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Abstract- This paper focused on the statistical modelling of wind speed data observed at two locations in Mauritius using 

some standard probability distribution functions (PDF). The objective was to determine the best PDF which can represent the 

data. The PDFs considered were Weibull, Rayleigh, Lognormal, Gamma, Normal and Frechet. The parameters for each PDF 

were estimated from the data using the Maximum Likelihood Estimation (MLE) technique. The Chi-Square (C-S), 

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) goodness-of-fit (GOF) tests were utilized to evaluate the 

effectiveness of the PDFs. For both locations all three GOF tests revealed that the Weibull and Burr distributions fit the wind 

speed data when the significance level is less than 5 %. 
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1. Introduction 

Wind energy has been exploited by mankind for more 

than 2000 years and represents a reliable source of renewable 

energy. In the present days, the wind energy technologies 

have reached such a mature level that it is being used as one 

of the main sources of producing electricity in many 

countries including Germany, Spain, United States, China 

and India [1, 2]. According to some recent studies presented 

by Elahee [3] and Mohee et al. [4], it is evident that 

Mauritius also possesses vast renewable resource potentials, 

including wind energy, for the production of electricity. 

Hence, it is worthwhile to make an assessment of the 

prospective of wind energy for the country. Although there 

are several initiatives already being undertaken to assess the 

possible use of wind energy locally, there are still a number 

of works that remain to be tapped, particularly in the light of 

recent technological development [5]. 

A wind energy evaluation involves a consolidated 

analysis of the possible wind energy resources of a specific 

location.  It starts with comprehending the general wind 

patterns of the region, and evolves to the gathering and 

analysis of the wind data [6]. To facilitate the analysis, 

researchers have relied on long-term wind measurements 

(more than one year of hourly data) which were statistically 

modelled using a standard probability density function (PDF) 

and its corresponding cumulative density function (CDF). 

This approach, which has been widely employed in the 

literature, provided the researcher with a simple and 

comprehensive method to estimate the mean power that can 

be extracted from the wind.  

Most of the research publications on the subject have 

given particular considerations to the Weibull distribution 

because it was found to fit a wide collection of wind data. 

For example, the Weibull PDF has been employed in the 

analysis of the wind energy potential for different regions in 

countries such as Tunisia [7], Nigeria [8], Turkey [9, 10], 

Iran [11], Columbia [12] and coastal areas of Jiwani, 

Pakistan [13]. However, some authors have noted that, in 

certain cases, the Weibull distribution failed to represent the 

wind speed data while another distribution may better fit the 

data. For instance, Morgan et al. [1] have shown that the 

bimodal Weibull, Kappa, and Wakeby distributions all 

displayed better approximate of the wind data recorded over 

a period of 20 years from different ocean buoy stations. 

Abbas et al. [5] performed a comparative study with six 

standard distributions for the wind speed data in Pakistan. 

Their results demonstrated that Burr, Lognormal and Gamma 

distributions modelled the data more accurately than 

Weibull. Kollu et al. [14] compared the accuracy of ten well-

known statistical models on wind speed data observed at five 

weather stations over the west coast of America. The 
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goodness of fit tests utilised concluded that the GEV PDF 

gave the closest fit to the observed data. Recently Masseran 

et al. [15] have analysed mean hourly wind speed data from 

20 stations in East Malaysia with nine different statistical 

distributions. They found that the Gamma distribution 

provided the best fit to all the data. It is therefore important 

to perform a preliminary comparative analysis to identify 

which distribution better fits the wind data in a particular 

location. This will give the researcher a better estimate of the 

wind power at that location. 

In the present work the focus was to determine the best 

statistical distribution for wind speed data collected at two 

locations in Mauritius. The distributions considered were the 

Weibull, Rayleigh, Lognormal, Gamma, Normal and Frechet 

PDFs. The effectiveness of these distributions to fit the data 

was investigated using three goodness of fit tests, namely, 

Chi-Square (C-S), Kolmogorov-Smirnov (K-S) and 

Anderson-Darling (A-D).  

2. Materials and Methods 

2.1. The Study Area and Data Set 

The island of Mauritius is situated in the tropical South 

West Indian Ocean (SWIO) region. It spans around 60 km 

from north to south and 42 km from east to west. Being of 

volcanic origin, its topography consists of a central plateau 

which is about 500 meters above sea level and gradually 

rising towards the south west where it reaches its highest 

point at about 700 meters above sea level, as shown in Figure 

1. This plateau is surrounded by a chain of mountains and 

some isolated peaks. Urban areas are mostly concentrated on 

the central plateau and coastal regions.  

 

 

Fig. 1. A map of the island of Mauritius showing the 

elevation contours and locations of Plaisance and Vacoas. 

Due to its geographical location, the island is influenced 

by large ocean-atmosphere interactions such as the south east 

trade winds. The two sites selected in this study are Plaisance 

and Vacoas. Plaisance is located near the South East coast of 

Mauritius with latitude 20.26 S, longitude 57.41 E at an 

elevation of 57 m above sea level. Vacoas is located on the 

central plateau with latitude 20.17 S, longitude 57.29 E at 

an elevation of 425 m above sea level.  

The data used in this study are daily mean wind speeds 

which were obtained from the Utah Data Climate Centre and 

the Mauritius Meteorological Services (MMS). Wind speed 

data obtained for Plaisance were from 1st January 1973 to 

30th July 2013, while data for Vacoas were from 1st July 1977 

to 30th July 2013. They were measured using cup 

anemometers placed at a height of 10 m above ground level. 

The data were checked thoroughly for homogeneity, outliers 

and missing records before being processed for this study as 

guided by the AWS (1997) [16] wind resource assessment 

handbook. Figure 2 shows plots of the observed temporal 

variations of wind speed data at both Plaisance and Vacoas 

and Figure 3 displays their corresponding prevailing 

directions using wind roses. The latter represents the bearing 

of the wind along the angular direction while the radial axis 

represents the percentage of occurrences. 

 

(a) Plaisance 

 

(b) Vacoas 

Fig. 2. Wind Speed time series data. 
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(a) Plaisance 

 

(b) Vacoas 

Fig. 3. Wind Roses for observed wind data. 

It can be observed from Figure 2, that the wind speeds 

for both locations vary almost periodically. The sudden 

peaks correspond to wind gusts. The wind roses demonstrate 

that the prevailing wind direction was from the south east, 

although some westerly winds were apparent. The whole 

dataset for both stations are statistically described in Table 1. 

It can be seen that the mean value of the wind speed is higher 

for Plaisance than for Vacoas. The Standard Deviation, 

which describes by how much the data differ from the mean, 

is nearly the same for both stations. Skewness is a measure 

of symmetry. Hence the skewness values indicated that the 

distributions for both stations are asymmetric. Moreover the 

excess Kurtosis which indicates the shape of the random 

variable probability distribution suggested that the data for 

Vacoas is more peaked compared to the data for Plaisance. 

Therefore, only standard probability density distribution that 

correspond to the above statistical characteristics were 

considered as discussed in the next section 

 

 

 

Table 1. Descriptive Statistics of the wind speed data. 

Statistics 
Estimates (m/s) 

Plaisance Vacoas 

Sample size ( n ) 16790 14193 

Mean ( v ) 4.0507 3.5729 

Standard Deviation (
m

 ) 1.7906 1.6140 

Minimum Value (
min

v ) 0.0714 0.0833 

Maximum Value (
max

v ) 30.4 37.6 

Skewness 1.2802 2.3123 

Excess Kurtosis 9.5069 34.343 

 

2.2. Standard Statistical Distributions 

The probability density function (PDF) for the velocity 

variable v and its corresponding cumulative density function 

(CDF) for each standard distribution considered are listed in 

table 2. 

2.3. Method for Estimating the Parameters 

Several methods have been proposed to estimate the 

parameters of a particular distribution which will make the 

latter fit the data as close as possible. The suitability of the 

method depends mostly on the data size. The most accurate 

and common one is the Maximum Likelihood Estimation 

(MLE) [19]. MLE was generally preferred in this work as it 

lowers the mean square errors associated with model 

parameters estimates. 

The MLE of a variable, say x, in a given function g(x) is 

defined as the value of x that maximizes the likelihood of 

g(x) or, equivalently, the logarithm of the likelihood of g(x). 

This reduces the occurrence of an important number of 

unlikely outcomes for x. Table 3 lists the MLE formulation 

of each of the distributions presented in Table 2 

2.4. Goodness-of-fit (GOF) Tests 

GOF tests are techniques used to assess how well a 

distribution fits a given data. They are used to calculate the 

deviation between the observed and predicted data from the 

distribution considered. The decision for accepting or 

rejecting the PDF depends on the critical value of the test. If 

it is greater than the computed statistical value of the test, 

then the null hypothesis is accepted, that is the distribution 

fits the wind speed data. The critical value is dependent on 

the specific distribution that is being tested. However, this 

value alone is not sufficient to confirm the null hypothesis. 

Another parameter which is also useful for the conclusion of 

a goodness of fit test is the p-value. It is the probability that 

another sample will be unusual as the current sample given 

that the fit is appropriate. It is like a “best fit” test of the 

distribution with data. On comparing the fitting of some 

distributions to a set of data, the one with the higher p-value 
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is likely to be the better fit regardless of the level of 

significance [20]. The threshold for the p-value is 0.5. 

The most popular GOF tests are Chi-Square (C-S), 

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D). 

In the following sections, these GOF tests are briefly 

described and the formulation for their critical and p-values 

are given. 

2.4.1. Chi-Square Test  

The Chi-Square (C-S) test compares the histogram of the 

data to the shape of the PDF. It is therefore dependent on 

binned data (class intervals) and the estimated parameters. 

The C-S test is valid for data with large sample sizes [21]. 

The statistical test is initiated by arranging the n observations 

into a set of k type intervals as given. The test statistics is 

given by 

 
,

2

1

2







k

i

i

ii

E

EO
                                        (1) 

where 
i

O  denotes the observed frequency in the ith class 

interval and inpiE   is the expected frequency in the same 

class interval, with 
i

p  being the corresponding probability 

associated with the PDF. 

The statistical value is computed from equation (1) and 

is compared with the critical value 2

1, sk
  where   is the 

level of significance and k – s – 1 is the degrees of freedom, 

with k and s representing the number of class intervals and 

the number of parameters in each distribution respectively. 

The critical value is obtained from the table of Chi-Square 

distribution [22]. 

 

 

Table 2. Probability density function (PDF) and cumulative density function (CDF) for each distribution. 
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Table 3. MLE formulation for estimating the parameters of each distribution. 

Distribution MLE formulation 
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2.4.2. Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov (K-S) test is mainly based on 

the maximum largest absolute deviation between an 

empirical and a theoretical frequency cumulative distribution 

[23]. Its sample statistics is formulated as: 

)()(max vOvFD  ,                                         (2) 

where )(vO  is the empirical cumulative frequency 

distribution evaluated at v  and )(vF  is the corresponding 

theoretical cumulative distribution for the PDF considered. 

The K-S test compared the value obtained from equation (2) 

with the critical value 


D  which is obtained from table of 

K-S critical values for the specified significance level  and 

sample size [14].  

2.4.3. Anderson-Darling test 

The Anderson-Darling (A-D) test is a modification of the 

K-S test. It compares the fit of an observed cumulative 

distribution to an expected one, by giving higher weights to 

the tails as opposed to the K-S test. It is more suitable for 

sensitive data [24]. In this GOF test, the sample statistics is 

computed by 
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where )(
i

vF  is the cumulative distribution function for the 

PDF.  

3. Results and Discussion 

3.1. MLE of the Wind Speed Data 

Wind speed data of the two stations, Plaisance and 

Vacoas, were used in the evaluation of different probability 

distribution functions to assess their suitability. Table 4 

shows the fitted parameters for each distribution at each 

station obtained by using the MLE estimates. Comparison of 

probability density distributions according to observed data 

with all the distribution under the investigated sites are 

illustrated in Figures 4 and 5 for Plaisance and Vacoas 

respectively. For both stations, Weibull, Rayleigh, Burr and 

Frechet visually appear to follow the trend of the data, while 

Rayleigh and Frechet tended to skew to the left. Burr PDF 
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appears to over predict the maximum peak of the data while Weibull seemed to slightly under predict the maximum peak 

Table 4. Fitted Parameters of each PDF obtained from their MLE. 

Distribution 
Parameters 

Plaisance Vacoas 

Burr α =2.672, k = 13.033, β = 2.7594 α =3.0087, k = 4.0726, β = 6.1324 

Frechet α = 2.2522 , β = 2.7594 α =2.2721, β = 2.5425 

Gamma α = 5.6447, β = 0.7029 α = 5.1413, β = 0.7090 

Lognormal µ = 1.2713,   = 0.5021 µ = 1.1889,    = 0.4918 

Normal α = 3.9678, β = 1.6699 α = 1.6077,  β = 3.6453 

Rayleigh  = 3.1151   = 2.7454 

Weibull k = 2.544, c = 4.4695 k = 2.5771, c = 4.0811 

  

 

Fig. 4. PDF for Plaisance data. 

 

Fig. 5. PDF for Vacoas data. 

The wind speed cumulative probability distributions 

obtained from probability density functions (Weibull, 

Rayleigh, Burr, Frechet, Lognormal, Normal, and Gamma) 

distribution functions for the investigated sites are shown in 

Figures 6 and 7. It can be seen from both figures, that Burr 

and Weibull are closer to the Observed Data. This indicates 

that these distributions represent better the data compared to 

the other distributions. 

 

Fig. 6. CDF for Plaisance. 

 

Fig. 7. CDF for Vacoas. 

3.2. GOF Tests 

The GOF tests statistics given by equations (1), (2) and (3) 

were applied to the wind speed data for Plaisance and 

Vacoas. The tests were performed at significance levels 10%, 

5%, 2% and 1%. Tables 5 to 10 compare the statistic values 

of each GOF test with the critical value for the distribution 

considered. İt can be noted that out of the seven distributions 

considered, the Weibull and the Burr distributions 
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significantly fit the data when a significance level of less than 5 percent is used. 

 

Table 5. GOF test for Plaisance wind speed data using C-S test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 12.02 14.07 16.62 18.48 

Statistics (p-value) Accept 

Weibull 15.82 (0.0268) No No Yes Yes 

Burr 13.12 (0.0691) No Yes Yes Yes 

Normal 69.24 (2.1×10-12) No No No No 

Gamma 107.43 (0) No No No No 

Rayleigh 245.48 (0) No No No No 

Lognormal 297.06 (0) No No No No 

Frechet 1104.30 (0) No No No No 

 

 

Table 6. GOF test for Plaisance wind speed data using K-S test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 0.0223 0.0248 0.0277 0.0297 

Statistics (p-value) Accept 

Weibull 0.0200 (0.1779) Yes Yes Yes Yes 

Burr 0.0272 (0.0232) No No Yes Yes 

Normal 0.0296 (0.0102) No No No Yes 

Gamma 0.0523 (1.4×10-7) No No No No 

Rayleigh 0.0632 (7.1×10-11) No No No No 

Lognormal 0.0793 (7.4×10-17) No No No No 

Frechet 0.1523 (0) No No No No 

 

 

Table 7. GOF test for Plaisance wind speed data using A-D test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 1.9286 2.5018 3.2892 3.9074 

Statistics (p-value) Accept 

Weibull 1.0424 (-) Yes Yes Yes Yes 

Burr 1.8135 (-) Yes Yes Yes Yes 

Normal 6.3919 (-) No No No No 

Gamma 16.233 (-) No No No No 

Rayleigh 41.691 (-) No No No No 

LogNormal 39.825 (-) No No No No 

Frechet 154.09 (-) No No No No 
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Table 8. GOF test for Vacoas wind speed data using C-S test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 12.017 14.067 16.622 18.475 

Statistics (p-value) Accept 

Weibull 15.408 (0.0311) No No Yes Yes 

Burr 11.771 (0.1083) Yes Yes Yes Yes 

Normal 63.512 (3×1011) No No No No 

Gamma 101.95 (0) No No No No 

Rayleigh 230.36 (0) No No No No 

Lognormal 296.6 (0) No No No No 

Frechet 1010.3 (0) No No No No 

Table 9. GOF test for Vacoas wind speed data using K-S test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 0.02233 
0.0247

9 
0.02771 0.02974 

Statistics (p-value) Accept 

Weibull 0.01507 (0.49849) Yes Yes Yes Yes 

Burr 0.02342 (0.07334) No Yes Yes Yes 

Normal 0.03309 (0.00274) No No No No 

Gamma 0.04668 (4×10-6) No No No No 

Rayleigh 0.06723 (1.8×10-12) No No No No 

Lognormal 0.07394 (1×10-14) No No No No 

Frechet 0.14465 (0) No No No No 

Table 10. GOF test for Vacoas wind speed data using A-D test. 

Distribution 

α 0.1 0.05 0.02 0.01 

Critical Value 1.9286 2.5018 3.2892 3.9074 

Statistics (p-value) Accept 

Weibull 1.0709 (-) Yes Yes Yes Yes 

Burr 1.7343 (-) Yes Yes Yes Yes 

Normal 6.5114 (-) No No No No 

Gamma 14.099 (-) No No No No 

Rayleigh 41.056 (-) No No No No 

Lognormal 40.63 (-) No No No No 

Frechet 156.46 (-) No No No No 

 

4. Conclusion 

In this paper the C-S, K-S and A-D GOF tests were used 

to verify which of the seven standard probability distribution 

considered best fit the wind speed data collected at Plaisance 

and Vacoas. Although visual comparisons of the standard 

PDF and CDF curves with the data indicated that the Burr 

and Weibull distributions better fit the data, these were 

confirmed by the GOF tests which revealed that these two 

distributions fit the data when the significance level is less 

than 5%. 
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