 

clustering against the number of clusters. The 

function measures the amount of information by 

which our knowledge about the classes increases 

when we are told what the clusters are. 

    (2) 

where I is mutual information: 
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and H is entropy: 

 
An alternative to this information-theoretic 

interpretation of clustering is to view it as a series 

of decisions, one for each of the N(N-1)=2 pairs of 

sessions in the collection. We want to assign two 

sessions to the same cluster if and only if they are 

similar. The Rand Index (RI) measures the 

percentage of decisions that are correct. A true 

positive (TP) decision assigns two similar sessions 

to the same cluster, a true negative (TN) decision 

assigns two dissimilar sessions to different 

clusters. There are two types of errors we can 

commit. A false positive (FP) decision assigns two 

dissimilar sessions to the same cluster. A false 

negative (FN) decision assigns two similar 

sessions to different clusters. 

 

    (3) 

 

 

5. Experiments 

 

Given the few investigations published on the 

analysis of keystroke dynamics in free text and the 

novelty of implementing comparative 

characteristics for clustering, we decided to carry 

out a thorough analysis of all the possible 

combinations. 

 

5.1. Choosing distances 

 

We started carrying out a basic comparison 

regarding which distance performed better. Taking 

basic distances (I-1 to I-6) a large variety of 

distances combined with different mathematical 

operators can be obtained, for instance, I-1 + I-4 is 

a new distance which has, at the time of the 

clustering, different results if compared to an 

analysis of I-1 and I-4 separately. A complete 

search was performed using the combination of 

two or three distances with the mathematical 

operations of addition, subtraction, multiplication 

and division. The ones which performed better 

(according to evaluation functions) in an average 

of 10 groups were I-7 to I-14. I-10 was obtained 

and introduced in the experiments because of its 

good results in previous investigations. 

The same group, J-5, was used in all the tests 

since it was quite heterogeneous and a half-way 

point with regards to the rest of the groups. K-0 

was employed as a grouping method.  

Having the 14 distances selected, a 

comparative analysis of all distances was 

performed resulting in the average of grouping 20 

times each of the 8 groups. As shown in table 1, 

the best distances so far are number 4 (A-distance 

digraphs), 12 (A-distance digraphs + R-distance 

digraphs * R-distance digraphs) and 7 (A-distance 

digraphs + R-distance digraphs). In table 2 we also 

compared the distance which performed better in 

each of the groups. Results vary according to the 

group, even though the general performance of 

distances 4, 7 and 12 is good (if they are not the 

bests, they are among the first best ones), each 

group seems to have its “favourite” distance.  

 

 Table 1. Comparison of distances for all groups 

i Purity NMI RI FI 

4 0.706 0.790 0.926 0.684 

12 0.704 0.790 0.923 0.685 

7 0.701 0.792 0.926 0.685 

13 0.698 0.791 0.922 0.689 

9 0.694 0.786 0.920 0.682 

14 0.692 0.779 0.920 0.669 

11 0.688 0.776 0.919 0.666 

8 0.678 0.767 0.918 0.662 

1 0.669 0.751 0.913 0.642 

5 0.621 0.693 0.900 0.571 

2 0.588 0.633 0.884 0.508 

10 0.587 0.696 0.851 0.624 

6 0.476 0.586 0.803 0.481 

3 0.386 0.449 0.710 0.385 

 

5.2. Comparing groups 

In order to understand how the data to be 

analysed should be formed, which conditions are 

better and what must be avoided, a comparative 

analysis of groups J-1 to J-8 was carried out: a 

comparison among groups with an average of 

performance in each of the 14 distances (Table 3), 

a comparison among groups with the best 3 
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distances obtained from the previous step (Tables 

4, 5 and 6). The average results of 20 groups for 

each distance are shown. 

