

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

39

Digital Forensic Analysis on Prefetch Files
Exploring the Forensic Potential of Prefetch Files in the Windows Platform

Narasimha Shashidhar*‡, Dylan Novak*

*Department of Computer Science, Sam Houston State University, Huntsville, Texas, USA.
{karpoor, dbn001}@shsu.edu

‡Corresponding author; Address: Department of Computer Science, 1803 Avenue I, Suite 214, Sam Houston State University,
Huntsville, Texas 77341. Tel: (936) 294 – 1591, e-mail: karpoor@shsu.edu

Abstract- Prefetch files, like any other file in a file system, can be viewed from a digital forensic perspective to further a forensic
investigation. Using appropriate tools and techniques available to a digital forensic examiner, we explore and investigate the
potential of prefetch files and analyse what they have to offer from a digital forensic analysis perspective in an effort to contribute
towards the rapidly advancing field of digital forensics. Windows' prefetch files are used to decrease the startup times of
applications and are formatted in a manner to instruct application processes to load data and necessary libraries into memory that
it needs before it is actually demanded. In other words, prefetch files help avoid a hard fault, thereby minimizing startup times.
These files reside in the prefetch folder under the Windows installation directory of a system. This folder contains prefetch files
for user and system applications as well as a ReadyBoot folder, a layout.ini file, and several database files. In this paper, we
investigate the mechanism behind the creation and manipulation of prefetch files on a Windows machine. Next, we delve deep
into the assembly code generated by the disassembler IDA PRO for the Windows executable ntkrnlpa.exe to find the Windows
kernel processes responsible for the creation of these prefetch files and parse these prefetch files to better understand their
forensic value.

Keywords- Prefetching; disassembly; digital forensics; reverse engineering; forensic analysis.

1. Introduction

Software developers and operating system

designers have always been interested in speeding
up the startup times of operating systems and their
application software. To this end, Microsoft came up
with an idea of dedicating a process to trace the data
and libraries an application program most
commonly needs upon startup and store this
information in a format such that the process can
easily read and load these necessary items into
memory before it is actually needed, i.e., before it
faults [1]. From then on, every time one launches a
new program in Windows, a prefetch file gets
created to speed up the time of the program's next
startup. Now that we have this convenience, it begs
the question of security and the intrinsic forensic
value of these files. A file that contains instructions

for several low level processes sounds pretty
interesting. However, could this simple idea of
decreasing startup-times lead to vulnerability in
one’s system? Could we alter a prefetch file in such
a way that it will launch another application with
possible malicious intent? To answer these questions,
we first decided to explore the contents and carefully
parse a prefetch file into its constituent components.
Then, we analyze the processes responsible for the
reading and writing of a prefetch file in the
Windows platform.

1.1 The Prefetch File
A. What's inside?

The entire purpose of a prefetch file's existence is
to decrease the startup time of a program. That
means that each individual file will hold data
directly related to its respective program in a format
similar to a list of instructions. Firstly, the name of a

mailto:@shsu.edu
mailto:karpoor@shsu.edu

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

40

prefetch file is in the following format: name of the
application, an eight character hash of the location
from where it was run, and a .pf extension. The file
itself will contain metadata such as the executable's
name, the files and directories used by the
application during the first 10 seconds of its
execution, the size of the prefetch file, volume path,
volume serial number, the run count, a timestamp of
the creation time and the executable's last run time
[2]. Apart from these staple items in a prefetch file,
there is a rather large body of data containing
instructions to load what the program most
commonly uses at startup. This is the subject of our
study in this work.

In Figure 1, we see the contents and the format of
a typical prefetch file. This figure outlines the
structure of CHROME.EXE-D999B1BA.pf, which
is located in the directory C:\Windows\Prefetch. We
used the popular HxD hex editor to view the raw
format of the prefetch file in hopes to find out the
contents and structure of the file so as to parse it
further and enable forensic analysis.

Parts of this file are easier to interpret than others
- such as the operating system (Win7 or Win XP),
version number, and the size of the file. There are
several researchers before us who have uncovered
most of the staple metadata, but there is still a large
body of the file that is yet to be parsed. This lead us
to a decision of whether or not to go through the
entire file and translate all values one-by-one,
perhaps by trial and error, or whether we should
disassemble and reverse engineer the very process
responsible for creating this body of data and
ultimately the file itself.
B. What is prefetching?

When a user selects an application to launch in

the Microsoft Windows environment for the first
time, a program called Windows Cache Manager
traces data (mostly dynamic linked libraries, i.e., dlls)
and other libraries that this application needs during
start up. The data traced in memory is then saved in
the prefetch file format and written into an

appropriately named prefetch file by a kernel
process called NTKRNLPA.EXE. Now, the next time
the user selects that same application to launch, that
prefetch file will be read by the same process and
will load these necessary items into memory before
it is actually demanded by the program. This act of
prefetching is used for every application launched in
Windows and even for the initial boot [1].

Fig 1. CHROME.EXE-D999B1BA.PF IN HXD

C. Why is it useful?
 Prefetch files make it easier for software
applications and programs to find what they need on
the hard disk. Without them, every program would
have to wait on the performance of the hard drive to
find any piece of data it needs at time of startup or
hard fault. In this day and age, programs use a lot
more memory and libraries than before. So, prefetch
files are useful when it comes to speeding up load
times. In this work, we explore the question of how
these files might be valuable in a forensic
investigation. The answer clearly lies in the contents
of the file. Forensic specialists have developed

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

41

programs specifically for prefetch files like
WinPrefetchView (Fig 2.) by NirSoft. These
programs easily scan the prefetch file selected and
then parse out all known metadata items in a simple
format for users to read and interpret.

Since the Windows Cache Manager traces up to ten
seconds of activity after an application has launched,
we can use WinPrefetchView to see which files and
directories the user had accessed after initial launch
of the application [3]. This can be very useful in the
field of digital forensics.

 Prefetch files have been shown to provide
significant metadata, or "data about data". Looking
at the raw hexadecimal values in a hex editor gives
us a detailed look at the entire file format while
WinPrefetchView just gives us basic glimpse at the
most significant and common properties that digital
forensic examiners are interested in (and are
potentially aware of).

Fig 2. WINPREFETCHVIEW

WinPrefetchView properties list:

 Filename – CHROME.EXE-(Hash value).pf
 Created time
 Modified time
 File size on disk
 Process EXE – CHROME.EXE

 Process Path - C:\PROGRAM FILES\...
 Run Counter – Number of times launched
 Last Run Time
 Missing Process

 We contend that these are just basic properties we
expect to find in every prefetch file that the forensic
community is aware of at the moment. There is
much more, however, that we are able to see in the
raw file using a binary editor. This task of course
requires translating a series of binary data via
experimentation, trial-and-error, and using educated
guesses. The good news is that there has been a lot
of contribution towards the translation of the
different offset addresses in the prefetch file.
 b) Other notable properties not found in
WinPrefetch View

 Windows version – XP, Vista, Win7, Win8
 Volume device path/length/creation time
 Directory name and number of characters

D. The layout file - Layout.ini
 Let us now look at the file Layout.ini contained in
the prefetch directory. Layout.ini is a file found in
the Windows prefetch directory and is similar to the
idea of a prefetch file but instead relates to the boot
process of the machine. The task scheduler calls
Windows disk defragmenter every three days and
accumulates a list of common files referenced by the
system during boot up. These files are listed in the
Layout.ini file as instructions to preload certain files
before they are needed during boot up, ultimately
decreasing the time required to boot up the system.
The disk defragmenter checks and reorders this list
every three days while the machine is idle to update
what the system commonly uses during the boot
process [3].

1.2 Prior and Related Work

One of the earliest articles discussing prefetch files
and their potential application in Digital Forensic
Analysis is by Mark Wade [3]. In this article, he

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

42

explores the many different forensic artefacts that
can be discovered from Windows prefetch files.
This article, while being comprehensive, lacks
academic scrutiny and seems to be composed using
commercial software documentation, blogs, and
Wikipedia. As a result of the lack of scrutiny,
Wade’s article inadvertently introduces
misconceptions. The lack of a comprehensive body
of academic research on prefetch files also results in
researchers and commercial software vendors
taking for granted certain evidentiary and forensic
value of such data. The article by Shiaeles et al.
explores the effectiveness of on-scene triage tools
used by forensic investigators [6].
 Another work done by Lee et al. explores on-
site investigation methodology for incident response
[7] in Windows environments and includes
reference to prefetch files in the same way that
other articles do. An April, 2010 blog post by
Yogesh Khatri provides much valuable insight as to
the format of the application prefetch files; however,
it does not fully describe the structure [8]. In
contrast, the third edition of Harlan Carvey’s book,
Windows Forensic Analysis Toolkit, is careful to
describe prefetch files and the artefacts therein as
interesting indicators [9], without making definitive
statements about their evidentiary value or drawing
conclusions without proper foundation.
 Lastly, McQuaid’s August, 2014 blog post, in
addition to reinforcing the concept that prefetch
files can be an important resource for digital
investigations in general, states that they can also be
useful for timeline analysis [10]. A forensic
investigator can potentially identify other files that
were created or modified during the same
timeframe as a malicious program execution, for
example, and subsequently use this information to
determine the root cause of an incident [10]. In
conclusion, it appears from the existing body of
work that a particular emphasis is being placed on
what data artefacts exist in the various prefetch files
at a particular point in time, and less emphasis on
the processes behind their creation.

2. Our Goal
In this section, we motivate our decision to

explore the potential of prefetch files for forensic
analysis. Initially, our goal was to extract
incriminating evidence left behind in RAM or on a
hard drive from a session where a criminal might
have used a USB mobile application through a
portable USB drive. After a series of experiments
and some research, we discovered that much of this
evidence seemed to reside in the prefetch files. This
led us to explore the potential of prefetch files as it
relates to a forensic investigation. These files have
the ability to control what is loaded into memory
when a user starts up an application. Therefore, it is
reasonable to assume that the remnants of portable
device application activity can be found using
prefetch file analysis.
A. USB flash drive digital forensics

In the beginning, we wanted to test, explore, and
extract the digital forensic evidence a USB flash
drive and the portable applications that it hosts will
leave behind on a typical installation of a Windows
operating system (XP and 7). The idea was to find
any files, snapshots, or any kind of data left behind
by the driver, user, or by the portable application
itself.

Fig 3. PHROZEN WINDOWS FILES MONITOR

As an initial step we mapped out all the events
that happen on the operating system when a USB
storage device is connected to Windows. What we
found was that Windows does a more than “well-

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

43

enough” job of monitoring events and activities that
happen in the background. One session of using
Phrozen Windows Files Monitor, a popular tool
used to monitor activity and changes on storage
devices e.g. Hard Disk Drive and connecting a USB
flash drive to the machine showed us what the
Windows OS actually changes, reads, or writes
during this process. We noticed a couple of entries
made in the System32 directory and activity in some
default configuration and temporary files. Of the
entire list of changes on the live capture that we
noticed, the changes made to the folder
C:\Windows\Prefetch stood out.

B. Prefetching Potential

Looking further into the prefetch directory, we
find a list of *.pf files for every user application that
was previously run on the system. We then opened
CHROME.EXE-D999B1BA.pf in HxD Hex editor to
look at the file format as discussed earlier. After
analyzing the contents, we wondered if these
prefetch files contained valuable forensic
information. We wanted to find out what processes
reads/writes these files, the manner in which they
are read/written, and if we could alter them? Other
questions that came to our mind, but we haven’t
explored in this current work, is whether prefetching
can be used towards anti-forensics and any potential
vulnerability that this might introduce on a host
system. In theory, it is conceivable that a
cybercriminal could recreate the functions used and
called in the process responsible for creating
prefetch files, and write instructions themselves to
alter application settings, configurations, and what
executes. This means another process/application
could easily replace an instruction and have a
malicious application loaded into RAM as well.

3. Reverse Engineering and Disassembly
Finding the answers to our above mentioned

questions meant that we would have to delve deep
into the process of how prefetch files are created,
manipulated and saved on a Windows XP
computing system. A core Windows component by

the name of ntkrnlpa.exe, a kernel process, is
responsible for reading, writing and manipulating
prefetch files based on the instructions from the
Windows Cache Manager. In order to learn how
ntkrnlpa.exe works and discover exactly what it does,
we had to disassemble the executable and analyze
the assembly code that was generated. This is a
natural thing to do in Windows forensics, since
many processes and events in the Windows
operating system are not documented by Microsoft
in much detail.

A. Disassembling Ntkrnlpa.exe
 First, we noticed that Ntkrnlpa.exe is the kernel
executable responsible for writing prefetch files in
Windows. This process takes data traced and
monitored by the Windows Cache Manager and
writes it into prefetch file format.

Fig 4. EXAMPLE OF IDA PRO'S DIS-ASSEMBLY

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

44

To disassemble ntkrnlpa.exe, we used the popular
program from Hex-Rays called IDA (Interactive
Disassembler) Pro Freeware. IDA Pro is able to
disassemble Windows’ executables and return the
results to the user in assembly code as best as
possible. After the disassembly is complete, we are
given the entire list of functions and procedures used
in ntkrnlpa.exe as well as any imports and exports.
We then analyze the results and attempt to reverse
engineer the kernel process one function at a time.

 Our part in reverse engineering involves
inspecting each relevant function in the hope of
obtaining a better understanding of another related,
relevant function. In the end, we aim to be left with
a map of function calls representing the chain of
processes that take place behind the creating,
reading, and writing of prefetch files. We then take
this information and translate it further into a higher
level language which in turn mirrors what the
original process does. This takes a complete
understanding of the reverse engineering process
and how ntkrnlpa.exe really operates on prefetch
files.
B. Disassembly

 Disassembling ntkrnlpa.exe left us with several
thousands of lines of assembly code and a rather
large list of functions. After some time of searching
through these functions we were able to come up
with a list of, what we believe are, the most
significant functions which we hope will lead to
further disassembly of the prefetch process.
 It then took some time to narrow our results
down to functions we thought were relevant to
prefetch files and the process of prefetching. We
accomplished this by finding the prefix "PF" in front
of the function names (an educated guess that turned
out to be right) and cross-referencing through their
tangent, interstitial called functions. From there, we
tried to map out the different function calls and
through an iterative trial-and-error process, able to

recreate certain functions. We demonstrate a couple
of our attempts below.
List of functions related to .pf files in
NTKRNLPA.EXE:

 [!]PfSnBeginAppLaunch
 PfPrefetchRequestVerify
 PfPrefetchRequestVerifyPath
 PfPrefetchRequestVerifyRanges
 [!]PfSnGetPrefetchInstructions
 PfSnIsHostingApplication
 PfpGetParameter
 PfpLogApplicationEvent
 PfpLogEventRequest
 PfpPrefetchRequest
 PfGenerateTrace
 PfFileInfoNotify
 PfLogFileDataAccess
 PfPowerActionNotify
 [!]PfCalculateProcessHash
 PfCheckDeprioritizeFile
 PfLogFileDataAccess
 SeLocateProcessImageName
 ExfAcquirePushLockShared
 KeInitializeEvent
 [!]PfSnScanCommandLine

4. The prefetching process: ntkrnlpa.exe
How are prefetch files created? To answer this,

we must analyze the resulting disassembly code of
ntkrnlpa.exe. The following steps explain how the
reverse engineering process was performed and then
we describe the insights we got into the prefetching
process.

STEP 1: Starting Point

 Since ntkrnlpa.exe is a huge executable, it
uses hundreds of functions to perform operations
that are not always related to prefetch files.
Therefore, we must narrow our search of functions
to those relating to prefetching. Initially scanning
through the list, we began to notice a prefix pattern
of “pf” to several functions. A quick string search of
“pf” in sorted alphabetical order resulted in a list of

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

45

functions we have assumed to be responsible for
creating and manipulating prefetch files. From here,
we attempted to find the best starting point to the
initial creation of a prefetch file.

STEP 2: PfProcessCreateNotification

 One of the functions that made sense to
start working on was the subroutine
PfProcessCreateNotification. We assumed this
function has something to do with the initial
creation of a prefetch file and naturally made for a
good starting point. As the function
PfProcessCreateNotification is called, it tests a flag
possibly verifying if a prefetch file previously exists.
If the result of the condition is not zero then the
parameters and the value in the source index
register gets pushed onto the stack and
PfCalculateProcessHash is called. After the hash is
produced, PfSnEnablePrefetcher is tested and
followed by a condition jz. The statement looks like;
[cmp _PfSnEnablePrefetcher, 0]
[jz (address in memory)]

This appears often in a few of the other functions
related to prefetch files. If the condition is not zero,
a local variable gets moved into edx and the current
value of the source index register gets moved into
ecx before PfSnBeginAppLaunch is called.

STEP 3: PfSnBeginAppLaunch
 This function specifically has quite a bit of
code to it and still has some knowledge gaps that we
are yet to completely understand. As it starts,
multiple variables and fields are declared and
initialized. The operations mainly consist of moving
esi into the address of the stack pointer plus, 80h
plus the value of the corresponding variable.
Following the last mov statement is a condition
similar to the one we saw in
PfProcessCreateNotification. It again tests the result
of the PfSnEnablePrefetcher and proceeds with a
series of comparisons and jump conditions. We
assume this must be related to the creation of the
prefetch file header since the operations involve
testing different strings with the source index
register. The series of conditions funnel down into a

single block again and then calls
PfSnIsHostingApplication followed by a call to
PfSnScanCommandLine.

If PfSnScanCommandLine returns a value, it
is saved as a variable and is prepared to be passed
as a parameter, along with two others, to the
upcoming function which is appropriately named
PfSnGetPrefetchInstructions.

STEP 4: PfSnGetPrefetchInstructions
 The function PfSnGetPrefetchInstructions
begins life by pushing all necessary items onto the
stack and then starts a loop. The loop begins by
moving the contents of eax into dx then
incrementing eax twice. A compare statement
follows, comparing the source index with dx. If the
two are not equal we return back to the beginning of
the loop and repeat until the condition is met. We
believe this process records the necessary *.dll files
being called for the respective executable. The
Table below (Table 1) succinctly outlines these
steps.

Table 1. Prefetch Function Table

Prefetch Function

Estimated
Description

PfProcessCreateNotification Checks for
existing prefetch
file and sets a
flag for other
functions to
reference.

PfCalculateProcessHash Creates a hash
value sensitive
to the length of
the file.

PfSnEnablePrefetcher Used as a flag
often to test if
other functions
may proceed.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

46

PfSnBeginAppLaunch May be
responsible for
the creation of
the header.

PfSnScanCommandLine Reads any
strings from the
command line
and saves them
as variables.

PfSnGetPrefetchInstructions Records the
names of the
required .dll’s by
the executable.

PfPrefetchRequestVerifyPath
Validates the
path of the
recorded files
and executables

a) PfCalculateProcessHash

This was the first function we began to take an
in-depth look at. We believe that this functin is
responsible for identifying the application's location
via the path on the HDD. It then uses the algorithm
outlined in Figure 5 to create the hash for the
prefetch file. This script was originally written in
Perl by Blaszczyk [4]. He too attempted to
disassemble ntkrnlpa.exe and reverse engineer the
PfCalculateProcessHash function.

Fig 5. PFCALCULATEPROCESSHASH IN PERL

sub hash_xp
{
 my $devpath_u = shift;
 my $hash = 0;
 for (my $i=0; $i<length($devpath_u);
$i++)
 {
 my $char =
ord(substr($devpath_u,$i,1));
 $hash = (($hash * 37) + $char) %
4294967296;

 #print STDERR
sprintf("%08lX",$hash).'
'.substr($devpath_u,$i,1)."\n";
 }
 $hash = ($hash * 314159269) %
4294967296;

 $hash = 0x100000000-$hash if
($hash>0x80000000);
 $hash = (abs($hash) % 1000000007) %
4294967296;
 return $hash;
}

b) PfSNBeginAppLaunch
 After analyzing PfCalculateProcessHash further
we stumbled upon another process of interest, i.e,
PfSNBeginAppLaunch. The name of the function
encouraged us to believe that we were on the right
path. Under this function, we found several other
references and calls to related and interesting
functions such as: PfSNGetPrefetchInstrunctions,
PfSnBeginTrace, PfSnScanComandLine, and
PfSnPrefetchScenario. These functions were the
most notable in our hopes of bringing us closer to
our goal of understanding the background processes
responsible for prefetching in Windows.

C. Window's prefetch file format
 Inside our HxD hex editor program (Figure 1.),
we could see the raw format of a prefetch file
(specifically CHROME.exe-d999b1ba.pf). From
there, we were then able to cross reference any and
all known properties, so as to not duplicate our
efforts, from the prefetch format table available on
the popular Digital Forensics Wiki Portal
www.forensicswiki.org, relating to their position as
an offset address and verifying the values in
hexadecimal ourselves [5].

a) File Header
 This table below represents a general prefetch
file header. This header contains data that we ended
up using to retrieve carved data.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

47

FILE HEADER FORMAT

Offset Length Notes
0x0000 4 Format Version of the Windows

OS
17 – Win XP/2003

23 – Win Vista/Win7
26 – Win8.1

0x0004 4 SCCA signature
0x0008 4 Unknown- Values observed

0x0F-Win XP 0x11 – Win 7/8
0x000C 4 Prefetch file size
0x0010 60 Corresponding name of the

executable
- up to 29 characters in length

0x004C 4 Corresponding prefetch hash
value

0x0050 4 Unknown – This could be a flag
property given most values are 0

and 1

b) File Information
 Following the file header is a block of file
information that is dependent on the version of
windows. Three different versions exist to provide
directions to the start, length, and end of the
different sections. File information version 17 is 68
bytes in size, version 23 is 156 bytes in size, and
version 26 is 224 bytes in size. Closer to the end of
the file information block, lies the execution last run
time and execution counter.
 This is a representation of version 26 file
information block from offsets 0x0054 to 0x00DC.

FILE INFORMATION FORMAT

Offset Length Notes
0x0054
-0x0074

36 Consists of the length, number
of entries, and offset locations

for
sections A, B, C, D

0x0078 8 Unknown

0x0080 8 Latest execution time of
executable

0x0088 56 Most recent execution time of
executable

0x00C0 16 Unknown
0x00D0 4 Execution counter
0x00D4

-
0x00DC

96 Unknown

 c) SECTION A – Metrics array
 After the file information begins the first section,
'A', which contain the metrics entry records.
Version 17 consists of 20 bytes in size and version
23 and 26 are both 32 bytes in size. The offsets vary
in numerical value depending on the length or
version of the fields before it. These metric array
entries correspond with the entries in the file name
strings [5].

SECTION A – METRICS ARRAY

Offset Length Notes
0 4 Start time in ms
4 4 Duration in ms
8 4 Average duration in ms

12 4 File name string offset
16 4 File name string number of

characters
20 4 Unknown
24 8 NTFS file reference

d) SECTION B – Trace chains array
 Section B consists of a 12 byte block of entry
records same for all three versions. The offsets are
also relative to the previous versions and size of
blocks beforehand.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

48

SECTION B – TRACE CHAINS ARRAY

Offset Length Notes
0 4 Next array entry index
4 4 Total block load count. Number of

blocks fetched
8-10 4 Unknown

e) SECTION C -Filename strings
 We have learned from previous work that
Section C mainly consists of an array of little-
endian formatted strings with end-of-string
characters [5].
f) SECTION D – Volumes information
 Section D contains information on the volumes
related to the directories accessed during
prefetching. Multiple subsections are held in section
D proportional to the amount of volumes referenced.
If only one volume is referenced then there will
only be one subsection in section D [5]. Again both
version 23 and 26 are identical consisting of 104
bytes while version 17 is 40 bytes in size.

Section D – Volumes Information

Offset Length Notes
+0 4 Offset to volume device path
+4 4 Length of volume device path
+8 8 Volume creation time

+10 4 Volume serial number of volume
+14 4 Offset to sub section E
+18 4 Length (size) of sub section E
+1C 4 Offset to sub section F
+20 4 Number of string in sub section F
+24 4 Unknown

 The two sub sections referenced in section D are
the NTFS file references (sub section E) and a block
of Directory Strings (sub section F).

1) NTFS file reference

Offset Length Notes
0 6 MFT entry index
6 2 Sequence number

2) Directory Strings

Offset Length Notes
0 2 String number of characters of

directory name.
2 Directory name as Unicode

followed by end-of-string
character.

 4. Conclusions and Future Work
 In this paper, we initiated a study that explored
the potential of prefetch files as it relates to a
forensic investigation. To the best of our knowledge,
we are the first to have identified several interesting
prefetching processes and have demonstrated a clear
approach to parsing and understanding their
operations. In the future, we intend to explore the
prefetching process in greater detail and in
particular complete parsing the missing and
unknown sections of the prefetch file. We believe
that most of the unknown and missing
properties/information consists of flags and/or
variations of properties from previous versions. We
are also continuing with our work on reverse
engineering the ntkrnlpa.exe process of
reading/writing prefetch files. We hope to be able to
identify the functions and the set of instructions
used, and analyze any information we can to learn
even more about prefetch files. After completion,
we will attempt to take what we have learned about
prefetching and apply this knowledge towards USB
device digital forensics and how we might be able
to extract digital evidence and artifacts left behind
by portable applications running on a portable USB
drive. We would like to note that there are several
unanswered questions that still remain to be
explored. For instance, it is conjectured that one
might be able to inject entries into a prefetch file so

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
Narasimha Shashidhar et al. ,Vol. 4, No. 2

49

as to force the operating system loader to load
malicious or otherwise unnecessary libraries (*.dlls)
into memory without being detected. Lastly, it is
worth mentioning that to begin the disassembly
process of ntkrnlpa.exe, one might begin searching
for the “SCCA” signature of a prefetch file and
identifying relevant functions.

Acknowledgements

 The authors would like to thank the support of
the EURECA Center at Sam Houston State
University for funding this research.

References

[1] Shanno Cepeda, "What you Need to Know about

Prefetching," Intel® Developer Zone. Latest Access Time
for the website is February 8th 2015.
https://software.intel.com/en-us/blogs/2009/08/24/what-
you-need-to-know-about-prefetching.

[2] Forensics Wiki, "Prefetch,” Latest Access Time for the
website is Jan16th 2015.
http://www.forensicswiki.org/wiki/Prefetch

[3] Mark Wade, "Decoding Prefetch Files for Forensic
Purposes: Part 1." DFI News. Latest Access Time for the
website is August 8th 2014.
http://www.dfinews.com/articles/2010/12/decoding-
prefetch-files-forensic-purposes-part-1.

[4] Adam Blaszczyk, "Hexacorn | Blog," Hexacorn Ltd Blog
Posts RSS. Latest Access Time for the website is July 26th
2014.
http://www.hexacorn.com/blog/2012/06/13/prefetch-hash-
calculator-a-hash-lookup-table-xpvistaw7w2k3w2k8

[5] Joachim Metz, "Analysis of SCCA," Windows Prefetch
File (PF) format 1 (2011): 25.

[6] Shiaeles Stavros, Anargyros Chryssanthou, and Vasilios
Katos, "On-scene triage open source forensic tool chests:
Are they effective?," Digital Investigation 10.2 (2013): 99-
115.

[7] Keungi Lee, Changhoon Lee, and Sangjin Lee, "On-site
investigation methodology for incident response in
Windows environments," Computers & Mathematics with
Applications 65.9 (2013): 1413-1420.

[8] Yogesh Khatri, “Windows Prefetch File”, [Online],
Available: http://www.swiftforensics.com/2010/04/the-
windows-prefetchfile.html, April, 2010, [Latest Access
Time for the website is Nov 14, 2014]

[9] Harlan Carvey, “Windows forensic analysis DVD toolkit”,
Third edition. Syngress, 2012, pp 88-92.

[10] Jamie McQuaid, “Forensic Examination of Prefetch Files
in Windows.” [Online], Available:
http://www.magnetforensics.com/forensic-analysis-of-
prefetch-files-in-windows/, Aug 6, 2014 [Latest Access
Time for the website is Feb 4, 2015]

https://software.intel.com/en-us/blogs/2009/08/24/what-
http://www.forensicswiki.org/wiki/Prefetch
http://www.dfinews.com/articles/2010/12/decoding-
http://www.hexacorn.com/blog/2012/06/13/prefetch-hash-
http://www.swiftforensics.com/2010/04/the-
http://www.magnetforensics.com/forensic-analysis-of-

