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Abstract- Indirect field oriented control (IFOC) of squirrel-cage induction generator (SCIG) with full capacity power 

converter used in wind energy conversion system (WECS) is presented in this paper. In order to improve WECS reliability 

robust IFOC algorithm using artificial intelligence (AI) for speed estimation was developed. Estimated speed is used for 

realization of maximum power tracking algorithm (MPPT). Practical testing and validation of considered estimation techniques 

is performed using advance laboratory prototype of WECS. Extensive experimentation is conducted in order to verify 

efficiency and reliability of proposed speed-sensorless control technique under realistic WECS operating conditions. The 

experimental results show the high level of performance obtained with the proposed speed-sensorless vector control method. 

Introduction of AI improved dynamics characteristics of WECS making proposed control method suitable for commercial 

application. 

Keywords—Wind energy; Induction generator; Rotor speed estimation; MRAS algorithm; Artificial intelligence. 

 

1. Introduction 

Worldwide energy market currently exhibits constant 

and steady growth in energy demand. However, the increase 

in energy generation is currently accompanied by certain 

adverse effects on the environment. In that regard, humanity 

should look to implement a sustainable energy mix, with 

renewable energy sources (RES) providing quite a us eful tool 

for this particular purpose. The share of energy generated 

from RES will exceed 25 % by 2035 worldwide, while wind 

would become a second largest sources making up a quarter 

of the total share of RES [1]. It still remains to be seen if the 

goal set by the European Union (EU) for 2020 will be 

achieved with 20% share of RES in total electrical energy 

generation. While EU-28 framework legislation and the 

targets for 2020 ensure a degree of stability in the 

development of renewable energy market, the s hare of EU-

28 energy demand is only about 17 % of total worldwide 

energy generation. Similar goals, like in EU, have been set 

by the US, with a share of 22 % in worldwide energy market, 

since they have identified RES as a mean to overcome the 

present global economic crisis. Additionally, this can prove 

to be useful for the US, while it look to lessen the public 

concern regarding ecological issues. Nonetheless, the highest 

impact on global energy policy is expected from Asian and 

Pacific countries and their respective policies, since they 

hold 35 % of world energy market [2]. With the energy 

demand rising for the developing countries, and stricter 

requirements for environment protection in EU-28 and US, 

RES will surely follow the expected trend and maintain 

constant increase of their share in the global energy scenario. 

Wind Energy Conversion Systems (WECS) showed a 

positive trend of rapid development during the last decade, 

consequently leading to an increase of its share in global 

energy generation. Recent reports show that at the end of the 

year 2013 cumulative power of installed WECS worldwide 

was over 318 GW [1]. During the year 2013, more than 

35 GW of new wind power capacity was brought online, but 
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in comparison to 2012, where global installation exceeded 

45 GW, a sharp decline is evident [1].Wind energy market 

forecast shows the trend of stabilization after the 2014, where 

annual market growth should be expected at 6-10 % until 

2018. This will lead to cumulative market growth averaging 

at 12-14 % from 2015-2018, ending with global cumulative 

installed capacity just about 600 GW by the end of 2018 [1]. 

The evolution of technology has led to the development 

of different types of WECS that make use of variety of 

topologies with different type of electric generator [3, 4]. The 

variable speed WECS with full-capacity power converters 

offers a lot of advantages over other topologies and it is one 

of the main configurations in today’s wind power industry. 

Squirrel-cage induction generators (SCIG) are widely 

employed in WECS where the rotor circuits are shorted 

internally and therefore not brought out for connection with 

external circuits [5, 6]. Main features of SCIG are that they 

prove to be very robust and relatively inexpensive, while 

having a low maintenance cost. In order to obtain fast 

dynamic responses vector control techniques of SCIG is 

employed. Vector control algorithm requires accurate rotor 

speed signal of induction generator to achieve decoupled 

control of machine torque and flux. Acquiring such signals 

requires the introduction of speed sensors, that are highly 

sensitive to heat and vibrations, require additional wiring 

work and maintenance. On the other hand, all components 

for WECS are required to be highly reliable due to harsh 

environmental conditions and poor accessibility for 

maintenance (especially in case of offshore installation). It is 

obvious that introduction of sensitive speed sensor leads to 

the reduction of WECS robustness and increase in regular 

and emergency maintenance costs. Reliability of the WECS 

can, therefore, be improved by eliminating the speed sensor, 

whilst reducing maintenance cost [7].  

