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Abstract- We present an efficient analysis for evaluation of critical busbars in electric power systems by judging the performance 

of various backpropagation schemes of Elman Neural Network. The objective of this study is to find the most efficient scheme 

that yields fastest convergence under supervised learning. The study is conducted on the standard IEEE 30-bus test system 

supplemented by renewable source of generation. Out of six backpropagation schemes tried in this work, it is observed that 

gradient descent backpropagation with momentum and adaptive learning rate performs exceedingly well by showing guaranteed 

convergence, which is relatively 1000 times faster than the conventional approach. It is also claimed that this study would be 

very helpful to the power system utilities and researchers in reducing the burden on the utility in terms of complexity and 

computational time requirements of conventional approach. 

Keywords Voltage stability, critical busbars, neural network, backpropagation. 

 

1. Introduction 

Voltage instability, which often leads to ultimate collapse 

in electric power systems, poses several concerns for the 

power utilities [1-3]. The literature indicates that load buses 

having higher L-index are treated as critical ones for such 

studies [4]. Most of the earlier studies for identification of 

critical bus bars in a system are based on conventional 

approach. Such studies primarily depend on load flow 

simulation over a specific time period of observation and are 

subject to several limitations such as; complexity in modeling, 

unavailability of real time database, simulation of 

contingencies and more so. Hence, most of the present day 

research is inclined towards application of soft computing 

tools in power system analysis [5-11]. Neural network 

application for solving complex power system problems has 

become very popular among the researchers due to following 

reasons.  

(i) It works as a black-box between the input space and 

target (output) space having lots of flexibility in 

functional mapping, which reduces the burden of strict 

mathematical formulation of complex systems. 

(ii) It is capable of establishing faster correlations as 

compared to conventional methods for the sake of fitting 

a given function, pattern recognition, and data clustering 

through result classification.  

These facts drive the authors of this paper to implement 

neural network tools for identification of critical busbars in 

electric power systems with renewable sources, through a 

comparative study and performance analysis. This paper 

explorers some of the practical limitations encountered by 

small hydro power (SHP) generating units and at the same 
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time evaluates various possibilities so as to maintain 

continuous generation by these units while ensuring smooth 

evacuation of every unit of real power generated by such units 

to the neighboring grid in a grid connected power system 

scenario. In order to emphasize the merits of the proposed 

work, the proposed simulation has been tested under some 

worst system conditions considering the standard IEEE 30-bus 

test system by way of connecting the SHP unit to the most 

critical system bus of the test system through on-load tap 

changing transformer (OLTC) control of generator 

transformers at the local bus. The basic objective of this study 

is to evolve an optimal neural network structure and learning 

criteria that would result in faster convergence under variety 

of operating conditions. In the present context, the authors 

have successfully exploited the above mentioned attributes of 

neural networks by imparting thorough training till 

convergence is attained. The result of training convergence 

validates that a properly trained Elman neural network along 

with a suitable backpropagation learning rule can provide 

faster information on critical busbars in a voltage stability 

constrained power system.  

In order to arrive at the stated goal, the authors have 

formulated an extensive database of occurrences happening in 

power system operation. This database is quite useful for 

preparation of input data and target data for the sake of 

imparting thorough training to the proposed neural network 

through backpropagation and supervisory learning 

mechanism. The authors have also presented a comparative 

performance analysis considering six forms of 

backpropagation schemes for this purpose, as indicated below. 

(i) GD: Gradient Descent backpropagation,  

(ii) GDM: Gradient Descent backpropagation with 

           Momentum,  

(iii) GDA: Gradient Descent backpropagation with  

           Adaptive learning rate,  

(iv) GDX: Gradient Descent backpropagation with 

           Momentum and Adaptive learning rate, 

(v) CGF: Conjugate Gradient backpropagation with  

           Fletcher-Reeves update, and  

(vi) SCG: Scaled Conjugate Gradient backpropagation.  

It is claimed in this work that application of an 

appropriate neural network is a better option as compared to 

conventional approaches, which significantly reduces the 

burden of repeat load flow execution for monitoring the 

critical busbars.  

