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Abstract—The existence and construction of bent functions are two of the most widely studied problems in Boolean functions.
For monomial functions f(x) = Trn

1 (axs), these problems were examined extensively and it was shown that the bentness of
the monomial functions is complete for n ≤ 20. However, in the binomial function case, i.e. f(x) = Trn

1 (axs1) + Trk
1 (bxs2), this

characterization is not complete and there are still open problems. In this paper, we give a summary of the literature on the bentness
of binomial functions and show that there exist no bent functions of the form Trn

1 (axr(2m−1)) + Trm
1 (bxs(2m+1)) where n = 2m,

gcd(r, 2m + 1) = 1, gcd(s, 2m − 1) = 1. Also, we give a bent function example of the form fa,b(x) = Trn
1 (ax2m−1) + Tr2

1(bx
2n−1

3 )

for n = 4, although, it is stated in [9] that there is no such bent function of this form for any value of a and b.
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1. Introduction

The class of bent functions is a special set of
functions that achieve the highest possible non-
linearity among Boolean functions. Such functions
are of great importance for cryptography and coding
theory. Therefore, the existence of bent functions
is a widely studied problem. When considering the
polynomial form, monomial bent functions, which
are of the form Trn

1 (axs) are studied by [1], [3],
[4], [7] and all monomial bent functions are known
if n ≤ 20. After reaching such a point, community
started to pay attention on binomial bent functions
of the form Trn

1 (axs1)+Trk
1(bx

s2). These functions
are examined in [6], [8], [9], [10], [15], [16] and the
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existence conditions of bent functions are given for
some values of the parameters n, k, s1 and s2. How-
ever, the characterization of binomial bent functions
is not complete and open problems remain.

In this paper, we give a brief summary of current
studies on binomial bent functions. Moreover, we
give existence and non-existence results for some
specific forms of bent function families.

The paper is organized as follows: Section II is
devoted to the notation used in the rest of the paper
and necessary knowledge. In the third section, in
order to give the historical background, we mention
the known results on monomial bent functions.
Next, in Section IV, we investigate the bentness of
binomial functions, give some examples and results
on specific values of k, t and m for the functions
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fa,b(x) = Trn
1 (ax2m−1) + Trk

1(bx
2n−1

t ).

2. Notation and Preliminaries

2.1. Boolean Functions and Polynomial Forms

Let f : F2n → F2 be a Boolean function in n

variables. The truth table of f is defined as the
vector (f(x0), f(x1), . . . , f(x2n−1)). The number of
non-zero coordinates in the truth table is called the
Hamming weight wt(f) of f , or weight in short.
Equivalently, one can define weight as

wt(f) =
∑

x∈F2n

f(x).

Any Boolean function f can be uniquely repre-
sented in a polynomial form as

f(x) =
∑
r∈R

Tr
o(r)
1 (arx

r) + ε(1 + x2n−1

),

∀x ∈ F2n , ar ∈ F2o(r) where Trn
1 (x) =

∑n−1
i=0 x2i ,

the trace function from F2n to F2, is the sum of the
conjugates of x ∈ F2n , R is the set of cyclotomic
coset leaders r, o(r) is the size of the coset that
contains r and ε is the modulo 2 value of wt(f).

Note that bent functions defined on F2n exist only
for even values of n. Moreover, it is well known that
their Hamming weights are even. Therefore, ε = 0

and their polynomial form is

f(x) =
∑
r∈R

Tr
o(r)
1 (arx

r) ∀x ∈ F2n .

2.2. Bent Functions

The Walsh-Hadamard transform of f is the dis-
crete Fourier transform of (−1)f . It is defined for
the value ω ∈ F2n as follows:

Wf (ω) =
∑

x∈F2n

(−1)f(x)+Trn
1 (ωx).

Definition 1: A Boolean function f : F2n → F2

is said to be bent if Wf (ω) = ±2
n
2 for all ω ∈ F2n .

The classical binary Kloosterman sums on F2m

are defined as follows:

Definition 2: Let a ∈ F2m . The binary Klooster-
man sum associated with a is

Km(a) =
∑

x∈F2m

(−1)Trm
1 (ax+ 1

x).

Proposition 1: [12] Let m be a positive inte-
ger. The set {Km(a), a ∈ F2m} is the set of
all the integers multiple of 4 in the range[
−2

m+2
2 + 1, 2

m+2
2 + 1

]
.

3. Monomial Bent Functions

Let f : F2n → F2 be a Boolean function such
that f(x) = Trn

1 (axs) for a given positive integer s

and for some a ∈ F2n . Functions of this form are
called monomial functions. The exponent s is said
to be a bent exponent if there exists a ∈ F∗2n such
that Trn

1 (axs) is bent. In order f to be bent, the
following two conditions should be satisfied [3]:

• gcd(s, 2n − 1) 6= 1.
• either gcd(s, 2n/2 + 1) = 1 or gcd(s, 2n/2 − 1) = 1.

All known bent exponents s for power functions,
with o(s) = n, are given in Table 1.

TABLE 1
All known bent exponents, s, o(s) = n

s Condition Reference
2i + 1 n

gcd(n,i)
even, 1 ≤ i ≤ n

2
[13]

r · (2n/2 − 1) gcd(r, 2n/2 + 1) = 1 [1], [3], [7], [12]
22i − 2i + 1 gcd(n, i) = 1 [14]
(2n/4 + 1)2 n = 4r, r odd [3], [5]

2n/3 + 2n/6 + 1 n = 0 mod 6 [4]

Also, Canteaut et al. [4] showed by computer
experiments that there is no other exponent s for
n ≤ 20.
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Moreover, for the exponents s where o(s) < n,
Mesnager [11], based on an exhaustive search up
to n ≤ 14, claimed that the only bent Boolean
functions are of the form Tr

n/2
1 (ax2n/2+1) for some

a ∈ F2n .

A specific form of monomial functions, f (r)
a ,

namely monomial Dillon functions, can be repre-
sented as

f (r)
a (x) = Trn

1 (axr(2m−1)),

∀x ∈ F2n , a ∈ F∗2n , n = 2m. Bentness of these
functions has been first studied by Dillon [1] for
the case r = 1. Then, Leander [3] next Charpin
and Gong [7] investigated the bentness of monomial
Dillon functions in the case gcd(r, 2m + 1) = 1.
The following theorem shows the relation between
the bentness of monomial Dillon functions and
Kloosterman sums.

Theorem 1: [1], [7] Suppose that a ∈ F∗2m .
The function f (r)

a defined on F2n by f (r)
a (x) =

Trn
1 (axr(2m−1)) where gcd(r, 2m + 1) = 1 is bent

if and only if the Kloosterman sum on F2m denoted
by Km satisfies Km(a) = 0.

In this paper, we focus on the bent functions with
Dillon exponents.

4. Binomial Bent Functions

Monomial bent functions have been intensively
investigated over the years and all the bent ex-
ponents have been identified for n ≤ 20. As the
search heavily relies on computer experiments, it is
very hard to find a new exponent s for n > 20
so that Trn

1 (axs) does not belong to any of the
previous constructions. Therefore, the community
started to search bent functions with multiple trace
terms where the first step, naturally, is binomial
functions. The first studies in finding binomial bent
functions were performed by Dobbertin et al. [2]
where they showed that Trn

1 (a1x
s1 + a2x

s2) is bent
with s1 and s2 being Niho exponents. Note that, a

positive integer s (always understood modulo 2n−1)
is said to be a Niho exponent, and xs is Niho power
function, if the restriction of xs to F2m is linear or in
other words s ≡ 2j(mod 2m − 1) for some j < n.
The following are bent Niho exponents given by
Dobbertin et al. [2]. The fractions are interpreted
modulo 2m + 1, for instance 1

2
= 2m−1 + 1.

• s1 = (2m − 1) 1
2 + 1 and s2 = (2m − 1)3 + 1;

• s1 = (2m − 1) 1
2 + 1 and s2 = (2m − 1) 1

4 + 1 (m odd);
• s1 = (2m − 1) 1

2 + 1 and s2 = (2m − 1) 1
6 + 1 (m even);

Then, in [6], [8], [9], Mesnager investigated the
functions Trn

1 (axr(2m−1)) + Tr2
1(bx

2n−1
3 ) and gave

the conditions on a ∈ F∗2m and b ∈ F∗22 for
bentness. Following Mesnager’s approach, Wang
et al. [15] considered the functions of the form
fa,b(x) = Trn

1 (axr(2m−1)) + Tr4
1(bx

2n−1
5 ) where

n = 2m, m ≡ 2 (mod 4), a ∈ F2m and b ∈ F24 .

In this section, we investigate bentness of
fa,b(x) = Trn

1 (ax2m−1)+Trk
1(bx

2n−1
t ) when t|2m+1

and when t|2m − 1. We cover the previous work
of Mesnager [9] and Wang et al. [10], [15], give
some examples for both cases and state a result
on the existence of bent functions of the form
fa,b(x) = Trn

1 (ax(2m−1)) + Tr2
1(bx

2n−1
3 ) for n = 4.

4.1. Trn
1 (ax(2m−1)) + Trk

1(bx
2n−1

t ), where
o(2n−1

t
) = k and t|2m + 1

Mesnager [9] showed that the bentness of

fa,b(x) = Trn
1 (ax(2m−1)) + Tr2

1(bx
2n−1

3 )

a ∈ F∗2n , b ∈ F∗4, n = 2m, can be characterized
via Kloosterman sums for m > 3, m odd. If
Km(a) = 4, then fa,1,fa,β and fa,β2 are bent while
if Km(a) 6= 4 then fa,1,fa,β and fa,β2 are not bent.
Wang et al. [10] followed similar approach given in
[9] and showed that

ga,b(x) = Trn
1 (ax(2m−1)) + Tr4

1(bx
2n−1

5 )
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is bent for some values of a and b, where a ∈
F2n , b ∈ F24 , n = 2m and m ≡ 2 mod 4. The
following function can be given as an example of a
bent function of this form:

Tr12
1 (x63) + Tr4

1(βx819)

where β = α273 is a root of the primitive polynomial
x4+x+1 and α is a root of the primitive polynomial
x12 + x6 + x4 + x + 1.

Both these approaches are quite similar and de-
pend on the fact that 3 or 5 do not only divide 2n−1

but also 2m +1. Mesnager [16] proved this idea for
general case

ha,b(x) =
∑
r∈R

Trn
1 (arx

r(2m−1)) + Trk
1(bx

s(2m−1))

where n = 2m is an even integer, R is a subset
of representatives of the cyclotomic classes modulo
(2m + 1), ar ∈ F∗2m , b ∈ F2k and s = 2m+1

t
. Note,

o(s(2m − 1)) = k, i.e. the size of the cyclotomic
coset of s modulo (2m + 1) is k. The proof for the
general case depends on Dickson polynomials.

4.2. Trn
1 (ax(2m−1)) + Trk

1(bx
2n−1

t ), where
o(2n−1

t
) = k and t|2m − 1

In [9], Mesnager studied the functions of the form

fa,b(x) = Trn
1 (ax(2m−1)) + Tr2

1(bx
2n−1

3 )

and found some results when m is odd. Because of
the fact that 3 divides 2m − 1 when m is even, this
case seems much harder than the case for m odd.
Therefore, the bentness of fa,b for even values of m

has not been characterized yet. On the other hand,
it is claimed in [9] by conducting exhaustive search
that for n = 8, 12, there exist bent Boolean functions
of the form fa,b(x) = Trn

1 (ax(2m−1))+Tr2
1(bx

2n−1
3 ),

but there is no bent function of this form for n = 4.
However, our computer experiments resulted in the
existence of a bent function for n = 4 and it is
shown in Remark 1.

TABLE 2

x Tr4
1(x3) Tr2

1(x5) f(x) Wf (x)

0 0 0 0 4
1 0 0 0 -4
α 1 1 0 4

α + 1 = α4 1 1 0 -4
α2 1 1 0 4

α2 + 1 = α8 1 1 0 -4
α2 + α = α5 0 1 1 -4

α2 + α + 1 = α10 0 1 1 4
α3 1 0 1 4

α3 + 1 = α14 1 1 0 4
α3 + α = α9 1 0 1 4

α3 + α + 1 = α7 1 1 0 4
α3 + α2 = α6 1 0 1 4

α3 + α2 + 1 = α13 1 1 0 4
α3 + α2 + α = α11 1 1 0 -4

α3 + α2 + α + 1 = α12 1 0 1 -4

Remark 1: fa,b(x) = Tr4
1(ax3)+Tr2

1(bx
5) is bent

for a = 1 and b = 1 where F24 = F2(α) and α is
a root of the primitive polynomial x4 + x + 1 over
F24 .

Algebraic normal form of f(x) is

f(x) = Tr4
1(x

3) + Tr2
1(x

5) = x1 + x2x3 + x1x4

where x = (x1, x2, x3, x4). The truth table and
Walsh spectrum of f(x) can be seen from Table
2.

The following functions are numerical examples
for fa,b when 3 divides 2m − 1 :

• For n = 8, m = 4, k = 2 and t = 3

Tr8
1(α

51x15) + Tr2
1(x

85)

where α is a root of the primitive polynomial
x8 + x4 + x3 + x2 + 1.

• For n = 12, m = 6, k = 2 and t = 3

Tr12
1 (α195x63) + Tr2

1(x
1365)

where α is a root of the primitive polynomial
x12 + x6 + x4 + x + 1 .

Consider the case t = 2m − 1. Then,

fa,b(x) = Trn
1 (ax2m−1) + Trm

1 (bx2m+1).
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It is known that if fa,b(x) is bent, then Wf (w) =

±2m, ∀w.
Before looking at the Walsh-Hadamard transform, it
is worth to note two well-known facts one of which
is about the Kloosterman sums.

Proposition 2: [1]∑
u∈U

(−1)Trn
1 (au) = 1−Km(a),

where U is the cyclic group of order 2m + 1 and
a ∈ F∗2m .

Proposition 3: Any x ∈ F∗2n can be written as
x = uy with y ∈ F∗2m and u ∈ U where U is the
cyclic group of order 2m + 1.

Computation of the Walsh-Hadamard transform
for w = 0 shows

Wf (0) =
∑

x∈F2n (−1)Trn
1 (ax2m−1)+Trm

1 (bx2m+1)

= 1 +
∑
u∈U

∑
y∈F∗

2m

(−1)Trn
1 (a(uy)2

m−1)+Trm
1 (b(uy)2

m+1)

= 1 +
∑
u∈U

(−1)Trn
1 (au2m−1) ∑

y∈F∗
2m

(−1)Trm
1 (by2)

= 1 +
∑
u∈U

(−1)Trn
1 (au)

∑
y∈F∗

2m

(−1)Trm
1 (by)

= 1 + (1−Km(a))(−1)

= Km(a)

In order for fa,b(x) to be bent, Wf (0) = Km(a) =

±2m. However, by Proposition 1, we know that
Km(a) is in the interval [−2

m+2
2 + 1, 2

m+2
2 + 1]

∀a ∈ F∗2m . One can easily show that, for any value
of m > 2, ±2m is out of Kloosterman sums bounds.
To illustrate, the boundaries for Km(a) and the
Walsh spectrum values are given in Table 3 for
distinct values of m. This observation is stated in
Proposition 4.

Proposition 4: Boolean functions of the form

fa,b(x) = Trn
1 (axr(2m−1)) + Trm

1 (bxs(2m+1))

TABLE 3

m Km(a) Wf (0)

2 [-3, 5] ±4

3 [-4.65, 6.65] ±8

4 [-7, 9] ±16

5 [-10.31, 12.31] ±32

6 [-15, 17] ±64

where gcd(r, 2m + 1) = 1, gcd(s, 2m − 1) = 1 are
not bent for any a, b ∈ F∗2m .

5. Conclusion

The classification and characterization of bent
functions in polynomial forms is a hard problem.
Despite the existence of notably many specified bent
functions, there are still open problems and unclas-
sified bent functions. In this note, we studied previ-
ous characterization of some binomial functions of
the form f(a,b)(x) = Trn

1 (ax(2m−1)) + Trk
1(bx

2n−1
t )

where t divides either 2m + 1 or 2m − 1. Mesnager
[9] investigated the former case and presented some
conditions on bentness of this function family. The
latter case has not been characterized yet. In this
study, we showed for specific values of t, where
t = 2m−1, that there is no bent function of the form
Trn

1 (ax(2m−1)) + Trm
1 (bx2m+1). As a future work,

it is planned to study the characterization of f(a,b)

in the case t divides 2m − 1 which still has open
problems.
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