
International Electronic Journal of Algebra

Volume 29 (2021) 15-49

DOI: 10.24330/ieja.851985

THE LOEWY SERIES OF AN FCP (DISTRIBUTIVE) RING

EXTENSION

Gabriel Picavet and Martine Picavet-L’Hermitte

Received: 14 October 2019; Revised: 17 July 2020; Accepted: 19 July 2020

Communicated by A. Çiğdem Özcan

Abstract. If R ⊆ S is an extension of commutative rings, we consider the lat-

tice ([R,S],⊆) of all the R-subalgebras of S. We assume that the poset [R,S]

is both Artinian and Noetherian; that is, R ⊆ S is an FCP extension. The

Loewy series of such lattices are studied. Most of main results are gotten in

case these posets are distributive, which occurs for integrally closed extensions.

In general, the situation is much more complicated. We give a discussion for

finite field extensions.
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1. Introduction and notation

If L is a complete lattice, with smallest and greatest elements, its socle S(L) is

defined as the supremum of all its atoms. Then the Loewy series of L is defined by

transfinite induction, where in particular Si+1(L) = S(Si(L)) for a positive integer i

(See Section 3 for more details). When L is the lattice of submodules of a module,

the Loewy series of L is a well known topic and its theory is a long chapter of

algebra, even when the base ring is non-commutative.

In this paper, we consider the category of commutative and unital rings, whose

epimorphisms will be involved. If R ⊆ S is a (ring) extension, we denote by [R,S]

the set of all R-subalgebras of S and set ]R,S[:= [R,S] \ {R,S} (with a similar

definition for [R,S[ or ]R,S]).

We will consider lattices of the following form. For an extension R ⊆ S, the

poset ([R,S],⊆) is a complete lattice, where the supremum of any non void subset

is the compositum of its elements, which we call product from now on and denote

by Π when necessary, and the infimum of any non void subset is the intersection

of its elements. We emphasize on the following. If R ⊆ S is a ring extension, our
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main interest is in the properties of the Loewy series related to the lattice [R,S],

and not in the lattice of R-submodules (R/C-submodules) of S/R, where C is the

conductor of R ⊆ S, although there are some relations. Moreover, we only consider

extensions of finite length, in a sense defined below, so that Loewy lengths are finite

in this paper.

As a general rule, an extension R ⊆ S is said to have some property of lattices if

[R,S] has this property. We use lattice definitions and properties described in [20].

The extension R ⊆ S is said to have FIP (for the “finitely many intermediate al-

gebras property”) or is an FIP extension if [R,S] is finite. A chain of R-subalgebras

of S is a set of elements of [R,S] that are pairwise comparable with respect to in-

clusion. We will say that R ⊆ S is chained if [R,S] is a chain. We also say that the

extension R ⊆ S has FCP (or is an FCP extension) if each chain in [R,S] is finite.

Clearly, each extension that satisfies FIP must also satisfy FCP. A distributive FCP

extension has FIP ([31, Theorem 4.28]). Dobbs and the authors characterized FCP

and FIP extensions [7]. See also [16].

This paper is a continuation of our earlier paper [29], where we considered

Boolean ring extensions. It is devoted to the study of Loewy series of an FCP

(distributive) extension, a notion linked to Boolean extensions. As much as pos-

sible, we give results for FCP extensions that are not necessarily distributive, in

particular, for the behavior of the Loewy series with respect to classical construc-

tions of ring theory. It may be asked whether the distributivity property may be

replaced with the modular condition, since the lattice of submodules of a module

is evidently modular.

In a forthcoming paper, we study distributive extensions. Note that integrally

closed FCP extensions are distributive (see Example 3.10 and [29, Proposition 2.4]).

Our main tool will be the minimal (ring) extensions, a concept that was in-

troduced by Ferrand-Olivier [11]. In our context, minimal extensions coincide with

atoms. They are completely known (see Section 2). Recall that an extension R ⊂ S
is called minimal if [R,S] = {R,S}. The key connection between the above ideas

is that if R ⊆ S has FCP, then any maximal (necessarily finite) chain C of R-

subalgebras of S, R = R0 ⊂ R1 ⊂ · · · ⊂ Rn−1 ⊂ Rn = S, with length `(C) :=

n < ∞, results from juxtaposing n minimal extensions Ri ⊂ Ri+1, 0 ≤ i ≤ n − 1.

An FCP extension is finitely generated, and (module) finite if integral. For any

extension R ⊆ S, the length `[R,S] of [R,S] is the supremum of the lengths of

chains of R-subalgebras of S. Notice that if R ⊆ S has FCP, then there does exist

some maximal chain of R-subalgebras of S with length `[R,S] [10, Theorem 4.11].
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Any undefined material is explained at the end of the section or in the next

sections.

Section 2 is devoted to some recalls and results on ring extensions and their

lattice properties.

In Section 3, we study the Loewy series of an arbitrary FCP extension. As a first

property, the Loewy series behaves well with respect to localization (Proposition

3.14). Let R ⊂ S be a distributive FCP extension. Proposition 3.8 shows that the

Loewy series S0 := R ⊂ . . . ⊂ Si ⊂ . . . ⊂ Sn+1 := S is such that Si ⊂ Si+1 is

a Boolean extension for each i = 0, . . . , n − 1. In particular, Theorem 3.25 gives

a characterization of such extensions verifying [R,S] = ∪ni=0[Si, Si+1]. We give

computations of Loewy series for some special extensions or some subextensions,

for example for Nagata extensions. We show also how to compute the Loewy series

of some modules by using the Loewy series of a ring extension. We give many

examples. For instance, if R ⊆ S is an FCP almost-Prüfer extension with Prüfer

hull R̃, the Loewy series of R ⊆ S is gotten by using the Loewy series of R ⊆ R and

R ⊆ R̃ (Corollary 3.35). Note here that ring extensions whose Loewy length is 1

are, among others, Boolean extensions and pointwise minimal extensions (Corollary

3.9 and Proposition 3.12).

Section 4 specially deals with field extensions. We begin with the characterization

of the Loewy series of a finite field extension k ⊆ L by means of the Loewy series

of k ⊆ T and k ⊆ U , where T (resp. U) is the separable (resp. radicial) closure

of k ⊆ L (Proposition 4.3). Loewy series of finite cyclic field extensions (they are

necessarily distributive) are completely determined in Theorem 4.14.

We denote by (R : S) the conductor of R ⊆ S. The integral closure of R in S

is denoted by R
S

(or by R if no confusion can occur). The characteristic of a field

k is denoted by c(k). A purely inseparable field extension is called radicial in this

paper. In particular, if k ⊂ L is a radicial FIP field extension, then [k, L] is a chain.

Finally, |X| is the cardinality of a set X, ⊂ denotes proper inclusion and, for a

positive integer n, we set Nn := {1, . . . , n}.

2. Recalls and results on ring extensions

This section is devoted to two types of recalls: commutative rings and lattices.

2.1. Rings and ring extensions. A local ring is here what is called elsewhere a

quasi-local ring. As usual, Spec(R) and Max(R) are the set of prime and maximal

ideals of a ring R. The support of an R-module E is SuppR(E) := {P ∈ Spec(R) |
EP 6= 0}, and MSuppR(E) := SuppR(E) ∩Max(R). If E is an R-module, LR(E)

(also denoted L(E)) is its length.
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If R ⊆ S is a ring extension and P ∈ Spec(R), then SP is both the localization

SR\P as a ring and the localization at P of the R-module S. We denote by κR(P )

the residual field RP /PRP at P . An extension R ⊂ S is called locally minimal

if RP ⊂ SP is minimal for each P ∈ Supp(S/R) or equivalently for each P ∈
MSupp(S/R).

The following notions and results are deeply involved in the sequel.

Definition 2.1. [4, Definition 2.10] An extension R ⊂ S is called M -crucial if

Supp(S/R) = {M}. Such M is called the crucial (maximal) ideal C(R,S) of R ⊂ S.

Theorem 2.2. [11, Théorème 2.2] A minimal extension is crucial and is either

integral ((module)-finite) or a flat epimorphism.

Recall that an extension R ⊆ S is called Prüfer if R ⊆ T is a flat epimorphism

for each T ∈ [R,S] (or equivalently, if R ⊆ S is a normal pair) [17, Theorem 5.2]. In

[27], we called an extension which is a minimal flat epimorphism, a Prüfer minimal

extension. Three types of minimal integral extensions exist, characterized in the

next theorem, (a consequence of the fundamental lemma of Ferrand-Olivier), so

that there are four types of minimal extensions, mutually exclusive.

Theorem 2.3. [7, Theorem 2.2] Let R ⊂ T be an extension and M := (R : T ).