Section 2 of the paper contains the background of neural 

network structure with justification for its application to this 

study. In this section, multiple layers for the Elman neural 

network have been used for drawing a comparative 

performance analysis. In section 3, six types of 

backpropagation algorithms have been described for 

implementation in the neural network training. Section 4 

highlights the methodology behind problem formation for 

conducting the proposed analysis. In Section 5, a detailed case 

study on the standard IEEE 30-bus test system is presented 

along with result analysis. The simulation results justify that 

the proposed algorithm works well in all situations with a 

minimum error in meeting the target during training 

convergence. The analysis shows that the Elman neural 

network supported with gradient descent backpropagation 

with momentum and adaptive learning rate performs 

convincingly well as compared to its counterparts in terms of 

iteration requirements and speed of convergence. 

2. Historical Elman Neural Network 

  The literature shows that neural networks are capable 

enough in solving complex problems with ease and fastness 

[12-14]. It is also widely accepted in the power system area 

dealing with operation and control [15]. So many other 

researchers have also pioneered their quest for tracing further 

applications of neural networks in power systems [16-23].  

However, the authors strongly feel that there might be plenty 

of further scopes to be explored in monitoring critical busbars 

in electric power transmission networks by applying various 

neural network schemes such as, feed forward 

backpropagation training rules, layer recurrent architecture, 

radial basis function, and historical Elman neural network 

techniques. In this paper, the historical Elman neural network 

architecture is considered. A generalized structure of the 

Elman neural network (with possible combinations of hidden 

layers) is presented in Fig.1.  

 

 
(i) Elman neural network with a single hidden layer 

 

 
(ii) Elman neural network with two hidden layers 

 

Fig. 1. Structure of historical Elman neural network 

 

 The transfer functions for each hidden layer may differ 

from one another. In this paper, the authors have made use of 

three common types of transfer functions such as linear 

(purelin), tan-sigmoid (tansig), and log-sigmoid (logsig) as 

represented in Fig.2.  

 

 
Fig. 2. Various transfer functions for Elman neural network 

 

 The simplified model is also shown in Fig.3 that 

illustrates the procedure adopted for adjustment of the weights 

(w) in the process of transformation of the input (p) into a 

corresponding output (a) with or without biasing (b). The 
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mathematical expression of the model is presented in Eq. (1) 

and (2).   

𝑎 = 𝑓(𝑤𝑝)     (1)   

𝑎 = 𝑓(𝑤𝑝 + 𝑏)     (2)   

 

 
(i) Simple neuron model representation with weights only 

 

 
(ii) Simple neuron model with weights and bias 

 

Fig. 3. Neural Network input, output and transfer function 

 

  The Elman neural network makes use of feedback from 

the output of each hidden layer to the input of the 

corresponding layer that helps in detection and generation of 

time varying patterns. That is why the hidden layers are also 

treated as recurrent layers. The major difference between the 

proposed Elman network and the other types of static and 

dynamic neural networks (feed forward networks with 

backpropagation and layer recurrent networks) lies with the 

fact that Elman networks have the flexibility of assigning 

enough neurons in the hidden layers depending on the 

complexity of the problem. The Elman network also makes 

use of standard backpropagation techniques in order to resort 

to minimal error sequence during training. 

3. Backpropagation Schemes for Elman Neural Network 

 This section presents six important types of 

backpropagation schemes, which have been considered in this 

work for drawing up the comparative analysis on training 

performance.  

3.1 Gradient Descent (GD) 

 In this method of training the weights are adjusted 

considering the negative gradient of the path of the 

performance function. The gradient function is calculated 

from the derivative of the transfer function of the neurons in 

that layer. The mathematical expression for this operation is 

depicted in Eq. (3). 

𝑍𝑘+1 = 𝑍𝑘 − 𝛼𝑘𝑔𝑘    (3)  

 In this expression, Zk+1 refers to the recent weight and bias 

vector corresponding to the earlier values of the vector Zk, 

gradient gk, and the learning rate αk. 

3.2 Gradient Descent Momentum  (GDM) 

 In this scheme an additional momentum function in the 

range of {0, 1} is added to the gradient descent training 

function discussed earlier. In this way the neural network 

enhances its capability to ignore minor changes in the gradient 

over the error surface and hence the training process becomes 

faster. 

3.3 Gradient Descent with Adaptive Learning Rate (GDA) 

 This method is similar to the earlier method of gradient 

descent with momentum but has an additional feature of 

adaptive learning rate instead of a constant one. The adaptive 

learning rate enables the network to adapt to changes in the 

error surface during the training process by continuously 

monitoring the errors calculated during each epoch. While the 

recently calculated error exceeds the previous error by a 

specific pre-defined margin, repeat calculation of weights and 

bias is performed with a lower learning rate so as to maintain 

the stability.   