 

Table 2. Best distance for each group. 

i j Purity NMI RI FI 

7 1 0.863 0.908 0.944 0.901 

7 2 0.742 0.838 0.935 0.780 

7 6 0.721 0.905 0.964 0.622 

7 4 0.716 0.849 0.949 0.724 

7 5 0.672 0.795 0.941 0.652 

7 3 0.660 0.744 0.914 0.670 

7 7 0.635 0.650 0.870 0.624 

7 8 0.589 0.642 0.886 0.499 

 

Table 3. Comparison among groups, all distances. 

i j Purity NMI RI FI 

A 1 0.751 0.763 0.877 0.790 

A 6 0.706 0.884 0.951 0.560 

A 4 0.681 0.806 0.927 0.680 

A 2 0.661 0.757 0.900 0.695 

A 3 0.594 0.665 0.876 0.600 

A 5 0.591 0.700 0.902 0.534 

A 7 0.542 0.539 0.826 0.532 

A 8 0.520 0.568 0.852 0.457 

 

Table 4. Comparison among groups. Distance 12 

i j Purity NMI RI FI 

12 1 0.802 0.860 0.915 0.865 

12 6 0.738 0.901 0.965 0.607 

12 4 0.737 0.854 0.951 0.737 

12 2 0.730 0.829 0.934 0.762 

12 5 0.704 0.805 0.948 0.670 

12 3 0.683 0.759 0.915 0.693 

12 7 0.621 0.640 0.866 0.612 

12 8 0.606 0.654 0.888 0.520 

 

Table 5. Comparison among groups. Distance 4 

i j Purity NMI RI FI 

4 1 0.802 0.822 0.906 0.836 

4 4 0.756 0.863 0.956 0.755 

4 2 0.744 0.830 0.934 0.770 

4 6 0.741 0.903 0.964 0.611 

4 5 0.673 0.784 0.940 0.632 

4 3 0.665 0.742 0.913 0.665 

4 7 0.577 0.577 0.858 0.553 

4 8 0.558 0.621 0.880 0.491 

 

Table 6. Comparison among groups. Distance 7 

i j Purity NMI RI FI 

7 1 0.863 0.908 0.944 0.901 

7 2 0.742 0.838 0.935 0.780 

7 6 0.721 0.905 0.964 0.622 

7 4 0.716 0.849 0.949 0.724 

7 5 0.672 0.795 0.941 0.652 

7 3 0.660 0.744 0.914 0.670 

7 7 0.635 0.650 0.870 0.624 

7 8 0.589 0.642 0.886 0.499 

 

The first conclusion is probably the most 

expected: a small group like J-1 (5 users) with a 

large and similar amount of data (all users had 

between 15 and 20 sessions) is the best option. 

These results greatly improve (even up to 50%) 

from those where no previous data analysis is 

performed. The fact that groups 2, 4 and 6 have the 

following positions in all the cases demonstrates 

another expected behaviour: what is important is 

the number of digraphs in a session and the more 

of them, the better. The generalized bad 

performance of 7 and 8 with respect to the rest 

gives us a remarkable and not that trivial note: it is 

preferable to discard sessions so as to equal the 

number of sessions of each user rather than 

considering all of them. The results obtained from 

4, 5 and 6 are always better although they have to 

evaluate a 60% more of users. 

 

5.3.  Comparing k-means 

 

Table 7 first shows a general comparison 

among the different ways of initializing k-means, 

taking into account all groups and distances I-4, I-

7 and I-12. 

 

Table 7. K-means comparisons for distances I-4, I-

7 and I-12 

Purity NMI RI FI K-Means 

0.763 0.822 0.932 0.785 2 
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0.704 0.791 0.925 0.684 0 

0.656 0.722 0.902 0.652 1 

At first sight, K-2 has the best performance. In 

order to carry out a more detailed analysis tables 8, 

9 and 10 have been elaborated, where the best 

average performance for each type of k-means and 

each group is shown, as well as with which 

distance the performance was carried out. 20 

groupings for each distance were performed, 

which were then averaged to obtain the 

representative value for each distance and the one 

that best performed was chosen. 