Then R ⊂ T is minimal and finite if and only if M ∈ Max(R) and one of the

following three conditions holds:

(a) inert case: M ∈ Max(T ) and R/M → T/M is a minimal field extension.

(b) decomposed case: There exist M1,M2 ∈ Max(T ) such that M = M1 ∩
M2 and the natural maps R/M → T/M1 and R/M → T/M2 are both

isomorphisms.

(c) ramified case: There exists M ′ ∈ Max(T ) such that M ′
2 ⊆M ⊂M ′, [T/M :

R/M ] = 2, and the natural map R/M → T/M ′ is an isomorphism.

In each of the above cases, M = C(R, T ).

2.2. Lattice properties. Let R ⊂ S be an FCP extension, then [R,S] is a com-

plete Noetherian Artinian lattice, R being the least element and S the largest. In

the context of the lattice [R,S], some definitions and properties of lattices have the

following formulations. (see [20])

An element T ∈ [R,S] is called

(1) Π-irreducible (resp. ∩-irreducible) if T = T1T2 (resp. T = T1 ∩ T2) implies

T = T1 or T = T2.

(2) an atom (resp. a co-atom) if and only if R ⊂ T (resp. T ⊂ S) is a minimal ex-

tension. Therefore, an atom (resp. a co-atom) is Π-irreducible (resp. ∩-irreducible).
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We denote by A (resp. CA) the set of atoms (resp. co-atoms) of [R,S]. Theorems

2.2 and 2.3 show that there are four types of atoms.

(3) essential if T 6= R and U ∩ T 6= R for each U ∈]R,S]. If N is an R-

submodule of an R-module M , then N is essential as a submodule if N ∩N ′ 6= ∅
for any submodule N ′ 6= 0 of M . Clearly, T is essential if T/R is an essential

submodule of the R-module S/R.

(4) R ⊂ S is called catenarian, or graded by some authors, if R ⊂ S has FCP

and all maximal chains between two comparable elements have the same length

[30].

(5) R ⊆ S is called distributive if intersection and product are each distribu-

tive with respect to the other. Actually, each distributivity implies the other [20,

Exercise 5, page 33].

(6) Let T ∈ [R,S]. Then, T ′ ∈ [R,S] is called a complement of T if T ∩ T ′ = R

and TT ′ = S.

(7) An extension R ⊆ S is called Boolean if ([R,S],∩, ·) is a distributive lattice

such that each T ∈ [R,S] has a (necessarily unique) complement.

Proposition 2.4. [13, Theorem 1, p. 172] A distributive lattice of finite length is

catenarian (the Jordan-Hölder chain condition holds).

Proposition 2.5. If R ⊆ S has FCP, then a ring T ∈ [R,S] is ∩-irreducible

(resp. Π-irreducible) if and only if either T = S (resp. T = R) or there is a unique

T ′ ∈ [R,S] such that T ⊂ T ′ (resp. T ′ ⊂ T ) is minimal.

Proof. Obvious. �

Definition 2.6. A ring extension R ⊆ S is called arithmetic if [RP , SP ] is a chain

for each P ∈ Spec(R).

An arithmetic extension is distributive by [25, Proposition 5.18].

In the next proposition, we need the following definition: A ring extension R ⊂ S
is called quadratic if each t ∈ S is zero of a monic quadratic polynomial over R ([15,

definition page 430]).

Proposition 2.7. Let R ⊂ S be a ring extension and let T ∈]R,S].

(1) If T/R is an essential R-submodule of S/R, then T is an essential R-

subalgebra of S.

(2) If in addition, R ⊂ S is quadratic, then T is an essential R-subalgebra of

S if and only if T/R is an essential R-submodule of S/R.

Proof. (1) Obvious.
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(2) One part is (1). Assume that R ⊂ S is quadratic and that T is an essential

R-subalgebra of S. Let N ′ be a nonzero R-submodule of S/R. There exists an

R-submodule N of S containing R such that N ′ = N/R. Let t ∈ N \ R. Then,

R ⊂ R[t] = R + Rt ⊆ N because t satisfies a monic quadratic polynomial over R.

It follows that R 6= T ∩ R[t] ⊆ T ∩ N , which shows that 0 6= (T/R) ∩ (N/R) =

(T/R) ∩N ′ and T/R is an essential R-submodule of S/R. �

Remark 2.8. There exist ring extensions such that the equivalence of (2) in Propo-

sition 2.7 does not hold. Let k ⊂ L be a radicial FIP field extension of degree p2,

where c(k) = p. There exists a unique K ∈ [k, L] such that [K : k] = p because

[k, L] is a chain, so that [k, L] = {k,K,L}. Then, K and L are both essential

k-subalgebras of L. But K/k is not an essential k-vector subspace of L/k. Indeed,

[L : k] = p2 shows that there exists a basis {x1, . . . , xp2} of the k-vector space L

such that {x1, . . . , xp} is a basis of the k-vector space K. Let V := k + kxp+1.

Then, (V/k) ∩ (K/k) = 0 although V/k 6= 0.

3. The Loewy series of an FCP (distributive) extension

We first note that a distributive FCP extension R ⊂ S has FIP ([31, Theorem

4.28]). In this section, we associate a chain in [R,S] to the lattice [R,S], called the

Loewy series of [R,S].

Definition 3.1. [5, Definitions pages 47, 51 and 77], [20, page 29] Let R ⊂ S be

an FCP extension, A the set of atoms of [R,S], CA the set of co-atoms and E the

set of essential elements.

(1) The socle of the extension R ⊂ S is S[R,S] :=
∏
A∈AA.

(2) The radical of the extension R ⊂ S is R[R,S] := ∩A∈CAA.

(3) The Loewy series of the extension R ⊂ S is the chain {Si}ni=0 defined by

induction as follows: S0 := R, S1 := S[R,S] and for each i ≥ 0 such that

Si 6= S, we set Si+1 := S[Si, S].

(4) The Loewy length £[R,S] of the extension R ⊂ S is the least integer n such

that S = Sn. Of course, since R ⊂ S has FCP, there is some integer n such

that Sn = Sn+1 = S.

Proposition 3.2. Let R ⊂ S be an FCP extension. Then, £[R,S] ≤ `[R,S] ≤
LR(S/R).

Proof. Since the Loewy series {Si}ni=0 of R ⊂ S is a chain, which is not nec-

essarily maximal, we have `[R,S] ≥
∑n−1
i=0 `[Si, Si+1] ≥ n = £[R,S]. Now, it

exists {Rj}mj=0, a maximal chain such that m = `[R,S] [10, Theorem 4.11]. Then,



THE LOEWY SERIES OF AN FCP (DISTRIBUTIVE) RING EXTENSION 21

LR(S/R) =
∑m−1
j=0 LR(Rj+1/Rj) ([21, Theorem 6, page 20]), with LR(Rj+1/Rj) ≥

1 for each j ∈ {0, . . . ,m}, so that LR(S/R) ≥ `[R,S]. �

Proposition 3.3. Let R ⊂ S be an FCP extension. Then, S[R,S] = ∩E∈EE and

is the least element of E.

Proof. By definition, S[R,S] :=
∏
A∈AA. Let T ∈ E and A ∈ A. Then, R ⊂

T ∩ A ⊆ A shows that T ∩ A = A since R ⊂ A is minimal, which leads to A ⊆ T ,

so that any element of A is contained in any element of E . In particular, S[R,S] ⊆
∩E∈EE (∗). Let U ∈]R,S]. Since R ⊂ S has FCP, there exists some A ∈ A such

that A ⊆ U , so that A∩U = A. But A ⊆ S[R,S] shows that R ⊂ A ⊆ U ∩S[R,S].

Then, S[R,S] is essential and (∗) gives the result. �

We recall that an R-module N 6= 0 is called simple if it is an atom in the lattice

Λ(N) of R-submodules of N , which is equivalent to N = Rx for any nonzero x ∈ N
[20, Lemma 2.4.1]. In the following corollary, we set MS[R,S] :=

∑
{N ∈ Λ(S) |

R ⊂ N, N/R is simple in Λ(S/R)}. (MS[R,S] stands for module-socle). In view of

[20, page 52], MS[R,S] is the intersection of the R-submodules N of S containing

R such that N/R is essential in S/R.

Corollary 3.4. Let R ⊂ S be an integral M -crucial FCP extension. Then S[R,S] ⊆
MS[R,S] with equality if R ⊂ S is quadratic.