At the present time, speed sensor elimination becomes 

possible due to rapid development of digital signal 

processors (DSP), allowing for the use of modern SCIG 

states and output estimation algorithms. Research focus for 

the large number of experts in the last several decades has 

been the development of control strategies that would allow 

speed-sensorless drives to achieve dynamic performances 

identical to those of standard drives that include speed 

measurement. Low performance, or even average 

performance speed-sensorless SCIG drives prioritize simple 

speed estimation techniques, since they are relatively easy to 

implement. Most common speed estimation techniques in 

use are: open loop speed estimation, Model Reference 

Adaptive System (MRAS) and Sliding Mode Observer. 

Derating performance of such estimator can occur when 

there is inconsistency in the parameters between the model 

and the machine, current and voltage sensors inaccuracy, but 

also due to non-linear behavior of voltage source converter. 

This can particularly be underlined for the open loop 

estimation [8, 9]. Introduction of Artificial Intelligence (AI) 

to standard estimation techniques can improve their dynamic 

performance and steady state response. Moreover, known AI 

topologies show relative insensitivity to machine parameter 

variation adding to the robustness of the algorithm. 

Additionally, with the use of AI, complex mathematical 

model of the machine with speed dependency can be 

completely avoided. 

Practical implementation of speed-sensorless vector 

controlled SCIG in variable speed WECS is presented in this 

paper. Speed estimation is implemented based on classical 

MRAS observer modified with Artificial Neural Network 

(ANN). ANN is fitted in the part of the MRAS observer, 

while weight coefficient is proportional to the machine 

speed. This paper presents the technical background for the 

SCIG vector control and ANN speed estimation and show 

the dynamic and steady state performance of the system. All 

results are experimentally validated using advanced 

laboratory setup. The speed estimation method proposed in 

this paper is capable of tracking the rotational speed not only 

in the steady state but also when the WECS is subject of fast 

dynamic changes. Proposed technique is computationally 

very efficient and easy to implement, which, in addition to its 

robustness, makes it suitable for utilization in WECS. 

Principal contributions is concise and precise presentation of 

the complete theoretical background and practical 

implementation of AI based vector control strategy, 

including detailed ANN design process, intended for the use 

in WECS. 

2. Overview of System Topology and Control 

Strategy 

2.1. System Topology with Full-Capacity Converter 

Constant decrease in price for semiconductors with the 

improvement of reliability led to an increase in number of 

full-capacity power converters in WECS. The overview of 

WECS with full-capacity converters and SCIG is represented 

in Fig. 1. Topology for the full-capacity converter is back to 

back two-level voltage source converter (VSC). Both VSCs 

employ IGBTs as main switching components, are identical 

in topology and coupled using DC-link. Typical power rating 

of WECS with full-capacity converter is up to 0.75 MW at 

the 0.69 kV voltage level. In order to surpass the power 

limitation of standard VSC, parallelization of IGBT modules 

can be employed. Similar effect can be achieved by 

parallelizing several VSC channels [5]. To implement 

maximum power point tracking (MPPT) algorithms, the 

generator side converter (voltage source rectifier - VSR) is 

used to control machine speed and/or torque. Power transfer 

is completed by the grid side converter (voltage source 

inverter - VSI), controlling the DC-link voltage and injected 

active and/or reactive power. This allows for fully 

independent operation of SCIG in full speed range, while 

VSI fulfills all the necessary requirements regarding the grid 

synchronization. Since the focus of this  paper is speed-

sensorless vector control of SCIG, control of grid side 

converter is performed using standard control techniques and 

those will not be discussed in detail. 