3.4 Gradient Descent with Momentum and Adaptive 

Learning Rate (GDX)  

 This method is a combination of gradient descent with 

momentum and adaptive learning as well. This method is 

applicable to networks having derivative functions in its 

parameters such as weights, inputs, and transfer functions. The 

backpropagation scheme calculates the derivatives of 

performance function with respect to the weight and bias 

variables in order to adjust each variable according to gradient 

descent with momentum. In case of decreasing performance, 

the learning rate is increased by a given factor, else the 

learning rate is held constant.  

3.5  Conjugate Gradient with Fletcher-Reeves Update  (CGF) 

 In Fletcher-Reeves method, the technique of updating the 

weights and bias parameters is used as per the expressions 

shown in the Equations (4) through (6). 

𝑍𝑘+1 = 𝑍𝑘 + 𝛼𝑘𝑝𝑘    (4)  

𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1    (5)  

𝛽𝑘 =
𝑔𝑘
𝑇𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

               (6) 

 Here, Zk+1 refers to the recent weight and bias vector 

corresponding to the earlier values of the vector Zk, gradient 

gk, and the learning rate αk. The updated gradient may be 

calculated as per Equation (5) taking the current gradient gk, a 

constant term βk and the earlier gradient pk-1. The procedure 

for calculation of βk is given in Equation (6). This scheme 

adjusts the step size of the updates in every iteration by 

conducting a search along the conjugate gradient direction that 

helps in minimizing the performance function along that 

direction.  

3.6 Scaled Conjugate Gradient (SCG)  

 It is often observed that conjugate gradient 

backpropagation scheme based on line search technique could 

be computationally expensive. In order to overcome this 

drawback the scaling of the gradient calculation may be 

helpful. In the scaled conjugate gradient method the scaling 

mechanism is incorporated by combining the model-trust 

region approach [24]. 
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 The performance study of an neural network to deal with 

random inputs requires a thorough analysis of output input 

correspondence (OIC), error surface (ES), training 

performance (TRP), training states (TRS), and receiver 

operating characteristic (ROC). While ‘OIC’ signifies the 

response of the output with respect to the inputs presented to 

the network, ‘ES’ refers to the error surface during training. 

The ‘OIC’ also justifies whether the proposed neural network 

is capable of producing valid outputs for all the inputs 

presented to it. On the other hand, the error surface displays, 

either the sum squared error during training convergence as a 

function of the weights and bias values in a three dimensional 

plane, or the error contour plot against the weights and bias 

values in a two dimensional plot, or both as well. The 

depression of the ‘ES’ shows the minimum error point that 

clearly indicates the suitable weights and bias values at that 

point.  

 Furthermore, ‘TRP’ and ‘TRS’ respectively highlight the 

path followed during each iteration (epoch) of training process 

and the error gradient along with the learning rate in the 

process of convergence subject to the limiting condition 

prevailing during training.  

 The ‘ROC’ quantifies the performance of the neural 

network by judging its ability to classify the outputs into 

specific categories in responce to the randomly presented 

input datasets. This plots makes use of threshold values, in the 

range of zero and unity to be applied on the output values, for 

computation and demonstration of variations in the false 

positive (FP) rate and true positive (TP) rate, as a function of 

the threshold. The expressions used for the computation of 

false positive rate (FPR) and true positive rate (TPR) are 

presented in Equations (7) and (8) respectively.  

𝐹𝑃𝑅 = (𝑁𝑂𝐿𝑇𝑇 𝑁𝑇0⁄ )                (7) 

𝑇𝑃𝑅 = (𝑁𝑂𝐺𝐸𝑇 𝑁𝑇1⁄ )            (8) 

 Where,      

 NOLTT = Number of output values less than threshold, 

  NOGET = Number of output more than/same as threshold, 

 NT0 = Number of targets with zero value, and 

 NT1 = Number of targets with unity value. 

 In this work, the threshold is varied in the range {0, 1} 

with relatively slow variation (i.e. step interval of 0.1) that 

enables generation of more points in the FP-TP plane. If the 

‘ROC’ curve stretches or stays inclined towards the upper-left 

corner in the corresponding FP-TP plotting frame, it implies 

perfect raining for the neural network. 