Proof. Set k := R/M . Let A ∈ A. Since R ⊂ A is minimal, we have M = (R :

A) ∈ Max(R), so that M(S[R,S]) ⊆ R. Let x ∈ S[R,S] and set N := R + Rx ⊆
R[x], which gives MN ⊆ R. Let x be the class of x in N/R. Then, N/R = Rx.

But N/R is also a one-dimensional k-vector space generated by x. It follows by

[21, Corollary 2, page 66] that LR(N/R) = Lk(N/R) = dimk(N/R) = 1 showing

that N/R is a simple R-submodule of S/R. Then, x ∈ MS[R,S], which leads to

S[R,S] ⊆MS[R,S].

Assume in addition that R ⊂ S is quadratic. Let x ∈ S be such that N := R+Rx

satisfies the following: N/R is a simple R-submodule of S/R. Since R ⊂ S is

quadratic, it follows that N ∈ [R,S]. Moreover, the fact that N/R is a simple

R-submodule of S/R shows that there is no R-submodule, and a fortiori, no R-

subalgebra of S strictly contained between R and N , so that N ∈ A ⊆ S[R,S].

This property holding for any R-submodule N of S containing R such that N/R is

a simple R-submodule, we get that MS[R,S] ⊆ S[R,S], with equality because of

the first part. �

Remark 3.5. We use the example of Remark 2.8 to show that, in general, the two

socles of Corollary 3.4 do not coincide. Let k ⊂ L be a radicial FIP extension of
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degree p2, where c(k) = p. There exists a unique K ∈ [k, L] such that [K : k] = p,

so that K is the unique atom of [k, L], giving that K = S[k, L]. But [L : k] = p2

shows that there exists a basis {x1 := 1, . . . , xp2} of the k-vector space L, with

L =
∑p2

i=1 kxi. For i > 1, set Vi := k + kxi. Then, each Vi/k is a simple subspace

of L/k and L =MS[k, L] 6= S[k, L] = K.

Lemma 3.6. Let R ⊂ S be a distributive FCP extension (hence FIP) and let S1

be its socle. Then, S1 = sup{T ∈ [R,S] | R ⊂ T Boolean}.

Proof. R ⊂ S1 is Boolean because distributive and S1 is a product of atoms of

R ⊂ S1 ([32, page 292]). Let T ∈ [R,S] be such that R ⊂ T is Boolean. It follows

from [29, Theorem 3.1] that T =
∏
A∈B A, where B ⊆ A, and then T ⊆ S1. �

Corollary 3.7. Let R ⊂ S be a distributive FCP extension (hence FIP). Then

S[R, T ] = S[R,S] ∩ T holds for each T ∈]R,S].

Proof. Set S1 := S[R,S], T1 := S[R, T ] and T ′1 := S1 ∩ T . Because T 6= R, there

exists some A ∈ A such that R ⊂ A ⊆ T . So, R ⊂ A ⊆ S1 ∩ T = T ′1 ⊆ S1. Since

R ⊂ S1 is Boolean, so is R ⊂ T ′1 by [29, Proposition 3.12]. Then, T ′1 ⊆ T1 in view

of Lemma 3.6. But R ⊂ T1 being also Boolean, it follows that T1 ⊆ S1. From

T ′1 ⊆ T1 ⊆ T ∩ S1 = T ′1 we infer that T ′1 = T1. �

The Loewy series of a distributive FCP extension provides a chain of Boolean

subextensions of this extension.

Proposition 3.8. If R ⊂ S is a distributive FCP extension (hence FIP) and

{Si}ni=0 is its Loewy series, then, Si ⊂ Si+1 is Boolean for each 0 ≤ i ≤ n − 1

whence, is either locally integral or locally Prüfer and `[R,S] =
∑n−1
i=0 `[Si, Si+1].

Proof. By Definition 3.1 (3), for each i ∈ {0, . . . , n− 1}, Si+1 := S[Si, S] holds, so

that Si ⊂ Si+1 is Boolean by Lemma 3.6. Since R ⊂ S has FCP, the chain stops

for some positive integer n such that Sn = S. Deny, then there is some S′ which is

an atom of [Sn, S], a contradiction.

For each i ∈ {0, . . . , n− 1}, Si ⊂ Si+1 is either locally integral or locally Prüfer

[29, Proposition 3.5 and Corollary 3.20].

Since R ⊂ S is distributive, `[R,S] =
∑n−1
i=0 `[Si, Si+1] by Proposition 2.4. �

Corollary 3.9. Let R ⊂ S be a distributive FCP extension (hence FIP) and

{Si}ni=0 its Loewy series. Then,

(1) £[R,S] = `[R,S] if and only if [R,S] is a chain. In this case, [R,S] =

{Si}ni=0.
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(2) £[R,S] = 1 if and only if R ⊂ S is Boolean.

Proof. Assume that n = `[R,S]. Proposition 3.8 implies n = `[R,S]⇔ `[Si, Si+1] =

1 for each i ∈ {0, . . . , n− 1} ⇔ Si ⊂ Si+1 is minimal for each i ∈ {0, . . . , n− 1} ⇔
Si ⊂ S has only one atom (which is Si+1) for each i ∈ {0, . . . , n− 1}. We show by

induction on i ∈ {0, . . . , n} that if T ∈ [R,S] is such that `[R, T ] = i, then T = Si.

For i = 0, obviously, T = R = S0. Assume that the induction hypothesis holds for

i− 1; that is, Si−1 is the only element U of [R,S] such that `[R,U ] = i− 1. Since

`[R, T ] = i and R ⊂ S is distributive and FCP, any element T ′ of [R,S] such that

T ′ ⊂ T is minimal satisfies `[R, T ′] = i − 1, so that T ′ = Si−1 and Si−1 ⊂ T is

minimal, giving that T is an atom of [Si−1, S], that is T = Si. The induction holds

for any i ∈ {0, . . . , n}, and [R,S] = {Si}ni=0 is a chain. The converse is immediate

using the fact that Si ⊂ S has only one atom (which is Si+1).

Again, by Proposition 3.8, n = 1⇔ S = S1 ⇔ R ⊂ S is Boolean. �

Example 3.10. Let R ⊂ S be an integrally closed FCP extension such that R is a

local ring. Then [7, Theorem 6.10] says that [R,S] is a chain, therefore distributive

[29, Proposition 2.3] and Corollary 3.9 shows that [R,S] = {Si}ni=0.

Proposition 3.11. Let R ⊂ S be an extension of length 2. The following conditions

are equivalent:

(1) [R,S] is a chain.

(2) |[R,S]| = 3.

(3) £[R,S] = 2.

If these conditions do not hold, then £[R,S] = 1.

Proof. (1) ⇔ (2) Obvious.

(3) ⇔ (1) by Corollary 3.9.

Assume that these conditions do not hold, then £[R,S] < `[R,S] by Proposition

3.2 leads to £[R,S] = 1. �

Recall that an extension R ⊂ S is called pointwise minimal if R ⊂ R[x] is minimal

for each x ∈ S \R. These extensions were studied by Cahen and the authors in [4].

Proposition 3.12. If R ⊂ S is pointwise minimal, then, £[R,S] = 1.

Proof. Any atom is a simple extension of R (see [23, Page 370, before Lemma

1.2]). Conversely, let x ∈ S \R, so that R ⊂ R[x] is minimal and R[x] is an atom of

[R,S]. Then, S =
∏
x∈S\RR[x] gives that S = S[R,S] = S1 and £[R,S] = 1. �

In order to look at the behavior of Loewy series under localizations, we need the

following Lemmata.
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Lemma 3.13. Let R ⊂ S be an FCP extension, T ⊂ U a subextension and M ∈
Supp(S/R).

(1) If T ⊂ U is minimal, then either TM ⊂ UM is minimal, or TM = UM .

(2) If TM ⊂ UM is minimal, there exists V ∈ [T, S] such that T ⊂ V is minimal

with VM = UM .

Proof. (1) is [11, Lemme 1.3].

(2) If TM ⊂ UM is minimal, let Q := C(TM , UM ) ∈ MSuppTM
(UM/TM ) ⊆

Max(TM ). There exists N ∈ Spec(T ), such that Q = NM . In particular, we have

(TM )Q ⊂ (UM )Q minimal (∗) and (TM )P = (UM )P for each P ∈ Spec(TM ), P 6=
Q (∗∗). Since (TM )Q = (TM )NM

= TN and (UM )Q = (UM )NM
= UN by [2,

Proposition 7, page 85], (∗) implies that TN ⊂ UN is minimal. Then, there exists

some V ∈ [T, S] such that T ⊂ V is minimal with VN = UN = (UM )Q = (VM )Q [29,

Lemma 3.4]. It follows that VN ′ = TN ′ for any N ′ ∈ Spec(T ), N ′ 6= N . But (∗∗)
gives, for N ′ ∈ Spec(T ) such that P = N ′M where P 6= Q, that N ′ 6= N , so that

(TM )P = (UM )P = UN ′ = VN ′ = (VM )P , which leads to UM = VM . To conclude,

if TM ⊂ UM is minimal, there exists V ∈ [T, S] such that T ⊂ V is minimal with

VM = UM . �

Proposition 3.14. Let R ⊂ S be an FCP extension with Loewy series {Si}ni=0.