2.2. IFOC Strategy for Variable Speed SCIG 

Field oriented control (FOC) is one of the mos t used 

control methods of modern AC drives systems [5, 10]. This 

method can be divided to Direct Field Oriented Control 
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(DFOC), Natural Field Oriented Control (NFOC) and 

Indirect Field Oriented Control (IFOC). The main difference 

between mentioned control techniques is in the method for 

obtaining the flux orientation (rotor flux angle). 
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Fig. 1. Variable speed WECS with SCIG and full-capacity power converter. 

Each of these methods provides certain advantages while 

having some drawbacks. The IFOC controlled drive can 

operate in four-quadrant down to standstill and it is widely 

used in both motor drives and power generating 

applications [11]. 

The rotor flux angle, for the IFOC control strategy can 

simply be acquired by the following equation: 

( ) w w  sl dt                            (1) 

where slw  is the calculated slip frequency and w  is the 

SCIG rotor speed. 

By aligning of the orthogonal synchronous reference 

frame with the rotor flux orientation, and by us ing well 

known decomposition techniques, actual rotor flux can be 

obtained as [5, 8]: 

(1 )
 



m
rd ds

r

L
i

sT
             (2) 

where rotor time constant is defined as /r r rT L R , rL  is 

rotor self-inductance and mL  is magnetizing inductance. 

Usually, rotor flux reference is set to its rated value, 

while the decomposition allows for slip frequency 

calculation by using: 

w


 m
sl qs

r rd

L
i

T
                           (3) 

According to SCIG rotor speed an MPPT algorithm 

generates a torque reference for the control of generator side 

converter. The reference for the q-axis controller can further 

be obtained by: 

* 2

3 
 r

qs c
m rd

L
i m

pL
             (4) 

Electromagnetic torque is thus controlled in q-axis by the 

q-axis current, while the d-axis controller sets the flux of the 

machine to the desired (nominal) value. If we assume 

constant flux, the SCIG torque becomes directly proportional 

to machine q-axis currents. 

3. Algorithm for Estimation of SCIG Rotor 

Speed 

Considering the environment of WECS during operation 

it is easy to understand severe conditions it has to endure. 

Unfavorable conditions can include wide temperature and 

wind speeds range, heavy torques, vibration and frequently 

even chemically aggressive environments (off-shore 

installations). Therefore, by eliminating speed sensor 

improvement in system robustness is achieved, with the 

additional benefit of significantly reducing regular and 

emergency services cost. In the recent decades, numerous 

techniques for induction machine (IM) rotor speed estimation 

have been developed. These techniques are solely based on 

machine currents and voltages measurement and are, 

therefore, used for speed estimation in shaft-sensorless 

drives. One of the most popular methods for induction 

machine rotor speed estimation is derived using Model 

Reference Adaptive System [8]. 
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3.1. MRAS Algorithm 

MRAS algorithm uses closed loop control system for 

estimation of rotor speed and can, therefore, be referred to as 

observer. Figure 2. presents three main components of the 

MRAS observer: reference model, adaptive model and 

adaptation mechanism. Reference model is a mathematical 

representation of the IM, having to faithfully reflect the 

current state of the machine. 

Flux estimator
Reference model

u s


ω

Flux estimator
Adaptive model

Speed tuning signali s

PI controller

rψ

ˆ
rψ

 

Fig. 2. MRAS based rotor speed observer. 

This mathematical representation does not feature value 

estimated by MRAS observer, i.e. rotor speed. Adaptive 

model provides the insight in estimated value validity, since 

the mathematical representation include the estimated value 

of MRAS observer. Adaptation mechanism will, according to 

a predefined function, reach the estimated speed value using 

the difference between relevant values in reference and 

adaptive models. Common name for the reference model is 

voltage estimator, whereas adaptive mode is referred to as 

current estimator. MRAS observer based speed estimation 

can be classified according to the value selected for 

comparison between reference and adaptive model. Usually, 

rotor flux, stator flux, back EMF, active and reactive power 

are used [8]. This paper uses MRAS observer with relevant 

value for comparison chosen to be rotor flux. Rotor flux 

estimation is achieved using machine voltage equations for 

stator and rotor windings 

Mathematical representation of reference model 

estimator is given by the Eq. (5). It is shown that this 

estimator uses stator voltages and currents to calculate rotor 

flux linkage components ( rd , rq ). Superscript (s) in these 

equations indicates that they are written in the stationary 

reference frame and sL  is the stator transient inductance. 
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IM rotor voltage equations in stationary reference frame 