4. Problem Formulation 

 In order to ensure reliable operation and smooth 

evacuation of power  in case of grid connected SHPs, the 

major focus of study in this paper includes identification of 

following aspects.  

 Firstly, the standard IEEE-30 bus system as shown in 

Fig.4 is considered as the parent system representing the grid 

and the critical buses are identified prior to the connection of 

the SHP. This analysis is based on application of the Elman 

neural network. The training for the neural network is 

performed through six models of backpropagation schemes. 

Then, the training performance of these six schemes are 

compared with each other in terms of (i) number of training 

cycle requirement and (ii) time consumtion for successful 

convergence of training, in order to identify the best training 

condition.  

 
Fig. 4. IEEE 30-bus system with Grid connected SHP unit 

 

 In the next assessment, the SHP unit is subsequently 

connected at one of the buses of the parent system (called the 

pulling bus, i.e. bus-30), in order to study the possibility of any 

change occurring in the location of the critical bus during 

power evacuation by the SHP to the grid.    

 In actual geographic conditions, the SHP units are 

situated at remote locations that may be far off from the grid 

structure.  In order to connect them to the grid, often a 

secondary feeder may be essential. This feeder acts as the link 

or interconnection between the SHP and a specific bus point 

of the grid usually denoted as the evacuation point.  As long 

as the evacuation point remains strong and stable, the 

evacuation is made safely. However, the real problem mounts 

if the evacuation point happens to be a weak bus in the system.  

 It is of paramount importance to meet this challenge and 

ensure smooth evacuation at all times, which triggered the 

authors for conducting a study to identify the weakest bus in 

the system. The evacuation of power is done at the receiving 

bus, which is represented by bus-31 in Fig.4. However, it may 

be more accurate to mention at this stage that the SHP units 

may fail to support smooth power evacuation to the grid under 

some critical system conditions. Hence, the simulation 

requires a wide range of operating conditions (also known as 

situations or events) so as to generate an exhaustive input 

dataset for imparting successful training to the proposed 

neural network.   

The simulation parameters considered in this paper for 

formation of the input dataset are illustrated in Table 1, which 

include initial voltage criteria, loading factor, and reactive 

power limit on the PV buses. In view of these parameters, the 

authors have considered a total of forty four situations for 

formation of the input dataset.  
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 The next part of this work is focused at formulation of 

training sequences based on selection of neural network 

parameters (i.e. number of hidden layers and number of 

neurons in these layers) and the backpropagation schemes. In 

view of this a total of thirty six training sequences are formed 

(this includes nine sequences for networks with single hidden 

layer and twenty seven sequences for networks with two 

hidden layers) and specific training code (TC) is assigned for 

each of them, as shown in Table 2.  

 The input dataset matrix in the present case is of 

dimension [44×60]. Each row of the input matrix contains 

sixty elements comprising of thirty voltage magnitudes 

followed by thirty L-indices. The voltage magnitude and L-

index are obtained by performing Newton-Raphson load flow 

solution of the IEEE 30-bus test system. On the other hand, 

each column of the input matrix contains forty four elements 

comprising the results for gradual loading conditions.  

 In this paper, the supervised learning rule has been 

followed to train the Elman neural network. The sequences of 

events that occur during each epoch of training cycle of an 

Elman neural network are as follows. 

 In the beginning, the entire input dataset is presented to 

the network. 

 Then, outputs are calculated and compared with the target 

to generate an error sequence.  

 Next, the error is propagated backwards to find the error 

gradient for each weight and bias.  

 This gradient is then used to update the weights for the 

next epoch.  

The above data are further grouped into four different 

situations depending on initial voltage, loading scenario, and 

contingency criteria. In order to simulate the load growth in 

the system, the complex load of each bus has been increased 

progressively beyond base load in the system with the help of 

a loading parameter (λ) that gives the loading pattern 

‘S=(1+λ)(Sbase)’. 

 Also, it is often desirable that the input dataset be divided 

into three components, viz; training data (TrD), validation 

data (VaD), and test data (TeD) for better training 

performance. In this paper, the percentage ratio of input data 

division into these three categories is clearly illustrated in 

Fig.5 (i.e. TrD : VaD : TeD = 60 : 20 : 20). 

 The simulation of the proposed methodology is 

implemented on the basis of the flow chart of Fig.6. This flow 

chart demonstrates the steps and conditions followed in this 

work. 

 
Fig. 5. Data division into Train, Validate, and Test data 

 

 
 

Fig. 6. Flow Chart for Neural Network Training 

 

Table 1. Guidelines for formation of input dataset based on situation considered  

 

Situation Nomenclature 

(SN) 

Initial Voltage Criteria Loading Factor (λ) 

for S=(1+λ)(Sbase) 

Qlim restriction  

on the PV buses 

SN-1 to SN-11 
Non uniform 

Specified Voltage 
λ=0 to 1, step of 0.1 No 

SN-12 to SN-22 
Non uniform 

Specified Voltage 
λ=0 to 1, step of 0.1 Yes 

SN-23 to SN-33 
Uniform voltage  

of flat 1p.u. 
λ=0 to 1, step of 0.1 No 

SN-34 to SN-44 
Uniform voltage  

of flat 1p.u. 
λ=0 to 1, step of 0.1 Yes 

 

 

 

 

Table 2. Training code assignment based on transfer function allocation in the layers  
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Number of  

Hidden 

Layers  

(HL) 

Transfer Function 

of first HL  

(F1) 

Transfer 

Function of 

second HL  

(F2) 

Transfer 

Function of 

output layer  

(F0) 

Training 

Code  

(TC) 

1 Purely linear --- Purely linear 11 

1 Purely linear --- Tan-sigmoid 12 

1 Purely linear --- Log-sigmoid 13 

1 Tan-sigmoid --- Purely linear 21 

1 Tan-sigmoid --- Tan-sigmoid 22 

1 Tan-sigmoid --- Log-sigmoid 23 

1 Log-sigmoid --- Purely linear 31 

1 Log-sigmoid --- Tan-sigmoid 32 

1 Log-sigmoid --- Log-sigmoid 33 

2 Purely linear Purely linear Purely linear 111 

2 Purely linear Purely linear Tan-sigmoid 112 

2 Purely linear Purely linear Log-sigmoid 113 

2 Purely linear Tan-sigmoid Purely linear 121 

2 Purely linear Tan-sigmoid Tan-sigmoid 122 

2 Purely linear Tan-sigmoid Log-sigmoid 123 

2 Purely linear Log-sigmoid Purely linear 131 

2 Purely linear Log-sigmoid Tan-sigmoid 132 

2 Purely linear Log-sigmoid Log-sigmoid 133 

2 Tan-sigmoid Purely linear Purely linear 211 

2 Tan-sigmoid Purely linear Tan-sigmoid 212 

2 Tan-sigmoid Purely linear Log-sigmoid 213 

2 Tan-sigmoid Tan-sigmoid Purely linear 221 

2 Tan-sigmoid Tan-sigmoid Tan-sigmoid 222 

2 Tan-sigmoid Tan-sigmoid Log-sigmoid 223 

2 Tan-sigmoid Log-sigmoid Purely linear 231 

2 Tan-sigmoid Log-sigmoid Tan-sigmoid 232 

2 Tan-sigmoid Log-sigmoid Log-sigmoid 233 

2 Log-sigmoid Purely linear Purely linear 311 

2 Log-sigmoid Purely linear Tan-sigmoid 312 

2 Log-sigmoid Purely linear Log-sigmoid 313 

2 Log-sigmoid Tan-sigmoid Purely linear 321 

2 Log-sigmoid Tan-sigmoid Tan-sigmoid 322 

2 Log-sigmoid Tan-sigmoid Log-sigmoid 323 

2 Log-sigmoid Log-sigmoid Purely linear 331 

2 Log-sigmoid Log-sigmoid Tan-sigmoid 332 

2 Log-sigmoid Log-sigmoid Log-sigmoid 333 

 

 

 

Table 3. Preliminary guiding results for training convergence 

 

Parameters Assigned for the Neural Network Training Results for Convergence 

Training 

Code (TC) 

Epochs per 

training cycle 

Hidden 

Layers 

Neurons per 

Hidden Layer 

Training Cycles 

undertaken 

Time taken for 

convergence (s) 

11 1000 1 5 Did not converge in 200 cycles 

11 100 1 5 35 99 

11 10 1 5 15 8 

111 1000 2 3 67 2206 

111 100 2 3 38 133 

111 10 2 3 20 13 

 

 

 

 

 

Table 4. Final training results showing full/partial convergence in respective groups 
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Network 