Then:

(1) Let I be an ideal shared by R and S. Then {Si/I}ni=0 is the Loewy series

of R/I ⊂ S/I.

(2) Let M ∈ Supp(S/R) and {S′i}
nM
i=0 be the Loewy series of [RM , SM ]. Then

S′i = (Si)M for each i ∈ {0, . . . , nM}, where nM = inf{i ∈ Nn | M 6∈
Supp(S/Si)}.

Proof. (1) Let T,U ∈ [R,S]. By [23, Corollary 1.4], T ⊂ U is minimal if and only

if T/I ⊂ U/I is minimal. Then, an easy induction on i shows that the Loewy series

of R/I ⊂ S/I is {Si/I}ni=0.

(2) Let M ∈ Supp(S/R). We show by induction on i ∈ {0, . . . , nM} that S′i =

(Si)M .

The induction hypothesis is satisfied for i = 0.

Assume that it holds for i ∈ {0, . . . , nM − 1}, that is S′i = (Si)M . Let A be an

atom of [Si, S], so that Si ⊂ A is minimal. Then, from Lemma 3.13, we infer that

either (Si)M ⊂ AM is minimal, or (Si)M = AM , so that AM ∈ [S′i, S
′
i+1]. It follows

that (Si+1)M ⊆ S′i+1.

Now M 6∈ Supp(S/Si) leads to S′i = (Si)M = SM = S′i+1 and i ≥ nM , a

contradiction, so that M ∈ Supp(S/Si). Let B′ be an atom of [(Si)M , SM ], so that
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(Si)M = S′i ⊂ B′ is minimal. There exists some U ∈ [Si, S] such that B′ = UM ,

with (Si)M ⊂ UM is minimal. By Lemma 3.13, there exists B ∈ [Si, S] such that

Si ⊂ B is minimal, with BM = UM = B′, so that B ⊆ Si+1, giving B′ = BM ⊆
(Si+1)M . Since S′i+1 is the product of all atoms B′ of [(Si)M , SM ], we get that

S′i+1 ⊆ (Si+1)M . To conclude, S′i+1 = (Si+1)M and the induction hypothesis holds

for i+ 1. As we have just seen before, we get S′i = (Si)M = SM = S′i+1 as soon as

M 6∈ Supp(S/Si), so that nM = inf{i ∈ Nn |M 6∈ Supp(S/Si)}. �

Corollary 3.15. Let R ⊂ S be an FCP extension. Then,

£[R,S] = max{£[RM , SM ] |M ∈ MSupp(S/R)}.

Proof. Let M ∈ Supp(S/R) and {S′i}
nM
i=0 be the Loewy series of [RM , SM ]. Set

n := £[R,S]. We proved in Proposition 3.14 that S′i = (Si)M for each i ∈
{0, . . . , nM}, where nM = £[RM , SM ] = inf{i ∈ Nn | M 6∈ Supp(S/Si)}. Then,

for any M ∈ Supp(S/R), £[RM , SM ] ≤ £[R,S]. Assume that for any M ∈
Supp(S/R), £[RM , SM ] < £[R,S] = n. It follows that S′n−1 = (Sn−1)M =

SM , and hence Sn−1 = S, contradicting the definition of n. Then, £[R,S] =

max{£[RM , SM ] |M ∈ MSupp(S/R)}. �

Example 3.16. We use the example of Remark 2.8 in order to exhibit a compu-

tation of nM in Proposition 3.14:

k ⊂ L is a radicial field extension of degree p2 andK is the only proper subalgebra

of L. Set R := k2, R1 := [k[X]/(X2)] × k, R2 := k × K, R3 := k × L, S :=

[k[X]/(X2)] × L, M := 0 × k and N := k × 0. Then, Max(R) = {M,N} with

M 6= N . Moreover, k ⊂ k[X]/(X2) is a minimal ramified extension and S = R1R3.

By [6, Lemma III.3 (d)], [R,S] = {R,R1, R2, R1R2, R3, S}. We have the following

diagram, where R1R2 = [k[X]/(X2)]×K:

R1

↗ ↘
R R1R2

↘ ↗ ↘
R2 → R3 → S

From [6, Proposition III.4], we deduce that R ⊂ R1 is a minimal extension with

C(R,R1) = M, R ⊂ R2 is a minimal extension with C(R,R2) = N 6= M , so that T

is an atom of [R,S] if and only if T ∈ {k ×K, [k[X]/(X2)] × k} = {R1, R2}, and

then S1 = R1R2. Using again [6, Proposition III.4], we get that S1 ⊂ S is minimal,

so that S2 = S. Then, n = 2. Now, (S1)M = (R1)M = SM = (S2)M , so that

nM = 1 and (S1)N = (R2)N 6= SN = (R3)N = (S2)N , whence nN = 2.
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Let R ⊂ S be an FCP extension and MSupp(S/R) := {M1, . . . ,Mn}. Consider

the map ϕ : [R,S] →
∏n
i=1[RMi , SMi ] defined by ϕ(T ) := (TM1 , . . . , TMn). Then

ϕ is injective [7, Theorem 3.6]. In [29], we called R ⊆ S a B-extension if ϕ is

bijective (B stands for bijective). We proved in [29, Proposition 2.21] that R ⊆ S is

a B-extension if and only if R/P is local for each P ∈ Supp(S/R). This condition

holds in case Supp(S/R) ⊆ Max(R), and, in particular, if R ⊂ S is integral. The

Loewy series of such extensions have nice properties.

Proposition 3.17. Let R ⊂ S be an FCP B-extension. For each M ∈ MSupp(S/R),

set AM := {A ∈ A | C(R,A) = M}. Then:

(1) S[RM , SM ] =
∏
A∈AM

AM .

(2) There exists a (unique) S1,M ∈ [R,S] such that (S1,M )M = S[RM , SM ]

and (S1,M )M ′ = RM ′ for any M ′ ∈ Spec(R), M ′ 6= M . In particular,

S1,M =
∏
A∈AM

A.

(3) A = ∪M∈MSupp(S/R)AM and S1 =
∏
M∈MSupp(S/R) S1,M .

Proof. (1) (S[R,S])M = S[RM , SM ] by Proposition 3.14. It follows S[RM , SM ] =∏
A∈AAM . Let M ′ ∈ MSupp(S/R), M ′ 6= M and A′ ∈ AM ′ . Then, C(R,A′) = M ′

implies A′M = RM , so that S[RM , SM ] =
∏
A∈AM

AM .

(2) Set MSupp(S/R) = {M1, . . . ,Mn}. Since R ⊂ S is a B-extension, the

bijective map ϕ : [R,S]→
∏n
i=1[RMi

, SMi
] shows that there exists a unique S1,M ∈

[R,S] such that (S1,M )M = S[RM , SM ] =
∏
A∈AM

AM and (S1,M )M ′ = RM ′ for

any M ′ ∈ Spec(R), M ′ 6= M . Moreover, for A ∈ AM , we have AM ′ = RM ′ , giving∏
A∈AM

AM ′ = RM ′ , so that S1,M =
∏
A∈AM

A.

(3) A = ∪M∈MSupp(S/R)AM because, for each A ∈ A, we have C(R,A) ∈
MSupp(S/R), which leads to S1 =

∏
A∈AA =

∏
M∈MSupp(S/R)(

∏
A∈AM

A)

=
∏
M∈MSupp(S/R) S1,M . �

Proposition 3.18. Let R ⊂ S be an integral arithmetic FCP extension with Loewy

series {Si}ni=0. For each M ∈ MSupp(S/R), let {RM,i}nM
i=0 be the maximal chain

of [RM , SM ], set

AM := {A ∈ A | C(R,A) = M} and m := sup
M∈MSupp(S/R)

(£[RM , SM ]).

Then:

(1) For each M ∈ MSupp(S/R), |AM | = 1. Let T1,M be the unique element of

AM .

(2) S[R,S] =
∏
M∈MSupp(S/R) T1,M .

(3) For each i ∈ Nm, the atoms of [Si−1, S] are the Ti,M such that, for each

M,M ′ ∈ MSupp(S/R), M ′ 6= M, (Ti,M )M = RM,i if i ≤ nM and (Ti,M )M
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= SM if i > nM , with (Ti,M )M ′ = RM ′,i−1. Also, Si =
∏
M∈MSupp(S/R) Ti,M .