form adaptive model estimator given by the Eq. (6). Stator 

currents and speed signal is used for the calculation of rotor 

flux for this model. Symbol ^ in the following equations 

denote estimated quantities. 
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Rotor speed estimation is achieved using adaptation 

mechanism based on PI-type controller and is represented by 

the Eq. (7). Error value  , according to the Eq. (8), is 

proportional to the sine value of angle difference between 

output vectors of reference and adaptive models. Using 

integral gain in adaptation mechanism it is ensured that the 

steady state value of   is equal to zero. 

ˆ ( )w   i
p

K
K

s
             (7) 

ˆ ˆ     s s s s
rd rq rd rq              (8) 

Previously described MRAS observer has a complicated 

mathematical derivation, leading to model highly sensitive to 

induction machine parameter variation. In addition, the 

reference model is difficult to implement due to the pure 

integrators (Eq. (5)) which have problems with initial value 

and drift. To avoid this problem the output of the reference 

model must be connected to high-pass filter with the transfer 

function s/(s+1/T). Since the reference model now gives 

modified rotor flux linkages, in front of the adaptive model 

the same high-pass filter block must be placed. The cut-off 

frequency of this filter is few Hertz. Below the cut-off 

frequency, the rotor speed estimation becomes inaccurate. 

Furthermore, mentioned parameter variation between 

MRAS observer and the actual machine can be regarded as 

an encoder with an inherent ripple, which may lead to 

appearance of oscillatory behavior and, consequently, 

instability of the SCIG control. In addition, not only that 

dynamic performance of the SCIG will deteriorate, but it can 

also lead to a steady state error of the es timated speed [12]. 

Steady state error in generator speed estimation will have 

several adverse effects on the WECS performance [12, 13]. 

Namely, since the control algorithm uses speed signal for the 

MPPT, the system will not operate with maximum possible 

power. Additionally, both control algorithms for power 

limitation zone and pitch angle regulation system are going 

to exhibit faulty behavior, since they use speed as a control 

variable. 

To improve the performance of the described MRAS 

observer, various practical techniques are also discussed 

which avoid the use of pure integrators. An AI based MRAS 

speed estimator seems to offer the most satisfactory 

performance. Introduction of a non-linear adaptive model 

with artificial neural network leads to an improvement in 

robustness of the control algorithm and, therefore, the 

complete drive, having significant increase in SCIG speed 

estimation precision. Moreover, the MRAS observer 

adaptation mechanism (PI controller) becomes unnecessary, 

since the integration is inherently made by the ANN based 

model in the adjustment mechanism [14]. 
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3.2. Modified MRAS Algorithm Using Artificial Intelligence 

Artificial neural networks can be categorized in several 

ways: e.g. into ANN that are trained and those that learn on 

their own (unsupervised or self-organized ANN). 

Classification based on structural complexity of the ANN 

leads to single-layer or multi-layer structures. For multi-layer 

feed forward neural network, containing hidden layers (one 

or several), supervised (off-line) training process, usually 

slow, has to be performed prior to ANN being used for real-

time implementation. In contrast, this paper suggests the use 

of relatively simple two-layer ANN, that does not require a 

separate learning stage, while the learning is taking place 

during real-time rotor speed estimation process of SCIG. 

Presented ANN consists of input and output layer, with 

weight coefficients that can be adjustable or constant. 

Adjustable weight coefficient is directly proportional to rotor 

speed of SCIG. Error signal generated by the difference at 

the output of reference and adaptive model is used to alter 

adjustable weight. Fig. 3. represents the block diagram of 

speed estimation based on MRAS observer with two-layer 

ANN. 

Weight coefficients of such ANN will be as 

following [14]: 

1 2 31 w w    r mw c w cT T w cL                        (9) 

where c is defined as c = T/Tr, T is sampling time, and Tr is 

rotor time constant. Rotor time constant is adopted to have 

constant value, thus weight coefficients w1 and w3 are 

constant, while weight coefficient w2 is proportional to the 

rotor speed. 

Rotor flux linkages at the k-th sample can be derived 

from discrete representation of adaptive model in Eq. (6), 

using defined weight of two-layer ANN shown in Eq. (9), as: 
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If we look to minimize mean square error (least mean 

square – LMS learning rule) of the rotor flux linkage 

estimation, weight coefficient w2 has to be adjusted using the 

following adaptation mechanism: 
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where η is called learning rate, a positive constant value that 

affects the weight change dynamics. The LMS learning law 

leads to finite steady state value (assuming they converge), 

only when the weight adjustments are small. Since the 

correction depends on the error between estimated (adaptive 

model) and actual (reference model) rotor linkage flux, only 

a small portion of the error is used for adjustment of the 

weights in every calculation step. Thus the value of learning 

rate parameter needs to be η << 1 [15]. 
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Fig. 3. Modified MRAS algorithm using two-layer ANN. 

For the practical implementation, learning rate is sought to be 

as high as possible, consequently aiming for fastest possible 

ANN responses. On the other hand, a value too high will lead 

to the oscillations at the ANN output. In order to accelerate 

the convergence, without undesired effects on the ANN 

output adjustable weight coefficient is improved by addition 

of momentum term (inertia), achieving reliable and efficient 

learning. Therefore, calculated weight coefficient for the k-th 

sampling instant (Δw2(k)) is supplemented with fraction of 

most recent coefficient adjustment (Δw2(k-1)), making the 

adaptation mechanism become: 





2 2 2 2

2

2

( ) ( 1) ( ) ( 1)

ˆ ˆ( 1) ( ) ( ) ( 1)

ˆ ˆ( ) ( ) ( 1) ( 1)



   

   

      

      
 

      
 

s s s
rd rd rq

s s s
rq rq rd

w k w k w k w k

w k k k k

k k k w k

        (12) 

The supplement (αΔw2(k-1)) is called the momentum 

term. Parameter α is a user-selected positive constant called 

the momentum constant with value typically ranging from 

0.1 to 0.8 [16]. Finally, considering previously described 

structures of MRAS algorithm using ANN, it is possible to 

estimate rotor speed of SCIG with the following: 
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4. Experimental Validation of the Proposed 

WECS Sensorless Control Scheme 

4.1. Description of Laboratory WECS Prototype 

Proposed speed-sensorless control strategy for variable 

speed WECS with full-capacity converter is tested and 

verified using advanced laboratory prototype for control of 

electrical drives and power electronic converters [17]. This 

advance R&D station is developed by authors of this paper 

and it is capable of running different type of complex and 

demanding control strategies for three-phase systems (with 

bidirectional power flow), as well as for multi- phase 

systems (five-phase or six-phase). For experimental 

validation of previously presented theory, the setup was 
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organized to operate as a small scale variable speed WECS. 

Overview of the experimental setup is shown in Fig. 4.  

Control algorithms are implemented using highly 

modular and versatile dSPACE control hardware [18]. In 

Fig. 4 control hardware designated by ① executes IFOC 

strategy, speed estimation and MPPT algorithm for the 

control of generator side converter designated by ②. Control 

of grid side converter ③, coupled by the DC-link with 

generator side converter, is implemented using standard 

techniques and will not be further discussed since it is not the 

focus of this paper. In addition, dSPACE also generates the 

reference for wind turbine emulator, consisting of power 

converter ④ and torque controlled machine. Torque 

controlled machine is mechanically coupled with the SCIG 

and the coupled group is marked by ⑤. 

7

1

234

5

8 9

6

 

Fig. 4. Small scale WECS laboratory prototype. 

Data acquisition, control signals and measured signals are 

routed through adapter block indicated by ⑥. A power 

transformer ⑦ represents the point of common coupling 

where the generated power is supplied to the distribution 

network. Two distribution cabinet designated by ⑧ and ⑨ 

hold switching, protection and control gear. 

4.2. Control Algorithm Organization and Implementation 

Control algorithm is organized according to the proposed 

theory and block diagram shown in Fig. 1, with full visual 

block oriented programming in Matlab/Simulink software 

tool. Real-time experimentation process is done by Control-

Desk software, while the linking is performed by Real Time 

Interface (RTI) tools [18].  

Control algorithm for real-time implementation, 

presented in Fig. 5., is implemented in several subsystems 

with different execution rate. The subsystem containing 

measurements (SCIG currents and DC-link voltage), 

software system protection and PWM generation is executed 

at 8 kHz sampling frequency triggered by the interrupt at the 

midpoint of PWM period. In theory, IFOC algorithm should 

be executed at least two times slower than PWM generation, 

leading to 4 kHz execution rate for current control and speed 

estimation subsystem. Faster subsystem generates the trigger 

by down-sampling of the basic trigger. Correspondingly, 

MPPT algorithm is achieved in the last subsystem at 1 kHz, 

since the time constant of the WECS mechanical subs ystem 

is significantly higher and faster control would be 

ineffective.  

Variable speed WECS control algorithm is based on 

minimum number of sensors with just two currents and one 

DC-link voltage sensor.  Required SCIG stator voltages are 

reconstructed based on an array of PWM impulses generated 

by the digital controller. Adverse effects like voltage drop on 

semiconductors, finite switching time for semiconductors 

and the dead time can cause the difference between actual 

and reconstructed stator voltage value. However, considering 

the finite WECS speed operating ranges, this deviation, 

which is especially high for low speed IM operating zone, for 

this particular application is irrelevant. 

Measurement and 

software protection 

subsystem

Current control and 
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Basic trigger 
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Fig. 5. Structural organization of the control algorithm for 

real-time implementation. 

4.3. Experimental Results 

Using previously described prototype, proposed control 

algorithms for variable speed WECS without speed sensor 

has been implemented. At first, in order to validate speed 

estimation techniques, the proposed algorithms have been 

tested in speed control mode. Therefore, speed closed loop 

IFOC strategy for IM is implemented with encoder obtained 

speed signal. Speed measurement is used to appropriately 

compare proposed speed estimation technique.  Figure 6 

shows the estimated speed response of IM using standard 

MRAS observer. Speed reference, in this experiment, is set 

to 0 [rpm] until 3.9 [s], when reference value changed to 

1000 [rpm] with soft start slope of 625 [rpm/s]. As a 

consequence of introducing high-pass filter blocks, described 

in chapter 3.1. the standard MRAS observer has inaccurate 

speed estimation at zero speed. Tracking of the IM rotor 

speed, after high-pass filter cut-off frequency, shows fast 

response and satisfactory dynamic characteristics. However, 

it can be noted that estimated speed from standard MRAS 

observer has high content of noise (undesired high-frequency 

spectrum component), mainly introduced and enhanced by 

the PI controllers in adaptation mechanism. This can lead to 

oscillatory behavior and ins tability of the algorithm 

especially if other adverse effect like machine parameter 

detuning is considered. One possible approach to 

overcoming this is to introduce a filtering of the signal at the 
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output of standard MRAS observer. Signal filtering will 

damp unwanted components of the signal but will introduced 

the delay in estimated speed signal. This will lead to WECS 

control system to being misaligned whit the actual rotor 

position, thus causing the reduction in energy generation.  

Similar set of experiment is performed to validate the 

improvement of MRAS observer with ANN based adaptive 

model. ANN has been implemented according to proposed 

theory, with learning coefficient chosen to be η = 0.009 and 

the momentum term α = 0.65, according to [14, 16]. Speed 

reference, in this experiment, is set to 0 [rpm] until 4.3 [s], 

when reference value changed to 1000 [rpm] with soft start 

slope of 2000 [rpm/s]. Steeper soft start slope was selected to 

demonstrate dynamic capability of ANN based MRAS 

observer. Figure 7a shows the estimated speed response of 

IM using MRAS observer with ANN for given set of 

parameters. Proposed technique obviously leads the 

estimated signal to a finite steady state response, but the 

noise and oscillations make this signal unacceptable. As  

proposed by the theoretical discussion, to lessen the adverse 

effect learning coefficient should be η << 1. By manual 

tuning of the parameter, optimal learning coefficient is found 

to be η = 0.00009, while keeping the momentum term at the 

same value. Increment of the adjustable weight coefficient 

(w2) clearly represents the influence of the learning 

coefficient on the ANN speed response which is also visible 

in Fig. 7. Clearly, MRAS observer based on ANN has the 

most suitable steady state and dynamic response 

characteristics, as proven by Fig. 7b.  

After successfully implementation of speed estimation 

technique using ANN based MRAS observer, the laboratory 

prototype is reconfigured to operate as a variable speed- 

sensorless WECS. Machine emulating WECS mechanical 

part produces torque equivalent to wind power at average 

speed of 11.5 [m/s] and turbulence intensity of 12 %. Torque 

reference has been generated using an adequate tool from 

Wind Turbine Blockset for Matlab/Simulink based on the 

actual wind measured data from a perspective WECS 

location [19].  

Machine current waveform and estimated fluxes value in 

stationary reference frame are given in Fig. 8a and 8b, 

respectively. As one validation of successful implementation 

of variable speed WECS speed-sensorless IFOC control, 

observed currents are sinusoidal, while the fluxes make an 

ideal circular shape. 

Figure 9a represents torque reference for the machine 

emulating wind turbine. SCIG currents in synchronous 

rotating reference frame are shown in the Fig. 9b. Clearly, 

the q-axis current component follows the turbine torque 

showing that the MPPT algorithm is implemented 

successfully. Furthermore, IFOC strategy is properly applied 

since decoupled control has been achieved between d and q-

axis current components. Estimated SCIG speed signal used 

for MPPT and generation of q-axis current reference value is 

given in Fig. 9c. It can be concluded that ANN based MRAS 

estimated speed match the speed signal obtained from 

encoder under proposed WECS realistic conditions.  
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Fig. 6. Experimental validation of MRAS observer – speed 

response. 
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Fig. 8. SCIG currents in time domain (a) and ANN estimated 

rotor flux linkages (b). for laboratory speed-sensorless 

WECS prototype experiment. 
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Fig. 9. Torque reference of wind turbine emulator (a), SCIG currents (b) and rotor speed signals (c) for laboratory speed-

sensorless WECS prototype experiment. 

 

5. Conclusion 

This paper presents implementation of IFOC algorithms 

for variable speed-sensorless WECS with SCIG rotor speed 

estimation using ANN based MRAS observer. Fundamental 

theoretical considerations for IFOC and popular speed 

estimation technique (MRAS observer) are given.  Main 

deficiency of standard MRAS estimation algorithm for the 

use in WECS is theoretically exposed and experimentally 

validated. In respect, benefits of introducing artificial 

intelligence to standard estimation technique are analyzed. 

The paper discuses replacement of MRAS adaptive model 

with simple two-layer ANN which does not require a 

separate learning stage. Proposed speed estimation technique 

has satisfactory dynamics and steady-state response. The 

influence of the ANN learning coefficient on system 

response oscillation and stability is shown to be high. With 

optimally selected ANN parameters accurate speed 

estimation and stable operation of variable speed WECS is 

achieved. This is experimentally verified on laboratory 

prototype of WECS under the realistic conditions. High 

precision matching of the SCIG estimated and actual speed 

makes it possible to implement high performance vector 

controlled WECS with MPPT. Developed control strategy, 

with clear improvement of the dynamics characteristics , 

leads to novel applicable solution for reliable and robust 

WECS, with reduced overall cost.      
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