Parameters# 

 
#(TC: Training 

Code, HL: Hidden 

Layers, NL: 

Neurons/ Layer) 

Convergence Results* for Various Backpropagation Schemes$ 
$(GD: Gradient Descent, GDM: Gradient Descent with Momentum, GDA: 

Gradient Descent with Adaptive learning, GDX: Gradient Descent with 

Momentum and Adaptive learning, CGF: Conjugate Gradient with Fletcher-

Reeves update, SCG: Scaled Conjugate Gradient) 
*(CY: Training Cycles Performed for convergence, TI: Time for convergence in 

seconds, NC: No Convergence in as much as 200 training cycles) 

TC# HL# NL# 
GD$ GDM$ GDA$ GDX$ CGF$ SCG$ 

CY* TI* CY* TI* CY* TI* CY* TI* CY* TI* CY* TI* 

11 1 4 31 19 31 18 3 2 3 2 52 68 4 5 

12 1 5 1 1 1 1 1 1 1 1 14 10 2 2 

13 1 5 1 1 1 1 1 1 1 1 14 7 2 2 

21 1 5 4 3 4 3 4 3 4 3 NC -- NC -- 

31 1 5 21 15 21 15 21 15 21 15 NC -- NC -- 

111 2 4 1 1 1 1 1 1 1 1 97 135 89 99 

112 2 5 2 2 2 2 2 2 2 2 72 43 2 2 

113 2 5 2 2 2 2 2 2 2 2 72 52 2 2 

121 2 3 1 1 1 1 1 1 1 1 NC -- NC -- 

131 2 3 1 1 1 1 1 1 1 1 NC -- NC -- 

211 2 2 54 39 54 39 3 2 3 2 143 236 123 197 

212 2 4 1 1 1 1 1 1 1 1 1 1 1 1 

213 2 4 1 1 1 1 1 1 1 1 135 92 1 1 

221 2 3 4 4 4 4 4 4 4 3 NC -- NC -- 

231 2 3 4 4 4 4 4 4 4 3 NC -- NC -- 

311 2 2 24 19 54 42 3 2 3 2 NC -- NC -- 

312 2 4 1 1 1 1 1 1 1 1 141 138 23 27 

313 2 4 1 1 1 1 1 1 1 1 11 8 1 1 

321 2 3 4 4 4 4 4 4 4 3 NC -- NC -- 

331 2 3 4 4 4 4 4 4 4 3 NC -- NC -- 

 

5. Result Analysis and Discussion 

 The findings of the proposed work are presented here in a 

lucid way. It is observed from the conventional load flow 

simulation that bus-30 and bus-28 happen to be most critical 

buses of the IEEE 30-bus system alone (i.e. prior to the 

connect ion of the SHP). However, after the SHP is connected 

to bus-30, the location of the critical bus changes to bus-19 

and bus-26. The simulation also indicates that the time elapsed 

in computing the critical bus for both the events (before and 

after connection of SHP) is around 946 seconds, which is 

considerably high. Therefore, the neural network 

methodology is applied to verify whether the computational 

time could be reduced. 

 In this section, we present the simulation results obtained 

from the training performance of the proposed Elman neural 

network. The results are presented, both in Table-3 and Table-

4, in view of various situations of the test system (i.e. SN-1 to 

SN-44 of Table-1), parameters of the neural network (i.e. HL 

and TC values of Table-2; and NL values of Table-4), and six 

different backpropagation schemes (i.e. GD, GDM, GDA, 

GDX, CGF, and SCG schemes of Table-4). The basic 

objective of considering so many situations, parameters and 

backpropagation schemes is to find out the optimum 

combination of these items for obtaining best training 

performance within least computational time.  

 The proposed Elman neural network is trained by 

exposing it with a set of input data reflecting the trend and 

variations in voltage level at the bus bars of a power system 

subject to various practical situations. In order to accomplish 

this, the authors have judiciously selected the input data from 

Newton-Raphson load flow program for various scenarios as 

described in the preceding section. With these considerations, 

the proposed neural network training is performed on the 

IEEE 30-bus test system with grid connected SHP, by 

pursuing the following seven steps. 

 

Step 1: Formation of Input data (p): The sequential input data 

for the Elman neural network is formed with the help of 

guidelines described earlier in this section and Table 1. 

When arranged in matrix form, the input data matrix had 

dimension [44×60].    