In particular, £[R,S] = m.

(4) `[R,S] =
∑n−1
i=0 `[Si, Si+1] =

∑
M∈MSupp(S/R) £[RM , SM ].

Proof. Since R ⊂ S is arithmetic, for each M ∈ MSupp(S/R), {RM,i}nM
i=0 is the

Loewy series of RM ⊂ SM by Corollary 3.9.

(1) Let M ∈ MSupp(S/R). Since RM ⊂ SM is a chain, RM,1 is its only atom.

From Lemma 3.13, we deduce that there is T1,M ∈ [R,S] such that R ⊂ T1,M is

minimal with (T1,M )M = RM,1 and (T1,M )M ′ = RM ′ for M ′ ∈ MSupp(S/R), M ′ 6=
M (∗). Since R ⊂ S is integral, it is a B-extension by [29, Proposition 2.21], so

that T1,M ∈ AM is the only element of A satisfying (∗). Then, AM = {T1,M} and

|AM | = 1.

(2) We get that S[R,S] =
∏
M∈MSupp(S/R)(

∏
A∈AM

A) =
∏
M∈MSupp(S/R) T1,M

by Proposition 3.17.

(3) We proved in Proposition 3.14 that for M ∈ Supp(S/R) and {S′i}
nM
i=0 the

Loewy series of [RM , SM ], then S′i = (Si)M for each i ∈ {0, . . . , nM}, where nM =

inf{i ∈ Nn | M 6∈ Supp(S/Si)}. In particular, S′i = (Si)M = RM,i. Let T be

an atom of [Si−1, S], and set M := C(Si−1, T ) ∩ R ∈ MSuppR(S/Si−1), so that

i ≤ nM and S′i−1 ⊂ TM is minimal. Moreover, by minimality of Si−1 ⊂ T , we get

TM ′ = (Si−1)M ′ for M ′ ∈ MSupp(S/R), M ′ 6= M . Since, R ⊂ S is a B-extension,

it follows that T is unique for a given M , and of the form Ti,M such that, for each

M,M ′ ∈ MSupp(S/R), M ′ 6= M, (Ti,M )M = RM,i if i ≤ nM and (Ti,M )M = SM if

i > nM , and (Ti,M )M ′ = RM ′ . Moreover, Si =
∏
M∈MSupp(S/R) Ti,M . In particular,

£[R,S] = supM∈MSupp(S/R)(£[RM , SM ]) = m by Corollary 3.15.

(4) Since R ⊂ S is arithmetic, it is distributive (Definition 2.6), so that `[R,S] =∑n−1
i=0 `[Si, Si+1] by Proposition 3.8. But, Si ⊂ Si+1 is Boolean, so that `[Si, Si+1]

is the number of atoms of Si ⊂ Si+1 by [29, Theorem 3.2]. In view of (3), they are

gotten, for each Si ⊂ Si+1, by the elements of the chain [RM , SM ] which are of the

form RM,i+1, that is for i < nM . Then, `[Si, Si+1] = |{RM,i+1 | i < nM}|, giving

`[R,S] =
∑
M∈MSupp(S/R)(nM − 1). �

In Corollary 3.9, we proved that if [R,S] is a chain, then [R,S] = {Si}ni=0. We

introduce the following property:

Definition 3.19. An FCP extension R ⊂ S with Loewy series {Si}ni=0 is said

to satisfy the property (P) (or is a P-extension) if [R,S] = ∪n−1i=0 [Si, Si+1]. (The

Loewy series gives a partition of [R,S].)

Here is an example of such a P-extension.
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Example 3.20. In [28, Example 5.17 (2)], we gave the following example: Set

k := Q, L := k[x], where x :=
√

3 +
√

2 and ki := k[
√
i], i = 2, 3, 6. Then,

[k, L] = {k, k2, k3, k6, L} and the following diagram holds:

L

↗ ↑ ↖
k2 k3 k6

↖ ↑ ↗
k

so that k ⊂ L is a non distributive extension of length 2 (because a diamond

[31, Theorem 4.7]), with atoms ki, i = 2, 3, 6 so that L = kikj , for any i, j ∈
{2, 3, 6}, i 6= j. Then, S[k, L] = L = S1, [k, L] = [k, S1] and k ⊂ L is a P-

extension.

Although many properties of P-extensions will be gotten for a distributive ex-

tension, we begin to give two results for a non necessarily distributive P-extension.

Proposition 3.21. Let R ⊂ S be an FIP extension with Loewy series {Si}ni=0.

Then, |[R,S]| ≥
∑n−1
i=0 |[Si, Si+1]| + 1 − n, with equality if and only if R ⊂ S is a

P-extension.

Proof. Since ∪n−1i=0 [Si, Si+1] ⊆ [R,S], we get that | ∪n−1i=0 [Si, Si+1]| ≤ |[R,S]|.
But {Si}ni=0 is an ascending chain, so that [Si−1, Si] ∩ [Si, Si+1] = {Si} for each

i ∈ Nn−1 and [Sj , Sj+1] ∩ [Si, Si+1] = ∅ for any (i, j) such that j 6= i, i − 1, i + 1.

Then, | ∪n−1i=0 [Si, Si+1]| =
∑n−1
i=0 |[Si, Si+1]|+ 1− n, since there are n− 1 elements

Si common to two distinct subsets [Sj , Sj+1]. The equality holds if and only if

∪n−1i=0 [Si, Si+1] = [R,S] if and only if R ⊂ S satisfies property (P). �

Theorem 3.22. Let R ⊂ S be an FCP P-extension with Loewy series {Si}ni=0.

Then R ⊂ S is distributive if and only if Si ⊂ Si+1 is Boolean for each 0 ≤ i ≤ n−1.

If these conditions hold, then R ⊂ S has FIP.

Proof. One part of the proof is Proposition 3.8.

Conversely, assume that R ⊂ S satisfies property (P) and that Si ⊂ Si+1 is

Boolean for each i ≤ n. Let T,U, V ∈ [R,S] be such that UT = V T and U ∩ T =

V ∩ T . We claim that U = V . This will prove that R ⊂ S is distributive by

[5, Theorem 1.6, page 9]. The result is obvious if S ∈ {U, V, T}. Then, choose

i, j, k ∈ {0, . . . , n− 1} such that T ∈ [Si, Si+1[, U ∈ [Sj , Sj+1[, V ∈ [Sk, Sk+1[. Set

l := sup(j+ 1, k+ 1) and l′ := inf(j, k). This yields that l′ < l and Sl′ ⊆ U, V ⊂ Sl.
Consider the different cases:
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(1) If i = j = k, then U = V , because T,U, V ∈ [Si, Si+1], which is Boolean, and

then distributive.

(2) Assume i ≥ l, so that U, V ⊂ Sl ⊆ Si ⊆ T . Then, U = U ∩ T = V ∩ T = V .

(3) Assume that i < l′, so that i+ 1 ≤ l′ which implies T ⊂ Si+1 ⊆ Sl′ ⊆ U, V .

Then, U = UT = V T = V .

(4) The last case to consider (which has two subcases) is when l′ ≤ i < l (∗).
There is no harm to assume j ≤ k. In this case, l′ = j and l = k + 1, so that (∗)
yields j ≤ i ≤ k.

If j = i ≤ k, we can take i < k because of (1), and then i + 1 ≤ k. It follows

that U, T ⊂ Si+1 ⊆ Sk ⊆ V . Then, V = V T = UT and T = T ∩ V = T ∩ U leads

to T ⊆ U , whence V = UT = U .

If j < i ≤ k, then, by j + 1 ≤ i, we obtain U ⊂ Sj+1 ⊆ Si ⊆ T which gives

U ∩T = U = V ∩T ⊂ Si ⊆ Sk ⊆ V , so that Si ⊆ T ∩V = U , a contradiction which

shows that this case does not occur.

To conclude, U = V in each case and R ⊂ S is distributive.

The last result holds since an FCP distributive extension has FIP. �

Corollary 3.23. Let R ⊂ S be a distributive FCP (hence FIP) P-extension, with

Loewy series {Si}ni=0 and T ∈]R,S[.There is some k ∈ {0, . . . , n−1}, such that T ∈
[Sk, Sk+1[ and then {Si}ki=0∪{T} is the Loewy series of R ⊂ T and {T}∪{Si}ni=k+1

is the Loewy series of T ⊂ S. Moreover, R ⊂ T and T ⊂ S are P-extensions.

Proof. Since R ⊂ S is a P-extension, there is some k ∈ {0, . . . , n − 1} such that

T ∈ [Sk, Sk+1[, so that Sk ⊆ T ⊂ Sk+1. Let {Ti}mi=0 (resp. {T ′i}ri=0) be the Loewy

series of R ⊂ T (resp. T ⊂ S). By definition of the socle of an extension, we

have obviously Si = Ti for each i ∈ {0, . . . , k}. Moreover, Sk ⊂ Sk+1 is Boolean

by Proposition 3.8, which implies that T is a product of atoms of Sk ⊂ S [29,

Theorem 3.2]. In fact, T is a product of the atoms of Sk ⊂ S contained in T , so

that T is the product of atoms of Sk ⊂ T , giving T = S[Sk, T ]. Then, Tk+1 = T and

m = k + 1. Now, T = T ′0. From [29, Proposition 3.12], we deduce that T ⊂ Sk+1

is also Boolean, and Sk+1 is the product of the atoms of [T, Sk+1]. We claim that

Sk+1 = S[T, S]. Deny, so that there exists some atom A of [T, S] which is not in

[T, Sk+1]. But T ⊂ A is a minimal extension. Since R ⊂ S is a P-extension, we

get that A ∈ ∪n−1i=k+1[Si, Si+1] and then T ⊂ Sk+1 ⊂ A, a contradiction. Then,

Sk+1 = T ′1 and the other terms of the Loewy series of T ⊂ S are the Si for

i ∈ {k + 2, . . . , n}. The last property follows easily. �

In the next result, we use the radical R of an extension (Definition 3.1 (2)).
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Corollary 3.24. Let R ⊂ S be a distributive FCP P-extension (hence FIP), with

Loewy series {Si}ni=0. Then Si = R[Si, Si+1] for each i ∈ {0, . . . , n − 1} and

Sn−1 = R[R,S].

Proof. In view of Theorem 3.22, Si ⊂ Si+1 is Boolean for each i ∈ {0, . . . , n− 1}.
Then Si = R[Si, Si+1] for each i ≤ n − 1 by de Morgan’s law [31, Theorems 3.43

and 5.1] and the equivalences of [32, page 292]. Indeed, since Si ⊂ Si+1 is Boolean,

Si is the complement of Si+1. Now, Si+1 is the product of atoms of [Si, Si+1], which

implies that Si is the intersection of co-atoms of [Si, Si+1]; that is, R[Si, Si+1].

Since R ⊂ S is a P-extension, [R,S] = ∪n−1i=0 [Si, Si+1]. Let A ∈ CA. There is

some i ∈ {0, . . . , n−1} with A ∈ [Si, Si+1], whence A is comparable to any Si. But

A ⊂ S is minimal, so that Sn−1 ⊆ A yields that A is a co-atom of [Sn−1, S]. It

follows that Sn−1 ⊆ ∩A∈CAA = R[R,S] ⊆ R[Sn−1, S] = Sn−1 by the first part of

the proof. �

Proposition 2.5 says that when R ⊆ S has FCP, T ∈ [R,S] is Π-irreducible if and

only if either T = R or there is a unique T ′ ∈ [R,S] such that T ′ ⊂ T is minimal.

For an FCP distributive P-extension, these elements can be characterized thanks

to the Loewy series. In fact, the following theorem characterizes FCP distributive

P-extensions.

Theorem 3.25. Let R ⊂ S be a distributive FCP (hence FIP) extension with

Loewy series {Si}ni=0. Then, R ⊂ S is a P-extension if and only if the following

condition holds: any T ∈]R,S] is Π-irreducible in [R,S] if and only if there exists

some i ≤ n− 1 such that T is an atom of [Si, Si+1].

Proof. Assume first: R ⊂ S is a P-extension. Let T ∈]R,S] be Π-irreducible in

[R,S]. There is some i ∈ {0, . . . , n− 1} such that T ∈ [Si, Si+1], which is Boolean.

It follows that T is a product of m atoms of [Si, Si+1] by [29, Theorem 3.2]. But, T

being Π-irreducible in [R,S] is a fortiori Π-irreducible in [Si, Si+1], giving m = 1, so

that T is itself an atom of [Si, Si+1]. Conversely, let T be an atom of some [Si, Si+1].

We show that T is Π-irreducible in [R,S]. Deny, and let U, V ∈ [R,S] \ {T} be

such that T = UV , so that U, V ⊂ T ⊆ Si+1 (∗). Because of property (P), there

exist j, k ∈ {0, . . . , n − 1} such that U ∈ [Sj , Sj+1[ and V ∈ [Sk, Sk+1[. Moreover,

(∗) implies that j, k ≤ i. We cannot have j = k = i since T is an atom of [Si, Si+1].

Assume that only one U, V is in [Si, Si+1], for instance, U ∈ [Si, Si+1], so that

i = j. Then, V ⊂ Si ⊆ U ⊂ T leads to UV = U ⊂ T , a contradiction. For the

remaining case j, k < i, we have j + 1, k + 1 ≤ i and U, V 6∈ [Si, Si+1]. We get that

UV ⊆ Si ⊂ T , again a contradiction. Then, T is Π-irreducible.



THE LOEWY SERIES OF AN FCP (DISTRIBUTIVE) RING EXTENSION 31

Now, we show that [R,S] = ∪n−1i=0 [Si, Si+1] if the following condition holds:

any T ∈]R,S] is Π-irreducible if and only if there exists some i ∈ {0, . . . , n − 1}
such that T is an atom of [Si, Si+1]. Let U ∈]R,S], so that U =

∏m
j=1 Tj , for

some positive integer m, where Tj is Π-irreducible for each j by [29, Proposition

2.9] and Tj 6= R. The hypothesis gives that for each j, there exists a unique

ij ∈ {0, . . . , n − 1} such that Tj is an atom of [Sij , Sij+1]. Set k := sup{ij | j ∈
Nm}, I1 := {j ∈ Nm | ij < k} and I2 := {j ∈ Nm | ij = k}. In particular, I2 6= ∅.
Then, for each h ∈ I1 and for each l ∈ I2, we have Th ⊆ Sk ⊂ Tl ⊆ Sk+1, so

that U = (
∏
h∈I1 Th)(

∏
l∈I2 Tl) =

∏
l∈I2 Tl. Then U ∈ [Sk, Sk+1] and property (P)

holds. �

The following definitions are needed for our study.

Definition 3.26. An integral extension R ⊆ S is called infra-integral [22] (resp.;

subintegral [33]) if all its residual extensions κR(P ) → κS(Q), (with Q ∈ Spec(S)

and P := Q∩R) are isomorphisms (resp.; and the natural map Spec(S)→ Spec(R)

is bijective). An extension R ⊆ S is called t-closed (cf. [22]) if the relations

b ∈ S, r ∈ R, b2 − rb ∈ R, b3 − rb2 ∈ R imply b ∈ R. The t-closure t
SR of R in

S is the smallest element B ∈ [R,S] such that B ⊆ S is t-closed and the greatest

element B′ ∈ [R,S] such that R ⊆ B′ is infra-integral. An extension R ⊆ S is

called seminormal (cf. [33]) if the relations b ∈ S, b2 ∈ R, b3 ∈ R imply b ∈ R.

The seminormalization +
SR of R in S is the smallest element B ∈ [R,S] such that

B ⊆ S is seminormal and the greatest element B′ ∈ [R,S] such that R ⊆ B′

is subintegral. The canonical decomposition of an arbitrary extension R ⊂ S is

R ⊆ +
SR ⊆ t

SR ⊆ R ⊆ S.

Next proposition describes the link between the elements of the canonical de-

composition and minimal extensions.

Proposition 3.27. [28, Proposition 4.5] Let there be an integral extension R ⊂ S

and a maximal chain C of R-subextensions of S, defined by R = R0 ⊂ · · · ⊂ Ri ⊂
· · · ⊂ Rn = S, where each Ri ⊂ Ri+1 is minimal. The following statements hold:

(1) R ⊂ S is subintegral if and only if each Ri ⊂ Ri+1 is ramified.

(2) R ⊂ S is seminormal and infra-integral if and only if each Ri ⊂ Ri+1 is

decomposed.

(3) R ⊂ S is t-closed if and only if each Ri ⊂ Ri+1 is inert.

If either (1) or (2) holds, then Spec(S)→ Spec(R) is bijective.

Example 3.28. We now give three examples of an FCP distributive, hence FIP

(and not Boolean) extension where the property (P) holds or not.
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(1) Set G := Z/12Z, which is a cyclic group, and let k ⊂ L be a cyclic exten-

sion with Galois group G. The proper subgroups of G are 2G, 3G, 4G and 6G,

so that the lattice G of subgroups of G is {0, 2G, 3G, 4G, 6G,G}, which is dis-

tributive [31, Exercise 15, page 125]. Using the reversing order isomorphism of

lattices ψ : G → [k, L] defined by ψ(H) :=Fix(H), we obtain the following lattice

[k, L] = {k,Fix(iG), L | i = 2, 3, 4, 6}. Set Li := ψ(iG). We have the following

diagram:

L2 → L4

↗ ↘ ↘
k L6 → L

↘ ↗
L3

Then, k ⊂ L is distributive but does not satisfy property (P). Indeed, L6 is the

socle of k ⊂ L, because L2 and L3 are the atoms of k ⊂ L, with L6 ⊂ L minimal, so

that S0 = k, S1 = L6 and S2 = L. Moreover, L4 6∈ [S0, S1]∪ [S1, S2]. In particular,

we cannot apply Corollary 3.24. Indeed, R[k, L] = L4 ∩ L6 6= S1 = L6.

This example shows that the results of Theorem 3.22 hold even if property (P)

is not satisfied, since S0 ⊂ S1 and S1 ⊂ S2 are Boolean. This also shows that in a

distributive extension, a Π-irreducible element is not necessarily an atom of some

[Sj , Sj+1] (see L4), and an atom of some [Sj , Sj+1] is not necessarily Π-irreducible

(see L).

(2) An obvious example of a distributive P-extension R ⊂ S is when [R,S] is a

chain.

(3) We give here a more involved example of a distributive P-extension. Take

k ⊂ L a finite separable field extension of degree 6, such that [k, L] is a Boolean

algebra with [k, L] = {k, L1, L2, L} and `[k, L] = 2 [29, Example 4.17]. Set S :=

L[X]/(X2), so that L ⊂ S is a minimal ramified extension and S is a local ring,

with maximal ideal M . Set T := t
Sk which is a local ring because k ⊂ S is a finite

integral extension. Then, T ⊂ S is t-closed with M = (T : S) ∈ Max(T ) ([10,

Lemma 3.17]). Since k ⊂ S has FCP by [7, Theorem 4.2], there exists a finite chain

k := R0 ⊂ · · · ⊂ Rn ⊂ Rn+1 := T such that Ri ⊂ Ri+1 is minimal ramified for

each i = 0, . . . , n. There are no decomposed minimal extension Ri ⊂ Ri+1 because

T is local. Set R := Rn and consider the extension R ⊂ S. Since T/M ∼= k

and S/M ∼= L, we get that T ⊂ S is a Boolean extension by [29, Proposition

3.5 (5)] with [T, S] = {T, T1, T2, S}, where Ti is such that Ti/M = Li because of

the bijection [T, S] → [k, L] given by U 7→ U/M . Moreover, `[R,S] = 3 by [25,
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Proposition 3.2]. We claim that T is the only atom of the extension. Assume

there exists some T ′ ∈ [R,S] \ {T} such that R ⊂ T ′ is minimal. We get that

R ⊂ T ′ can be neither decomposed (as we already observed since S is local) nor

ramified, because in this case, we should have T ′ ⊂ T , a contradiction. If R ⊂ T ′

is minimal inert, this leads also to a contradiction, because T would not be the t-

closure, since some minimal ramified extensions would start from T ([8, Proposition

7.4]). Then, T is the socle S1 of the extension. Moreover S = S2 since T ⊂ S is

Boolean. Consider some U ∈]R,S] and let V ∈ [R,U ] be such that R ⊂ V is

minimal. As we already observed, V = T so that U ∈ [T, S] = [S1, S2], which

yields [R,S] = [S0, S1] ∪ [S1, S2]. We have the following diagram:

T1

↗ ↘
R → T = S1 S = S2

↘ ↗
T2

Then, R ⊂ S is a P-extension and R ⊂ S is distributive by Corollary 3.22.

Let R ⊂ S be a ring extension. We recall that R is called unbranched in S if

R is local. In this case, if R ⊂ S has FCP, the following Lemma shows that any

T ∈ [R,S] is local. An extension R ⊂ S is called quasi-Prüfer if R ⊆ S is a Prüfer

extension; that is, R ⊆ T is a flat epimorphism for each T ∈ [R,S] [27, Definition

2.1]. An FCP extension is quasi-Prüfer [27, Corollary 3.3] since an FCP integrally

closed extension is Prüfer [27, Proposition 1.3]. The reader may also consult [1,

Theorem 2].

Lemma 3.29. Let R ⊂ S be a quasi-Prüfer extension (for example if R ⊂ S has

FCP), such that R is unbranched in S. Then, T is local for each T ∈ [R,S].

Proof. Obvious. �

As we saw in Example 3.28 (3), the t-closure of the extension is the socle of the

extension. We are going to show that for some distributive extensions R ⊂ S, the

t-closure and the integral closure are elements of the Loewy series.

Proposition 3.30. Let R ⊂ S be an FCP distributive extension (hence FIP) such

that R is unbranched in S, and {Si}ni=0 is its Loewy series. Then, there exist

k, l ∈ {0, . . . , n} such that t
R
R = Sk and R = Sl. Moreover, [R, t

R
R] and [R,S] are

chains.
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Proof. Since R is a local ring, so are R and Si for any i ∈ Nn+1 by Lemma 3.29.

Let M be the maximal ideal of R.

Since Si is local and Si ⊂ Si+1 is Boolean FIP, it follows from [29, Corollary 3.20]

that Si ⊂ Si+1 is either integral or Prüfer. Assume that Si ⊂ Si+1 is Prüfer for

some i ∈ {0, . . . , n− 2} and let j > i for j < n. We claim that Sj ⊂ Sj+1 is Prüfer.

Deny, so that Si ⊂ Sj+1 is neither integral, nor Prüfer. Set S′i := Si
Sj+1

. Then,

S′i 6= Si, Sj+1. It follows that there exist a minimal integral extension Si ⊂ T and

a minimal Prüfer extension Si ⊂ U with T,U ∈ [Si, Sj+1], T ⊆ S′i, U ⊆ Si+1. An

application of [28, Lemma 1.5]leads to C(Si, T ) 6= C(Si, U), a contradiction since Si

is local. Then, Sj ⊂ Sj+1 is Prüfer for any j > i. In particular, as soon as some

Sk ⊂ Sk+1 is Prüfer, so is Si ⊂ Si+1 for each i ≥ k, whence Sk = R.

Now, if R 6= R, we can work with the extension R ⊂ R, which is also distributive,

and its Loewy series is {Si}ki=0. From [29, Proposition 3.25], we deduce that Si ⊂
Si+1 is either infra-integral (more precisely subintegral since Si+1 is local), or t-

closed, for each i < k since Si is local by Proposition 3.27. In order to establish

the result for the t-closure, we mimic the previous proof given for the integral

closure. Assume that Si ⊂ Si+1 is t-closed and let j > i for j < k. We claim

that Sj ⊂ Sj+1 is t-closed. Deny, so that Si ⊂ Sj+1 is neither infra-integral, nor

t-closed. Set S′i := t
Sj+1

Si. Then, S′i 6= Si, Sj+1. It follows that there exist a

minimal ramified extension Si ⊂ T and a minimal inert extension Si ⊂ U with

T,U ∈ [Si, Sj+1], T ⊆ S′i, U ⊆ Si+1. Then [8, Proposition 7.4 ] shows that

there are two maximal chains in [Si, TU ] of different lengths, contradicting the

distributivity of R ⊂ S by Proposition 2.4. Then, Sj ⊂ Sj+1 is t-closed for any j

such that k > j > i. In particular, as soon as Sl ⊂ Sl+1 is t-closed, so is Si ⊂ Si+1

for each i ≥ l, giving Sl = t
R
R.

Since R is a local ring, and R ⊆ Sl is subintegral, so is Si ⊂ Si+1 for each i < l,

and then is minimal ramified by [29, Lemma 3.27]. In particular, each Si ⊂ Si+1

has only one atom, which is Si+1. Let T ∈]R,Sl[. Since R ⊂ T has FCP, there is a

tower R ⊂ Ti ⊂ T , where {Ti}ri=0 is the Loewy series of R ⊂ T . Since R = S0 = T0,

an obvious induction shows that Ti = Si for all i < r, and T = Sr for some r ≤ l,

so that R ⊆ t
R
R is a chain. By [7, Theorem 6.10], R ⊂ S is a chain. �

Remark 3.31. Example 3.16 shows that the conclusion of Proposition 3.30 does

not hold in general. In this example, R is not local (although Spec(S)→ Spec(R)

is injective) and t
SR = R1 6= Si for i = 1, 2 because R ⊂ R1 is minimal ramified

and R1 ⊂ S is t-closed. A more precise study will be made in a forthcoming paper.
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When an FCP distributive extension satisfies property (P), the Loewy series

allows to give information about the extension.

Proposition 3.32. Let R ⊂ S be an FCP distributive (hence FIP) P-extension

and {Si}ni=0 its Loewy series, so that each Si ⊂ Si+1 is Boolean. Then

(1) There exist j, k ∈ {0, . . . , n} with j ≤ k such that t
R
R ∈ [Sj , Sj+1[ and

R ∈ [Sk, Sk+1[.

(2) Let i ∈ {0, . . . , n − 1}. If i < j, Si ⊂ Si+1 is infra-integral. If j < i <

k, Si ⊂ Si+1 is t-closed. If i > k, Si ⊂ Si+1 is Prüfer.

(3) For i ∈ {0, . . . , n−1}, let Ai be the set of atoms of [Si, Si+1]. Then `[R,S] =∑n−1
i=0 |Ai|.

Proof. Each Si ⊂ Si+1 is Boolean because of Proposition 3.8.

(1) Since [R,S] = ∪n−1i=0 [Si, Si+1], there exist j, k ∈ {0, . . . , n} such that t
R
R ∈

[Sj , Sj+1[ and R ∈ [Sk, Sk+1[. Moreover, j ≤ k since Sj ⊆ t
R
R ⊆ R ⊂ Sk+1 implies

j < k + 1.

(2) Let i < k so that i + 1 ≤ k which implies Si ⊂ Si+1 ⊆ Sk ⊂ R. Then

Si ⊂ Si+1 is integral. If i < j, then Si ⊂ Si+1 ⊆ Sj ⊆ t
R
R and Si ⊂ Si+1 is infra-

integral. If j < i < k, then j + 1 ≤ i, so that t
R
R ⊂ Sj+1 ⊆ Si ⊂ Si+1 ⊆ Sk ⊆ R

and Si ⊂ Si+1 is t-closed.

Let i > k, so that i ≥ k + 1 which implies R ⊂ Sk+1 ⊆ Si ⊂ Si+1. Then

Si ⊂ Si+1 is Prüfer.

(3) By [18, Lemma 4, p.486], we get that `[R,S] is the number of Π-irreducible

elements of ]R,S]. Then, Theorem 3.25 gives the result. �

We end this section by studying the Loewy series of some special extensions. We

need the following lemma used in the next Proposition.

Lemma 3.33. [24, Lemma 2.9 and the paragraph before Proposition 2.3] An

FCP extension R ⊂ S with a factorization R ⊆ T ⊆ S such that SuppR(T/R) ∩
SuppR(S/T ) = ∅ admits a unique factorization R ⊆ U ⊆ S such that T ∩ U = R

and TU = S (U is the complement of T in [R,S]). Moreover, SuppR(U/R) =

SuppR(S/T ) and SuppR(S/U) = SuppR(T/R).

Proposition 3.34. Let R ⊂ S be an FCP extension with Loewy series {Si}ni=0 and

T ∈]R,S[ such that SuppR(T/R) ∩ SuppR(S/T ) = ∅. Then:

(1) T has a unique complement U ∈ [R,S].

(2) Let {Ti}mi=0 (resp.; {Ui}ri=0) be the Loewy series of [R, T ] (resp.; of [R,U ]).

Then Si = TiUi for each i ∈ {0, . . . , n}, with n = £[R,S] = sup{m, r} =

sup{£[R, T ],£[R,U ]}.
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Proof. (1) Lemma 3.33 gives T ∩ U = R and TU = S (∗). Moreover U is unique

satisfying these properties.

(2) SetM := MSuppR(S/R), MT := MSuppR(T/R) andMU := MSuppR(U/R)

=MSuppR(S/T ). Then, M = MT ∪MU with MT ∩MU = ∅ (∗∗) by Lemma

3.33. Now, we use Proposition 3.14.

Let M ∈ M and {S′i}
nM
i=0 (resp.; {T ′i}

mM
i=0 ,{U ′i}

rM
i=0) be the Loewy series of

[RM , SM ] (resp.; [RM , TM ], [RM , UM ]). Then S′i = (Si)M for each i ∈ {0, . . . , nM},
T ′i = (Ti)M for each i ∈ {0, . . . ,mM} and U ′i = (Ui)M for each i ∈ {0, . . . , rM}.
In view of (∗∗), we have either M ∈ MT (a), or M ∈ MU (b). In case (a),

M 6∈ MU , so that UM = RM and TM = SM . It follows that nM = mM

and S′i = T ′i for each i ≤ nM . Moreover, U ′i = RM for each i ≤ nM , so that

S′i = T ′iU
′
i = (Si)M = (Ti)M (Ui)M = (TiUi)M . The same reasoning shows that in

case (b), nM = rM and (Si)M = (Ti)M (Ui)M = (TiUi)M , so that (Si)M = (TiUi)M

for any M ∈ MSuppR(S/R). From Corollary 3.15, we deduce that

n = sup
M∈M

(nM )

= sup[ sup
M∈MT

(nM ), sup
M∈MU

(nM )]

= sup[ sup
M∈MT

(mM ), sup
M∈MU

(rM )]

= sup(m, r).

If m = r, then n = m = r. Let i ≤ n. Then, (Si)M = (Ti)M (Ui)M for each M ∈M
leads to Si = TiUi.

If m 6= r, assume m < r, so that n = r. As above, Si = TiUi ∈ [T, S] for

each i ≤ m. Recall that Ti = T for each i ∈ {m, . . . , r}. In particular, Sm =

TmUm = TUm ∈ [T, S] and we still have Si = TiUi ∈ [T, S] for each i ≥ m. Then,

MSuppR(S/Si) ⊆ MSuppR(S/T ) =MU for each i ≤ m. �

In [27, Definition 4.1], we call an extension R ⊂ S almost-Prüfer if it can be

factored R ⊆ U ⊆ S, where R ⊆ U is Prüfer and U ⊆ S is integral. Actually, U is

the Prüfer hull R̃ of the extension.

Corollary 3.35. Let R ⊂ S be an FCP almost-Prüfer extension with Loewy series

{Si}ni=0. Let {Ti}mi=0 (resp. {Ui}ri=0) be the Loewy series of [R,R] (resp.; of [R, R̃]).

Then Si = TiUi for each i ∈ {0, . . . , n}, with n = £[R,S] = sup{£[R,R],£[R, R̃]} =

sup{m, r}.
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Proof. We have SuppR(R/R) ∩ SuppR(S/R) = ∅ [27, Proposition 4.16], with R̃

the unique U ∈ [R,S] such that R ∩ U = R and U = S. Then, Proposition 3.34

gives the result. �

Given a ring R, recall that its Nagata ring R(X) is the localization R(X) =

T−1R[X] of the ring of polynomials R[X] with respect to the multiplicatively closed

subset T of all polynomials with content R. In [9, Theorem 32], Dobbs and the

authors proved that when R ⊂ S is an extension, whose Nagara extension R(X) ⊂
S(X) has FIP, the map ϕ : [R,S] → [R(X), S(X)] defined by ϕ(T ) = T (X) is an

order-isomorphism. We show now that this map send the Loewy series of R ⊂ S

to the Loewy series of R(X) ⊂ S(X).

Proposition 3.36. Let R ⊂ S be an extension such that R(X) ⊂ S(X) has FIP.

If {Si}ni=0 is the Loewy series of [R,S], then {Si(X)}ni=0 is the Loewy series of

[R(X), S(X)]. In particular, £[R,S] = £[R(X), S(X)].

Proof. Since the map ϕ : [R,S] → [R(X), S(X)] defined by ϕ(T ) = T (X) is an

order-isomorphism, it is also a lattice isomorphism. In particular, if T,U ∈ [R,S]

is such that T ⊂ U is minimal, so is T (X) ⊂ U(X) [10, Theorem 3.4]. Let {S′i}mi=0

be the Loewy series of [R(X), S(X)]. Then, an obvious induction on i shows that

S′i = Si(X) for each i ∈ {0, . . . , n} since an atom A of Si ⊂ S gives the atom A(X)

of Si(X) ⊂ S(X), and all atoms of Si(X) ⊂ S(X) are of this form. In particular,

n = £[R,S] = m = £[R(X), S(X)]. �

Remark 3.37. If R ⊂ S is an FCP extension such that R(X) ⊂ S(X) is distribu-

tive, then R(X) ⊂ S(X) has FIP because it has FCP by [10, Theorem 3.9]. In this

case, R ