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Abstract-The share of Plug-in Electric Vehicles (PEVs) will greatly increase in the coming years. This vast deployment will 

create challenges of integration in the power system. Especially in the residential areas where mostly charging will take place. 

It’s imperative to propose solutions to minimize the future impacts caused by the PEVs. In this paper we use Dynamic 

Programming (DP) algorithm for optimal charged the PEV. The strategy works under constraints that the vehicle should reach 

the full State-of-Charge (SOC) at the departure time and the charge power should be constant during all time when the PEV is 

at home. The application of the DP algorithm on 10,000 real case studies shows that the approach proposed is a Vehicle-to-

Home (V2H) concept because it allows cost savings at users. The financial gains obtained by a French PEV user can reach 

22.9%. In addition, it is shown that the strategy proposed is also a Vehicle-to-Grid (V2G) concept because it allows at the 

distribution electric grid manager to preserve the grid elements such as the life duration of a low voltage transformer. 

Keywords -Plug-in Electric Vehicle, Residential areas, Dynamic Programming, Vehicle-to-Home, Vehicle-to-Grid, Life 

duration, Low voltage transformer. 

 

1. Introduction 

The automotive sector is undergoing a major change. In 

the near future, an increase of the penetration of both Electric 

Vehicles (EVs) and Plug-in Hybrid Electric Vehicles 

(PHEVs), is expected. In the United States of America 

(USA), 2.4 billion dollars have been allocated for the 

development of PEVs with a hope to integrate 1 million of 

vehicles in 2020. The German government has fixed the 

same goal. In France, the government has launched an 

ambitious plan to integrate 2 millions of Plug-in Electric 

Vehicles (PEVs) in 2020. For all these reasons, several 

scientific challenges must be addressed. 

The literature on PEVs’ integration can be classified into 

two categories. The first one includes the study and analysis 

of the impacts induced by integrating these vehicles. The 

second category represents the investigations allowing PEVs 

integration with an objective to reduce these impacts. 

Regarding the first category, one can find papers that assess 

the PEVs impacts on national electric grids [1-2], on 

distribution power grids [3-5] and on residential electric 

grids [6-7]. Several papers have quantified the Loss-of-Life  

 
(LOL) of high voltage transformers [8-9] and low voltage 

transformers [10-12] caused by PEVs charging. 

The scientific community considers that the impacts 

associated to the integration of PEVs are almost assessed. 

Research is now focused to mitigate these impacts. This 

second category of the literature can be separated into two 

parts: unidirectional and bidirectional smart charging 

algorithms. Only a state-of-the-art related to unidirectional 

charging algorithms is dressed. Papers [13-15] propose 

strategies to increase the penetration of PEVs without 

additional grid investments. Voltage profile control and 

losses minimization algorithms are proposed in [16-19]. 

Algorithms, which determine the available energy for 

charging PEVs connected to the electric grid while 

minimizing the transformer’s aging, are proposed in [20-23]. 

The economic approach is not excluded because some 

algorithms integrate charging cost minimization [24-29]. 

In comparison with the literature, a different approach is 

presented in this paper to solve problems related to PEVs 
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charging. Generally, the studies cited above require 

communication infrastructure. Unlike them, the methodology 

proposed in this paper is “local” and has a strong feature 

because it can be applied immediately with existing electric 

grids without any additional infrastructure. It’s a significant 

idea and a major contribution because absent in literature. 

“Local” means that the algorithm is implemented locally for 

each residence without any communication with other houses 

or residences. In the context where each house is equipped 

with one PEV, a Dynamic Programming (DP) algorithm is 

used to determine the minimum constant (i.e. no variable) 

charging power of PEV by ensuring that the vehicle batteries 

reach full State-of-Charge (SOC) for the next use. For that, 

the entire time horizon when the vehicle is at home is 

exploited. The study is conducted with the assumption that 

PEV leaves and arrives at home once a day. The application 

of the DP algorithm on 10,000 real case studies shows that 

PEV user’s can economize an important cost. In addition, 

these case studies have conceded the creation of databases 

used to illustrate that aging rate for a low voltage transformer 

that feeds a residential electric grid is minimized. 

This paper is organized as follows: part II presents the 

input data used. Part III presents the DP algorithm and the 

results. Part IV is dedicated to transformer aging rate study 

results. This paper ends in part V with conclusion and future 

work. 

2. Input Data 

To conduct the study we have used our previous work 

[30]. First, we have exploited a generator to construct 

databases of houses Daily Load Profiles (DLPs). This 

generator is based on real electricity consumption of 

domestic’s electrical devices provided by Electricité de 

France (EDF). In each iteration, it builds one profile. This 

algorithm is adapted to provide DLPs for different sizes of 

houses which vary from 3 to 6 rooms, with/without an 

electric heating system and for each season (summer and 

winter). For this study, for each season we have generated a 

database of 1,000 DLPs for each size of houses or 500 DLPs 

if these ones are equipped with an electric heating system. 

So, a total of 10,000 DLPs were generated. 

Next, we have used a probabilistic algorithm of PEVs 

connections to integrate a single vehicle to each house [30]. 

It selects the arrival and departure times to/from home, the 

category and the State-of-Charge (SOC) of the PEV. The 

selections are random but based on predefined probabilities. 

The results from a survey related to the home-work travels in 

Ile-de-France (18.8% of the French population) are used for 

the home arrival and departure times selection [31]. We have 

fixed the probabilities for the selection of PEVs categories 

from the mixed of the French car fleet in 2015-2020 [2]. It 

was considered that this one is composed of 3 categories 

(Compact Car, Sedan Car and SUV). The sizes of batteries 

for each category are selected from prototypes or 

commercialized PEVs. For the selection of PEVs batteries 

SOCs at home arrival times, high probabilities for low SOCs 

portions are fixed arbitrarily. Table 1 summarizes this data. 

The probabilities of selection are uniform inside each part. 

The SOC selection accuracy is 1% and the time step is 10 

minutes. We have performed 10,000 iterations of the 

probabilistic algorithm of PEVs connections to create 

distributions. These ones for arrival and departure times are 

illustrated on Figure 1. 

Table 1. Input data for PEVs  

Category Probability Brand 

Compact Car 55% Nissan Leaf 

Sedan Car 43% Coda 

SUV 2% Toyota RAV4 

Size of batteries Configuration (cells) 

24.00kWh – 75.90Ah 95 series – 33 parallel 

31.00kWh – 98.90Ah 95 series – 43 parallel 

41.80kWh – 133.4Ah 95 series – 58 parallel 

Probability of SOC selection 

30 < SOC (%) < 39 => 24% 40 < SOC (%) <49 => 24% 

50 < SOC (%) <59 =>12% 60 < SOC (%) <69 =>12% 

70 < SOC (%) <79 =>12% 80 < SOC (%) <99 =>16% 
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Figure 1. Home arrival and departure times 

After that, we have used the Coulomb counting method 

for monitoring the battery SOC of PEV [32]. This one is 

adapted for Lithium battery technology because their 

capacities vary slightly following the charge/discharge rates. 

Equation (1) represents the model used during simulation. 

 

  100
)t(Q

dt
3600

)t(I

1tSOC)t(SOC
nom

batt


 

                                     (1) 

 

 0Ibatt  Charge of battery 

 0Ibatt  Discharge of battery 

 Qnom
 Nominal battery capacity 

 

At the end, we have used simultaneously the 

distributions from the probabilistic algorithm of PEVs 

connections, the size of batteries for each category of 

vehicles and the SOC monitoring model to construct 
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databases of PEVs Daily Load Profiles (DLPs). So, three 

databases of PEVs DLPs charged at 3 standard charge power 

values (230V-8A, 230V-16A and 230V-32A) are 

constructed. Figure 2 shows some examples of these 

databases. We have considered an ideal PEV charger with 

unit cos φ. The apparent power is absorbed from the grid. 
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Figure 2. Some DLPs of PEVs 

3. Dynamic Programming Algorithm 

In this part, firstly a state-of-the-art of the optimization 

methods is presented. Secondly, the optimization problem 

formulation is exposed. Thirdly, Bellman’s principle is 

explained and then, the simulations results are presented. 

3.1. State-of-the-art of optimization methods 

In this section, a state-of-the-art is presented through a 

classification of the Energy Management Strategies (EMS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Most of widespread methods are likely classified 

following two categories. The first category includes Rule-

Based strategies equivalent to sub-optimal algorithms whose 

operating modes are defined by heuristic rules. However, 

following the system studied, the optimality can be reached 

by determining an optimum threshold of the decision 

parameters of the algorithm. Rule-Based strategies are 

applied online when the system’s time evolution is unknown. 

The second category includes optimization algorithms 

applicable online (real-time optimization) and offline (global 

optimization). Figure 3 shows a classification of the Energy 

Management Strategies (EMS). The literature on 

optimization methods is extensive and reader can refer to the 

work of [33-35]. 

For the dynamic resolution of the energy management 

system using global optimization such as considered in this 

paper, two methods, namely Pontryagin’s minimum [36] and 

Bellman’s principle [37] are adapted. The first method 

consists to minimize the Hamiltonian function of the system. 

Optimal control is an extension of static optimization which 

determines control parameters that extremize some criteria in 

a dynamic manner. Although it can, under special conditions, 

provide a state feedback control, this method gives a 

temporal control. By nature, the minimum principle presents 

necessary but not sufficient optimality conditions because a 

trajectory namely optimal which satisfies the conditions of 

optimality is not necessarily the optimal. To ensure that the 

solution is optimal, it must be showed that the admissible 

values of commands and the cost function are convex. The 

second method, known as Dynamic Programming, provides a 

control input depending of the system state. Dynamic 

Programming gives sufficient optimality conditions where 

discrete variables do not need to exhibit convex, continuous 

and differentiable evolutions. Following the system 

considered in this paper, Dynamic Programming has been 

selected and explained in the next paragraph. 
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Figure 3. Classification of the EMS 
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3.2. Optimization problem formulation 

Consistent with the intended application, the DP 

algorithm determines the optimal charge power that meets 

the constraints of the system. This one ensured that the PEV 

battery reaches the desired SOC by the user for the next use 

(home departure time). The need to know house Daily Load 

Profile (DLP) involves an offline character of DP algorithm. 

The charge of PEV is formulated as an optimization 

problem where the system is represented by a dynamic 

equation (2) and is controlled to minimize a cost function (3) 

respecting the inequality and equality constraints (4) and (5). 

 

      t,tu,txftx                                                                        (2) 

     
tf

ti
dtt,tu,tx                                                                    (3) 

     0t,tu,tx                                                                            (4) 

     0t,tu,tx                                                                    (5) 

Where x(t) represents the state variable of the system and 

u(t) the control variable. For this application, x(t) is the PEV 

battery State-of-Charge, SOC(t). The power supplied by the 

electric grid, SGrid, is selected as the control variable. So, the 

equation (2) which represents the dynamic of the system is 

defined by the equation (6). 

 

   tPtCOS Batt                                                                     (6) 

 

The battery power, PBatt (7), is calculated depending of 

the electric grid power, SGrid, the house consumption, SHouse 

and the efficiency of the PEV embedded charger, ηCharger. We 

have considered a unit efficiency of the battery because the 

maximum charge rate is low (for Lithium technology). So, it 

don’t appear in equation (7). 

 

      
 

 ttStStP Charger

tS

HouseGridBatt

PEV

                                    (7) 

The standard charge power values for electric vehicles 

impose minimum and maximum limits. The Energy 

Management Strategies (EMS) fix the minimum and 

maximum SOC that can be reached by the PEV battery. 

These ones form the inequality constraints (8) and (9). Table 

2 lists these values. 

 

  PtPP maxBattBattminBatt                                                     (8) 

  SOCtSOCSOC maxmin                                                        (9) 

Table 2. Values of inequality constraints 

PBatt-min PBatt-max SOCmin SOCmax 

0W 7360W 30% 100% 

 

The electric grid supplies the house consumption 

including PEV where physics laws require power balance 

(10). The final State-of-Charge, SOCFinal, desired by the user 

at the home departure time must be ensured (11). These ones 

form the equality constraints of the system. 

      0tStStS GridPEVHouse                                                                                                                               (10) 

  SOCtSOC Finalf                                                                         (11) 

Two other constraints are introduced. First, the PEV 

charge power must not cause an overrun of the house 

subscription contract, SC (12). Second, the charge of this one 

is prohibited if the theoretical house consumption exceeds 

the subscription contract (13). 

 

    StStS CPEVHouse                                                                  (12) 

    0tSStS if PEVCHouse                                                      (13) 

 

The cost function is the house energy consumption 

including PEV supplied by the electric grid. However, home 

appliances are not controllable. So, DP algorithm finds the 

optimal (minimum) constant (i.e. no variable) PEV charge 

power during the interval [ti, tf] corresponding to the home 

arrival and departure times (14). 

 

 
 





tf

ti

Charger

Batt
PEV dt

t

tP
E                                                                     (14) 

 

Following (3), the cost function is defined by the 

equation (15) for this system. 

 

    
 
 t
tP

t,tu,tx
Charger

Batt


                                                              (15) 

 

3.3. Bellman’s principle 

Bellman’s principle of optimality is defined as follow 

[37]: “The principle that an optimal sequence of decisions in 

a multistage decision process problem has the property that 

whatever the initial state and decisions are, the remaining 

decisions must constitute an optimal policy with regard to the 

state resulting from the first decisions”. From this principle 

derives an additive cost function through time and a 

recursive operation of the algorithm. So, for an initial state x0 
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and an admissible control strategy u composed of steps uk 

from k=0to k=N, the optimal total cost is defined by the 

equation (16). 

 

      











1N

0k
kkkNN

u

0 u,xxminxC                                                        (16) 

 
 k  Discrete time step 

 N  Number of decisions 

  
The implementation of the algorithm requires to 

discretize the optimization space. First, the number of 

evaluation steps E depending of the time step Δt must be 

determined (17). Second, the number of points P is defined 

depending of the storage element discretized ΔSOC which 

varies between the minimum and maximum limits (18). 

 

t

titf
E




                                                                                   (17) 

SOC

SOCSOC
P minmax




                                                            (18) 

 

So, discretization of the optimization space changes the 

state, the constraints and the cost function of the system 

previously presented (6) to (15). As example, the cost 

function is described by equation (19). 

 

 
 







k
Charger

Batt

k

tkP
C                                                                           (19) 

 

For PEV battery, a domain of validity is defined by 

considering the minimum and maximum limits of divergence 

and convergence following the initial and final State-of-

Charge (20). The validity domain is formed for minimized 

the time simulation of the DP algorithm. We define the area 

of optimal solution research. We prohibit the research in the 

areas with impossible solutions. For that, we charge (or 

discharge) the batteries at maximum powers.  From SOC at 

arrival time of PEV, the domain is defined by the divergence 

limits. We exclude solutions outside of the limits defined by 

maximum charge (SOCmax-div) (21) and maximum 

discharge (SOCmin-div) (22) of PEV battery during all time 

where the vehicle is at home.  Based on the same 

methodology, we defined the maximum (23) and minimum 

(24) convergence limits for SOC at departure time of PEV. 

The maximum charge and discharge powers are respectively 

7360W and 0W. Figure 4 illustrates the domain of validity 

for the study system where are shown 1 example. The SOC 

evolutions are constant because the algorithm is implemented 

to define a charge power no variable. 
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Figure 4. Validity domain of the PEV battery 

 

Figure 5 shows the block diagram of the Dynamic 

Programming algorithm. The inputs correspond to the house 

consumption, SHouse(t), the PEV battery State-of-Charge, 

SOC(t), and the system constraints. The algorithm provides 

the optimal power values from the electric grid, SGrid-opt(t), 

and for charging the vehicle, SPEV-opt(t). According to 

Bellman’s principle and recursive operation of the algorithm, 

filling the matrices SGrid-opt(t), SPEV-opt(t), SOCopt(t)and C(t) 

starts at k=N returning back up to k=1. Each element k of 

these matrices contains the optimal values until the final step 

N. So, the cost matrix is equal to zero at k=N and each 

element k contains the optimal cost until N. Therefore, the 

element C(0) contains the value of the optimal total cost for 

the interval [ti, tf] corresponding the home arrival and 

departure times where the vehicle is available. 
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Figure 5. Block diagram of the DP algorithm 

3.4. Results 

In this section, the results obtained from the application 

of the DP algorithm on 10,000 real case studies are 

presented. First, an example (selected arbitrarily) is exposed 

(Figure 6). It shows the charge of a Sedan Car. The SOC of 

vehicle is equal to 40% at home arrival time (6:40pm). 

Departure time is planned to 8:00am. The domestic DLP 

represents the electricity consumption of a 3 room’s house 

without electrical heating system in summer. The 

subscription contract value is 6KVA. The conclusion of these 

results confirms our expectations. That is, the entire time 

when the vehicle is at home is exploited to complete 

charging the batteries at a constant (i.e. no variable) charge 

power. Thereby, charging current is low (5.9A) with 

application of the DP algorithm. Without energy 

management strategy where charge of PEV is equal to 230V-

32A, we see that the subscription contract value is exceeded. 

In practice, the protection device of house cuts the power. 
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Figure 6. Application of the DP algorithm 

 

The economic benefits for users are assessed without and 

with application of the DP algorithm. For this, we have used 

two daily energy pricing profiles (Figure 7). The first 

represents the electricity pricing system for residential sector 

in France (i.e. Peak Hours - PH/ Off-Peak Hours - OPH). 

The second describes a pricing system with a variable energy 

tariffs similar to that in USA. For the second curve, the 

values are used as a guideline but with a realistic form [38]. 

For the previous example shown above (Figure 6), table 3 

lists the daily energy cost. The evaluation is performed first 

without vehicle and then when the PEV is integrated with 

two standard charge power values (230V-16A and 230V-

32A). Finally, the daily energy price is assessed when the 

PEV is charged with the implementation of the DP 

algorithm. We observe that the price without PEV is very 

low (same compared when the charge of PEV is performed 

with DP algorithm) because the daily consumption of house 

is extremely minor. We can see through this example that the 

application of the DP algorithm allows for the user to realize 

economic gains in comparison with PEV charging without 

any energy management strategy. 
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Figure 7. Daily energy pricing profiles 

Table 3. Assessment of the daily energy price 

Cost (€) France “Spot” 

House DLP without PEV 1.89 1.53 

House DLP +  PEV16A DLP 4.61 3.76 

House DLP + PEV32A DLP 5.00 3.92 

House DLP + PEV DLP (with DP) 4.26 3.34 
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SOC(t) 

Constraints 
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SOCopt (t) 

Total cost 

Discretization of 
the optimization 

space 

Discretization of 
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matrix C 
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For the database which represent 1,000 DLPs of 6 

room’s houses without electrical heating system in summer 

season (selected arbitrarily), the results obtained from the 

application of the DP algorithm are exposed. Figures 8 and 9 

show respectively the distributions issued from the 

application of the probabilistic algorithm of PEVs 

connections and the 1,000 PEVs charging currents acquired. 

We can observe that the average charge power obtained is 

low (equal to about 1kW). 
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Figure 8. Application of the probabilistic algorithm of PEVs 
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Figure 9. Database of the PEVs charging currents 

The DP algorithm is applied on 10,000 real case studies. 

Figure 10 illustrates the PEVs charging currents. Basic 

statistics are performed on these data (Table 4). We observed 

as previously that the average charge power obtained is low 

against the case without EMS. We also find that the 

dispersion is reasonable because 67% of the results are 

placed in the symetric interval around the average current 

bounded by the standard deviation. 
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Figure 10. PEVs charging currents – Application of the DP 

algorithm on 10,000 cases 
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Table 4. Statistics in the results of DP algorithm application 

on 10,000 cases 

Min. Mean Max. σ Mode Median 

0.22A 4.4A 37.25A 2.5A 6.74A 4.38A 

PEVs ϵ [mean – σ ; mean + σ] 

67% 

 

Using 10,000 real case studies, we have employed the 

daily energy pricing profiles previously presented for 

assessing the economic benefits for users provided by the 

application of the DP algorithm. So, based on all the cases, 

Table 5 lists the average cost of one day on one hand without 

vehicle and on the other hand with PEV charged at 230V-

16A and 230V-32A and charged with the application of the 

DP algorithm. For France where real electricity prices are 

used, the mean cost saving reaches 12.9% and 22.9% thanks 

to DP algorithm in comparison with PEV charging without 

energy management strategy. 

Table 5. Assessment of the energy price and cost saving 

based on 10,000 cases 

 

Cost (€) 
House DLP 

without PEV 

House DLP + 

PEV16A DLP 

France 4.56 6.42 

“Spot” 1.81 2.56 
 

Cost (€) 
House DLP + 

PEV32A DLP 

House DLP + PEV 

DLP (with DP) 

France 6.66 6.18 

“Spot” 2.63 2.43 

Cost saving 

France DP => PEV 16A : 12.9% 

France DP => PEV 32A : 22.9% 

“Spot” DP => PEV 16A : 17.3% 

“Spot” DP => PEV 32A : 24.4% 

 

The application of the DP algorithm on 10,000 real case 

studies gives significant observation. We obtain an average 

charge power about 1kW with a reasonable dispersion. We 

find that a French PEV user reached an average cost saving 

equal to 12.9% and 22.9% if charging the vehicle 

respectively at 230V-16A and 230V-32A. The DP algorithm 

is a energy management strategy which allows to user obtain 

financial gains. It’s a Vehicle-to-Home (V2H) concept. This 

work has conceded the creation of databases which are 

composed of houses DLPs incremented by the consumption 

of PEVs charged with the application of the DP algorithm. 

Theses databases have enabled the analysis covered by the 

remainder of this paper. That is the assessment of the impacts 

in the aging rate of a low voltage transformer which supplies 

a residential electric grid. 

4. Impacts on the transformer 

The low voltage transformers are first elements of 

residential electric grid to be impacted by the PEVs 

integration. Thereby, these ones will suffer a premature 

aging. So, this part evaluates this phenomenon and allows to 

observe the benefits of applying the Dynamic Programming 

for PEVs charging. For that, first the laws for life duration 

calculation are exposed. These ones require the dynamic 

monitoring during operation of the hot-spot temperature in 

the transformer windings. Second the most of widespread 

thermal model in the literature is presented. Third, a 

modelisation is performed for a distribution transformer of 

160kVA and then, a quantification of the impact on the 

transformer life duration is presented. 

4.1. Life duration 

It’s commonly accepted that the life duration of a 

transformer is reduced to the life duration of the insulations. 

Equation (25) from the Arrhenius law represents the life 

duration of a transformer [39]. 

 





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


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273

B
expAunit LifePer 

h

                                    (25) 

 
h  Hot-spot temperature of the windings 

BndaA  Constants 

 
Equations (26) and (27) describe respectively the laws to 

calculate the aging rate V for thermally upgraded paper 

(reference temperature is equal to 110°C) and non-thermally 

upgraded paper (reference temperature is equal to 98°C) 

[40]. 

 
















273

15000

273110

15000
expV

h

                                               (26) 

 

 
2V 6

98h
                                                                           (27) 

 

Given that the aging rate is a cumulative process, a 

equivalent aging factor FEQA for the total time period is 

introduced (equation (28)) [39]. 

 

 

 






N
1n n

N
1n nAAn

EQA

t

tF
F                                                              (28) 

 
FEQA Equivalent aging factor for the total time period 

FAAn Aging acceleration factor for the temperature during    

the time interval tn   

 tn Time interval in hours 

N Total number of time intervals 

 

Equation (29) represents the percentage of transformer 

Loss-of-Life (LOL) for a variable hot-spot temperature 

during a time interval [39][41]. 
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 
  LifeInsulation Normal NIL

100tF
%LOL

EQA 
                                        (29) 

 

LOL Percentage of transformer Loss-of-Life 

t Time interval in hours 

NIL 20.55 years and 30 years respectively for transformers 

with insulations which are thermally upgraded paper and not 

 

Equation (30) presents a second method which assesses 

the lifetime consumption L during a time interval [40]. 

 

  


2t

1t

N

1n
nn tVLor            dtVL                                      (30) 

4.2. Thermal model 

Obviously, the hottest element of the transformer will 

suffer the most damage. Therefore, the life duration of 

transformer is directly related to the hot-spot temperature. 

This one is usually placed at the top of the low voltage 

windings because the flux density is largest. For hot-spot 

temperature calculation, we have used the thermal model 

proposed by CEI 60076-7 [40]. This one is adapted for 

dynamic monitoring during operation. 

The hot-spot temperature calculation is performed from 

the top-oil temperature and the increase of hot-spot 

temperature in comparison with the top-oil (equation (31)). 

 

 h0h                                                                           (31) 

 

h Hot-spot temperature at the load considered 

 h Hot-spot-to-top-oil (in tank) gradient at the load 

considered 
 

 

Equation (32) allows the top-oil temperature calculation. 
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011or
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K Load factor (ratio of the load current to the rated 

current) 

R Ratio of load losses at rated current to no load losses 

 or Top-oil (in tank) temperature rise in steady state at 

rated losses 

k11 Thermal model constant 

0 Average oil time constant 

0 Top-oil temperature (in the tank) at the load considered 

a Ambient temperature 

x Exponential power of total losses versus top-oil (in tank) 

temperature rise (oil exponent) 

 

The increase of the hot-spot temperature in comparison 

with the top-oil is calculated by the equation (33). 

 
 2h1hh                                                               (33) 
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 hr Hot-spot-to-top-oil (in tank) gradient at rated current 

k and k 2221 Thermal model constant 

w Winding time constant 

y Exponential power of current versus winding 

temperature rise (winding exponent) 

4.3. Modeling of a low voltage distribution transformer 

A low voltage distribution transformer of 160kVA which 

supplies a residential electric grid area is chosen. This one is 

installed in a distribution station type “PSS” (insulated 

cabin). We have selected a low voltage transformer for 

several reasons. On one hand, these ones are widely used in 

France (about 700,000). On the other hand, they will the first 

elements of the grid to be impacted by the integration of 

PEVs. The ambient temperature affects the hot-spot 

temperature and in consequence, impacts the life duration of 

transformer [42]. So, we have used a daily average ambient 

temperature profile from real data provided by EDF for the 

Nimes city in 2006. This allows assess the average aging rate 

of the transformer. Given the transformer position (inside the 

cabin), we have increment 10°C at the daily average ambient 

temperature profile (Figure 11). 
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Figure 11. Daily ambient temperature profiles 
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In order to minimize errors caused by the assumption 

made to exclude harmonics induced in the power grid from 

domestic electrical appliances and PEVs, a transformer made 

with aluminum foil of the secondary is selected. This type of 

transformer is less sensitive to harmonics because the 

increase of losses is only due to the increase of the RMS 

value of the charging current [43]. Table 6 describes its 

electrics and geometrics characteristics [43]. 

Table 6. Electrics and geometrics characteristics of 

transformer [43] 

Apparent power 160kVA 

Cooling mode ONAN 

Prim. voltage 20kV 

Sec. voltage 410V 

Prim. current 4.6A 

Sec. current 225.3A 

No-load loss 381W 

LV Pj (75°C) 1230W 

MV load loss (75°C) 1615W 

POSL 60W 

Prim. conductors ø1mm 

Prim. layers number 16 

Rac1 75Ω 

Sec. conductors Alum. foil (= 0.35mm) 

Sec. layers number 46 

Rac2 7.7mΩ 

 

The life duration of the selected transformer is 30 years 

[41] and its insulations are non-thermally upgraded paper 

(reference temperature is equal to 98°C). So, the aging rate V 

calculation is performed by the equation (27). Matlab 

Simulink software is used for developed thermal model 

proposed by CEI 60076-7. Table 7 lists the values of 

parameters [43]. 
 

Table 7. Values of parameters from the thermal models [43] 

Δθor 50.4°C 

Δθhr 19°C 

x 0.8 

y 1.6 

τ0 120mns 

τw 4mns 

k21 1 

k22 2 

k11 1 

 

Figure 12 illustrates the hot-spot temperature profile 

obtained from the thermal model. The rated current (225.3A) 

has been applied at the secondary of the transformer. The 

hot-spot temperature fluctuation observed is due to the 

variation of the ambient temperature (day/night). 
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Figure 12. Hot-spot temperature profile 

4.4. Quantification of the impact in the life duration 

We have assessed the aging rate of a 160kVA low 

voltage transformer that feeds a residential electric grid. 

Thus, we have used the databases created previously which 

are composed of houses DLPs incremented by the 

consumption of PEVs charged with the application of the DP 

algorithm. The goal is to analyze the benefit in the life 

duration of transformer obtained by the application of a 

energy management strategy. We recall that the study is 

conducted with the following assumption: each home is 

equipped with only one PEV. 

The life span of a transformer is related to its Load Rate 

(LR) and the ambient temperature [44]. Even if the electric 

grid is composed of an equal number of houses, the LR 

varies due to the expansion of the electricity consumption of 

all the houses which constitute the electric grid. While 

forecasting the habits of people provides an approximation of 

the transformer DLP, the random factor is decisive. By 

creating databases of transformer DLPs, one can minimize 

this factor. Given that, the study is realized by varying the 

LR from 0 (no houses) to 120 houses (with 5 houses step). 

For each analysis point, 2,000 transformer DLPs are 

generated without, then, with the presence of one PEV per 

house charged with two standard charge powers on one hand, 

and on the other, with the application of the DP algorithm. 

These created databases of transformer DLPs take into 

account the disparity of the houses size and the percentage of 

house with an electric heating system in France [30]. For the 

2,000 transformer DLPs generated at each analysis point, all 

the houses and PEVs selected randomly are different but the 

data (home arrival and departure times, category, SOC and 

batteries size) of the PEV first charged with the two power 

levels (230V-16A and 230V-32A) without management and 

then charged with the application of the DP algorithm are 

identical. 

Nevertheless, because of the disparity among 2,000 LRs 

is too high, we define the average DLPs for each of the cases 

assessed for each analysis point. Indeed, the differences 

related to LRs are decisive for considering the averages 

DLPs and thus studying the average aging rate of the 

transformer. So, first we define the life duration of the 

transformer for each case. Figure 13 shows the results. 
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Figure 13. Life duration of the transformer 

 

Taking as reference the life duration of the transformer 

without PEV, we defined the aging rate of the transformer 

for each case. Figure 14 illustrates the results. We observe 

that the aging rate is strongly reduced when the PEVs are 

charged with the application of the DP algorithm. This one is 

a Energy Management Strategy (EMS) which allows at the 

distribution electric grid manager to preserve the grid 

elements. It’s a Vehicle-to-Grid (V2G) concept. 
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Figure 14. Aging rate of the transformer 

5. Conclusion and Future Work 

In this paper, we have proposed a smart charging 

algorithm of Plug-in Electric Vehicles (PEVs) in residential 

areas. This Energy Management Strategy (EMS) is based on 

a Dynamic Programming algorithm with offline 

configuration because it know house Daily Load Profile 

(DLP). A future work is proposed related to the offline 

character of the strategy. 

In this study, the aim has been to find the minimum 

constant (i.e. no variable) charge power of PEV by ensuring 

that the vehicle batteries reached the full State-of-Charge 

(SOC) for the next use. The entire time when the vehicle is at 

home is exploited. The study has been conducted with 

several assumptions: first, the home is equipped with only 

one PEV and second, this one leaves and arrives once a day. 

Perspectives are proposed referred to these assumptions. 

Another approach is used in this paper to solve the 

problems dealing with PEVs charging. Unlike the studies of 

the literature, the proposed methodology is “local” and it’s 

applicable immediately with existing electric grids without 

any additional infrastructure. It’s a major contribution 

because absent in literature. “Local” means that the 

algorithm is implemented locally for each residence without 

any communication with other houses or residences. 

Following the results from the application of the DP 

algorithm on 10,000 real case studies, we have proved that 

the EMS proposed is a Vehicle-to-Home (V2H) and Vehicle-

to-Grid (V2G) concepts. This one allows cost savings for the 

users and to preserve the grid elements which greatly 

benefits to the distribution electric grid manager. For a 

French PEV user, the financial gains obtained can reach 

22.9% and we have observed that the life duration of a low 

voltage transformer is extended. 

Many study perspectives can emerge. Under the 

assumption of one PEV per house, a first future investigation 

issue can be proposed. Several departures and arrivals of 

vehicles per day will affect the results. Therefore, the first 

approach is to take into account the details of behaviors of 

users from experimental tests. The adaptation of the 

developed DP algorithm to integrate up to three PEVs/house 

could be a second issue. This will require a similar study, as 

in this paper, wherein we will assume that the entire French 

fleet consists of PEVs and takes the probabilities of the 

number of vehicles/home into account. Finally, a last 

investigation issue can be proposed. This one consists to 

propose an online real-time optimal algorithm for PEVs 

charging in residential areas with the assumptions considered 

in this paper. 
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