Step 2: Formation of Target data (T): In this step, the 

sequential target data for the Elman neural network is 

formed with the help of guidelines described earlier in this 

section. When arranged in matrix form, the input data 

matrix had dimension [44×1]. 

Step 3: Selection of neural network structure (f): In this case, 

the Elman neural network is selected with the provision 

for implementing six types of backpropagation training 

rules as described in section 3. Also, the performance 

analysis is carried out considering various combinations 

of hidden layers, number of neurons in respective layers 

and transfer function assignments as indicated in Table 2 

and Table 4. 

Step 4: Initialization of neural network parameters: In this 

step, the authors made use of following parameter 

selection for imparting training of the neural network. 

 Number of neurons per hidden layer: In the range {1, 5}. 

Epochs per training cycle: 10 or 100 or 1000, 

Error tolerance limit (ε): 0.001. 
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Step 5: Calculation of neural network output (a): In this step, 

the output of the neural network is calculated as per 

Equation 1 or Equation 2. 

Step 6: Calculation of error (e): In this step, the error is 

calculated as the departure of output from the specified 

target (e=T-a). 

Step 7: Check for convergence: If, calculated error happens to 

be at least less than the error tolerance limit (e ≤ ε), then 

the training convergence is fulfilled. This indicates that 

training is performed successfully within a considerable 

number of training cycles. In case, the convergence 

criteria is not met within a desired period of training 

cycles, the training process could be terminated 

prematurely and another fresh training may be performed 

with newer settings of Step 4, till successful training is 

achieved. 

 In this paper, all the above mentioned steps have been 

performed to arrive at the desired goal of imparting successful 

training. It is observed from the trial runs that, out of three 

possible selections against epoch setting at Step 4, an epoch 

setting of 10 yields significantly faster convergence as 

compared to its counterparts of 100 and 1000 epochs per 

training cycle, as indicated in Table 3. 

 The remaining simulation is carried out with the epoch 

setting of 10 and the training performance showing either full 

convergence or partial convergence in respective groups are 

presented in Table 4. The authors have deeply analyzed 

the results presented in Table 4 and from the analysis it is 

inferred that these results demonstrate some of the following 

interesting findings. 

(i) The training performance of five qualifying cases, out of 

nine cases of Table 2 having single hidden layer (HL=1), 

is presented in the upper section of Table 4. In this 

category, full convergence is guaranteed for three cases 

(TC values 11, 12, and 13, corresponding to all the six 

modes of backpropagation) and partial convergence is 

recorded for two cases only (TC values 21, and 31, with 

four modes of backpropagation namely GD, GDM, GDA, 

and GDX). The remaining four cases (TC values 22, 23, 

32, and 33), not figuring in Table 4, did not converge at 

all, for any of the backpropagation schemes, in as much 

as 999 training cycles. 

(ii) The training performance of fifteen qualifying cases, out 

of twenty seven cases of Table 2 having two hidden layers 

(HL=2), is presented in the lower section of Table 4. In 

this category, full convergence is guaranteed for eight 

cases (TC values 111, 112, 113, 211, 212, 213, 312, and 

313, corresponding to all the six modes of 

backpropagation) and partial convergence is recorded for 

seven cases only (TC values 121, 131, 221, 231, 311, 321, 

and 331, with four modes of backpropagation namely 

GD, GDM, GDA, and GDX). The remaining twelve cases 

(TC values 122, 123, 132, 133, 222, 223, 232, 233, 322, 

323, 332, and 333), not figuring in Table 4, did not 

converge at all, for any of the backpropagation schemes, 

in as much as 999 training cycles.  

(iii) The performance results of Table 4 also indicate 

successful training supported with guaranteed and faster 

convergence for the proposed historical Elman neural 

network for both the cases of hidden layer combinations 

(HL=1 and HL=2) having any number of neurons in these 

layers (in the range 1 through 5), subject to fulfillment of 

any/all of the conditions indicated below. 

o The transfer function assigned to the output layer is 

purely linear. 

o The transfer function assigned to the hidden layer 

preceding the output layer is purely linear.  

o The transfer function assigned to the output layer 

and/or the preceding hidden layer is purely linear. 

(iv) In some cases, where the transfer functions assigned 

(either for the output layer or the preceding hidden layer 

or both of them) were other than purely linear functions 

(i.e. tan-sigmoid or log-sigmoid), the training process did 

not show proper convergence. The results include either 

no convergence or delayed convergence. 

(v) The faster and almost guaranteed convergence results 

shown in Table 4 are mostly dominated by neural network 

structures having 4, or 5 neurons in the hidden layers 

(NL=4, NL=5). The overall performance ratio could be 

evaluated from the estimate of FST ratio (i.e. the ratio of 

counts yielding Faster performance to that of Successful 

performance out of the Total cases tried). A numerical 

count of these terms in view of the findings of Table 4 

indicates that, F:S:T = 10 : 20 : 27 ≈ 1 : 2 : 3, which is 

convincing and acceptable for the application of neural 

network based analysis. 

 The best part of the observation from the results of Table 

4 has been recorded against TC value of 212 having two 

hidden layers and four neurons per layer. This case gives the 

fastest and certainly guaranteed convergence out of twenty 

cases of Table 4 in a record number of training cycles (CY=1) 

and over a record time period (TI=1 sec) in contrast to the 

computational time of conventional approach (t=946 sec). It is 

therefore claimed that the proposed Elman neural network 

approach is around 1000 times faster than the conventional 

approach. The graphical results supporting output input 

correspondence (OIC), error surface (ES), training 

performance (TRP), training states (TRS), and receiver 

operating characteristic (ROC) as obtained against the best 

training parameter assignment of Table 4 (TC=212, HL=2, 

NL=4), are presented in Fig.7 through Fig.11.  

 Figure 7 shows the output~input characteristic (OIC) 

during whole of the training process for the best training 

parameter assignment of Table 4 (TC=212, HL=2, NL=4). 

The information displayed in this figure portrays that the 

proposed neural network is capable of generating a valid non-

zero output corresponding against all of the input dataset 

presented to the proposed neural network. Therefore, this 

observation validates appropriate selection of the neural 

network and its training performance. 

 The error surface (ES) plot of Fig.8 corresponding to the 

best training parameter assignment of Table 4 (TC=212, 

HL=2, NL=4), shows that, there exists a point on the error 

surface plane or the error contour plane, where least error is 

observed. At this point (marked by the white spot), the weights 

and bias parameters have reportedly the best values during the 

training. 
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Fig. 7.   Output~Input plot for case (TC=212, Table 4) 

 

Fig. 8.   Error Surface plot for case (TC=212, Table 4) 

 Figure 9 indicates the training performance (TRP) 

corresponding to the best training parameter assignment of 

Table 4 (TC=212, HL=2, NL=4). This plot demonstrates the 

variation of error during the training epochs and its relative 

distance from the best performance as set by the training goal. 

It is also observed from the plot that the error remains steady 

during throughout the epochs during that training cycle, which 

ensures stable convergence criteria for the proposed Elman 

neural network. 

 Figure 10 highlights the training states (TRS) 

corresponding to the best training parameter assignment of 

Table 4 (TC=212, HL=2, NL=4). The information contained 

in this plot includes error gradient and learning rate 

corresponding to the same training cycle. 

 Figure 11 indicates the receiver operating characteristic 

(ROC) corresponding to the best training parameter 

assignment of Table 4 (TC=212, HL=2, NL=4). It justifies 

perfect training criterion as the curve is stretched towards the 

upper left corner of the plotting frame. Hence, the proposed 

scheme meets the desired training perfection. 

 

Fig. 9.   Training Performance for case (TC=212, Table 4) 

 

Fig. 10.   Training States for case (TC=212, Table 4) 

 

Fig. 11.   ROC plot for case (TC=212, Table 4) 

6. Conclusions 
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 This paper considers successful application of historical 

Elman neural network to power systems in order to monitor 

critical busbars. This objective is fulfilled in this paper 

considering various aspects such as selection of input data, 

target data, network architecture, weights and bias parameter 

so as to obtain successful training based on supervised 

learning. The training of the neural network for achieving 

successful training is also validated in the results through the 

case study conducted on IEEE 30-bus test system, that ensures 

the justifications and guarantees sure and faster training 

convergence for the proposed neural network. It is also 

claimed through the findings that the Elman neural network 

approach with backpropagation scheme is around 1000 times 

faster than the conventional approach. It is expected that this 

outcome may be best exploited by utilities and researchers in 

power sector to overcome the difficulties posed by 

conventional approach. The utilities are expected to benefit a 

lot from this approach by saving time and money without 

sacrificing much on accuracy. 
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