 

Table 8. Best distance for each group, using K-0 

i j Purity NMI RI FI 

7 1 0.863 0.908 0.944 0.901 

11 2 0.747 0.847 0.936 0.788 

9 3 0.693 0.773 0.918 0.713 

4 4 0.756 0.863 0.956 0.755 

12 5 0.704 0.805 0.948 0.670 

8 6 0.751 0.912 0.966 0.649 

7 7 0.635 0.650 0.870 0.624 

12 8 0.606 0.654 0.888 0.520 

 

Table 9. Best distance for each group, using K-1 

i j Purity NMI RI FI 

12 1 0.878 0.933 0.946 0.941 

7 2 0.807 0.887 0.950 0.835 

8 3 0.669 0.736 0.899 0.685 

14 4 0.782 0.891 0.952 0.824 

12 5 0.692 0.793 0.938 0.678 

2 6 0.789 0.923 0.971 0.691 

9 7 0.533 0.498 0.825 0.539 

9 8 0.543 0.507 0.864 0.494 

 

Table 10. Best distance for each group, using K-2 

i j Purity NMI RI FI 

7 1 0.982 0.990 0.992 0.991 

7 2 0.836 0.932 0.960 0.901 

7 3 0.787 0.856 0.945 0.818 

7 4 0.855 0.940 0.974 0.913 

7 5 0.770 0.863 0.959 0.784 

13 6 0.941 0.978 0.991 0.906 

7 7 0.721 0.726 0.886 0.722 

7 8 0.725 0.733 0.910 0.692 

 

By observing the tables, one can notice about 

the utilization of K-2: 

 Its performance improved considerably.  

 The best distance was unified: in all the 

cases was I-7, except for J-6. However, in 

this case, I-7 had the 4th position and a 

performance superior to 0.90 in all the 

functions. 

 

6. Final Results 

 

The distance with the best performance was I-

7: Adistance digraphs + Rdistance digraphs. Table 

11 shows the average value of all functions for 

each group (from now onwards called 

“performance”). 

Groups J-1, J-2, J-4 and J-6 had a performance 

above 90%, which results in the fact that no matter 

the number of users to be grouped, sessions with a 

high number of digraphs should be preferred. The 

performance does not decrease much when users 

are added but when sessions contain few digraphs. 

Likewise in the case of J-8, where all sessions 

with all users are considered, the performance 

exceeds 78%. 

 

Table 11. Final results for each group using I-7 

and K-2 

J Average Performance 

1 0.988 

2 0.909 

3 0.863 

4 0.923 

5 0.864 

6 0.955 

7 0.778 

8 0.789 

  

7. Conclusions 

 

The initial objective of the investigation was to 

group (by means of unsupervised methods) user 



INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE  
Sznur Sebastian et al. ,Vol. 4, No. 2 

 

37 
 

sessions writing in free text through the analysis of 

user typing patterns. 

A group of labelled data belonging to 17 users 

was obtained and published, which allowed the 

validation of previously used methods and which 

could be utilized to compare further investigations. 

A comparison measure that had achieved good 

results in the identification of users was employed 

and then adapted to fit the case of grouping. 

Several alternatives and combinations of that 

measure were tested to find the best one. 

A classic grouping method was adapted to be 

used with a relational method and improvements to 

enhance its performance were defined. 

It is concluded that having a keystroke 

dynamics dataset of user sessions and knowing the 

number of users who participated, it is possible to 

a great extent, to group the sessions of the same 

user, regardless of any previous knowledge about 

the users. A level of accuracy of at least 78% was 

achieved. If the sessions with fewer digraphs are 

discarded, a performance that exceeds 90% can be 

attained, and in the case of fewer users, it can 

reach 100%. 

In summary: 

 User sessions can be grouped according to 

their free text typing pattern. 

 The best feature to group sessions is 

Adistance digraphs + Rdistance digraphs. 

 The K-means adapted algorithm generates 

useful results and is a good algorithm to 

employ. 

 The K-means adapted algorithm with 

selected initial centres is the best algorithm. 

 Sessions with more keywords can be better 

grouped. 

 With new users added to the grouping 

problem, the performance of the method 

decreases a little.  

 

8. Future Work 

 

Many questions still need to be answered or 

expanded. Now that we have a trustable data set 

and we know that the technique developed works, 

further experiments could be made.  

If this method could be implemented within 

continuous monitoring software and what  could 

happen if we applied the same distances to a 

supervised method are the questions that we are 

planning to answer in future work. 
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