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Abstract- Fuel cells (FC) convert directly into a dc electrical energy the chemical energy of a reaction of hydrogen and 
oxygen. Proton Exchange Membrane (PEMFC) is a suitable alternative for both electrical transportation and stationary 
applications. This article deals with an Artificial Neural Network (ANN) modelling method of a PEMFC. This modelling 
approach permits to describe both transient and steady state behaviours of the PEMFC voltage. Furthermore, the prediction of 
the operating temperature of a PEMFC based only on its measured voltage and current is proposed and tested successfully. 
Indeed, experimental data from a 1.2 kW Nexa Ballard PEMFC is used to validate the proposed method.  

Keywords- Neural network; Thermal model; Polymer electrolyte fuel cells; green energy; distributed sources.  

 

1. Introduction 

Proton Exchange Membrane Fuel Cell (PEMFC) is 
considered as a potential future green power source for both 
electrical transportation and stationary application, due to its 
high efficiency, zero emission if it runs with pure hydrogen 
and its low operating temperature. The main challenge of 
PEMFC systems is the design of a power converter suitable 
for conditioning the output power with high efficiency and 
reliability. Indeed, about 80% of the damage occurred in the 
PEMFC system are involved by the power converters. 
During the design phase, the power converter must be tested 
and adjusted with a real PEMFC, and thereafter, it must be 
validated. However, the design and development of PEMFC 
including auxiliaries such as testing an air compressor 
control, power and energy management and performance 
optimization can damage a PEMFC easily. In addition, the 
cost of testing (hydrogen consumption and the secure 
facilities requirements) is still relatively high, for 
experiments with a real PEMFC. These disadvantages 
demonstrate the great importance of the design of a PEMFC 
emulator in real time based on a model material for 
applications such as HIL (Hardware In the Loop). During the 
design process of the power system of PEMFC, power 
converters and the auxiliaries development can be initially 
verified and increased with a PEMFC emulator in real time 

without any risk for the stack, and a low system operating 
cost. Modelling of PEMFC met a growing interest in the 
literature, where it is usually done with complex models 
based on knowledge of the physicochemical phenomena [1-
3]. These models need a good knowledge of the parameters 
describing the behavior of the process [4-7]. Generally, these 
parameters are no easy to establish for the PEMFC systems. 
A model describing the transient behavior of a PEMFC stack 
with equations is given in [8]. However, the internal 
parameters should be defined such as the ohmic resistance, 
which determines the humidity of the membrane, as well as 
overflowing and drying of electrodes. These internal 
parameters are significant when the cell voltage is 
considered, but they were not considered in this 
mathematical model, as the required parameters are difficult 
to calculate. Hybrid models could overcome these issues. In 
[9], a PEMFC model has been developed, which is able to 
characterize the cell either steady state or transient. 
Combined electrical circuit�based model and the empirical 
model, the proposed model presents a good agreement with 
the experimental results. However, this model is correct only 
in a small range.  

Nevertheless, it is possible to obtain a behavioral 
modeling and without the identification of all these 
parameters through a models so called "black box". These 
models are based on readily measurable variables such as 
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temperature, pressure, or the current of the cell and are able 
to estimate the output voltage of the PEMFC.  

Today, dynamic models of PEMFC systems based on 
Artificial Neural Networks (ANN) are rare in the literature. 
However, a lot of substantially stationary models have been 
established with good results [10-13].  

In [13], a static and dynamic model of the PEMFC based 
on ANN has been proposed and experimental results were 
presented. This proposed model uses the measured 
temperature, the fuel cells current, the stoichiometry of the 
two gases and humidity. This modeling approach gives good 
results, even if it suffers from a disadvantage concerning the 
evolution of the temperature which is not considered. In [14], 
neuronal modeling of a high power PEMFC is presented 
where the evolution of temperature was considered. 
However, due to the not recurring structure of the ANN, the 
model presented is static [13]. In addition the temperature 
was measured at the anode circuit and in the water tank 
which does not provides the accurate operating temperature 
of the fuel cell. Indeed, in [15], an infrared camera was used 
in order to improve acquisition of the temperature in the 
cells.  

In this paper, a novel modelling approach of the PEMFC 
to provide stack voltage characteristic and the operating 
temperature is presented based on ANN and its performances 
are analyzed. This method called "black box" consists of the 
dynamic neural modeling with recurrent ANN structure to 
predict with a good accuracy the PEMFC voltage and 
operating temperature by the use an experimental data. 

2. Development of the ANN Modelling Approach 

ANN is commonly considered as an attractive and 
powerful tool to provide the relation of complex and 
nonlinear dynamic model based only on input-output data 
mapping [16-18]. In the literature, they are several models 
have been proposed for different applications [19]. 
Generally, the neural network has two types of structure, a 
feed-forward architecture networks where the direction of the 
signals is only from input to output. Unlike, for networks 
feed-back structure, the direction of the signals is from input 
to output and vice versa [13]. ANN learning can be classified 
in two categories [20]: the supervised (learning with a 
teacher) or unsupervised (learning without a teacher) [13]. 
For the supervised training which assumes the availability of 
a supervisor, each element in input vector represents an 
explicit element in the output target vector. While in the 
unsupervised training, the ANN model is not trained to any 
certain output target, and the reinforcement learning is 
accomplished via a trial and error learns [20, 21]. 

A typical feed–forward neural network perceptron with 
Back-propagation (BP) algorithm has been used in this study. 
The BP algorithm which has a large classification capacity is 
widely used in the area of identification and control [10]. The 
algorithm uses the technique of gradient descent search in 
order to reduce a cost function mean squared error (MSE). 
The minimization process is carried out by modifying the 
weight vector of the neural networks. Some training 
algorithms have been presented in order to adapt the weight 
values in the dynamic recurrent network. The minimized cost 

function, which is the error between the network output and 
the desired output as expressed as: 
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Where yj(k) is the output of  jth neuron and yj*(k) is the 
desired output.  

To achieve a neuronal dynamic modelling the PEM fuel 
cell, the neuronal structure illustrated in Fig. 1 was chosen, 
which represents a typical processing element which forms a 
weighted sum of its inputs and puts the result via a nonlinear 
transfer function to the output. These transfer functions can 
also be linear, and then the weighted sum is transmitted 
directly to the output path. The multi-layer perceptron (MLP) 
used in this work is composed of three main layers. The first 
part is the input layer where experimental data are presented, 
then are processed and propagated via a hidden layer, to the 
output layer. Training a network consist to modify 
continuously the weights of the connecting links between 
processing elements as patterns of inputs and corresponding 
desired outputs are presented to the network [22].  

Equ. (2) and Equ. (3) represent respectively the weighted 
summation of the inputs and the non linear transformation 
(transfer function) to the output of the neuron.            
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Figure 1. Schematic diagram of a basic formal neuron. 

A recurrent neural structure allows, with adding time 
delays to take into account the time variation of input 
parameters to analyze the dynamics of output [13]. In order 
to speed up the convergence of the learning process of ANN, 
we choose to use the Levenberg-Marquardt (LM) method 
which improves the gradient decent method of back-
propagation [23].  

The neural electrochemical model the PEMFC consists of 
three layers, the input layer, hidden layer and the output layer 
(see Fig. 2). The activation function used for the first two 
layers is the tangent sigmoid function (tansig), while the 
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linear activation function is used for the output layer.

 
Figure 2. Schematic diagram of the neural electrochemical 
                model the PEM fuel cell.  

 The structure of neural networks used to provide the 
operating temperature of the PEMFC is illustrated in Fig. 3. 
For training the ANN, having regard to the electrochemical 
performance of the PEMFC model presented previously, we 
used the same configuration in terms of type of activation 
and the number of neurons in each layer function. We took 
into account the dynamics of the current and voltage by 
introducing time delays to the input of ANN. 

 
Figure 3. A block diagram of an ANN PEMFC operating  
                 temperature. 

3. Experimental Setup Details 

The all experimental data which are used in this paper are 
derived from [24]. A 1200 W Nexa Ballard with 47 cells 
connected in series. In order to provide an accuracy cells 
operating temperature, an infrared camera is used. The 
current profile used in this analyze is depicted in Fig. 4. 

 
Figure 4. A very high dynamic applied current profile [24]. 

4. Simulation Results and Discussion 

To validate the effectiveness of the neural modelling 
approach of PEMFC a training process using experimental 
data is achieved using Matlab/Simulink® and Neural 
Network Toolbox™. A number of epochs between 
displaying, maximum number of epochs, performance goal, 
and other training parameters are listed in Table 1. Fig. 5 
depicts a training error of PEMFC stack voltage prediction 
during the learning process. Training performance goal was 
3e-8 and the maximum training epochs was less than 25000. 
After 25000 epochs, the error was 3.117e-8, then the assigned 
performance goal was not reached, but the trained neural 
network has a good performances. To validate the proposed 
neural modelling method, a very high variation of the current 
is used (see Fig. 4). This current profile includes the total 
operating range from 0 to 45 A [24]. 

 
 
 

 
 
 
 

Table 1. PEM fuel cell output voltage model parameters 

Epochs between displays 10 
Maximum number of epochs to train 25000 

Performance goal 3e-8 

Learning rate 0.001 

Maximum validation failures 5 

Ratio to increase learning rate 1.5 

Ratio to decrease learning rate 0.7 
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Figure 5. Training error of AE voltage prediction during the learning process. 

 

 
Figure 6. Neural PEM fuel cell stack voltage prediction performances. 

As we can see in Fig. 6, the neural predict with a good 
precision the voltage of the 47 cells stack of the PEMFC than 
the model presented in [24]. Indeed, with the neural method, 
the tracking error is less than 0.5%, while it is around 20% 
with the method given in [24]. 

Table 2 summarizes the number of epochs between 
displaying, maximum number of epochs, performance goal, 
and other training parameters for the neural operating 
temperature prediction. Fig. 7 shows a training error of PEM 
fuel cell operating temperature prediction during the learning 
process. Training performance goal was 4.3e-9 and the 
maximum training epochs was less than 25000. After 12048 
epochs, the error was 4.299e-9, then the assigned 
performance goal was reached, and the neural network 
trained.  

Table 2. PEM fuel cell operating temperature prediction 
                 model parameters  

Epochs between displays 10 
Maximum number of epochs to train 25000 

Performance goal 4.3e-9 

Learning rate 0.001 

Maximum validation failures 5 

Ratio to increase learning rate 1.5 

Ratio to decrease learning rate 0.7 
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Figure 7. Training error for operating tempeature prediction during the learning process. 

As we can see in Fig. 8, the neural predict with a good accuracy the voltage of the 47 cells stack of the PEM fuel cell than 
the model presented in [24]. Indeed, with the neural method, the tracking error is less than 0.2%, while it is around -10% and 
+2% with the method given in [24]. 

 
Figure 8. Neural PEM fuel cell stack voltage prediction performances.

5.  Conclusion 

A dynamical model of a PEMFC stack voltage behavior 
and operating temperature prediction based on artificial 
neural networks was proposed in this paper. Firstly, the feed-
forward neural network (FFNN) was trained offline by using 
experimental data, to predict a PEM fuel cell voltage without 
using any analytical relations. The neural model 
approximates with a good accuracy a stack voltage of a 
PEMFC with comparison with a model existing in the 
literature. Indeed, with the proposed approach, a tracking 
error less than ±0.5%, while it is around ±20% with a 
compared method.  

Thereafter, a neural network operating temperature of 
cells based on the feed-forward neural network (FFNN) was 
presented and tested successfully using experimental data.  

 

 
The tracking error is less than 0.2% while it is around -

10% and +2% with the model derived from the literature.  
With this approach, a simulation model which describes 

both the 47 cells stack voltage and operating temperature 
with a good accuracy is presented and validate with an 
experimental data. This model can be used	  during the phase 
of development of PEMFC auxiliaries such as the power 
converter without any risk to damage PEMFC, and with a 
less cost.  
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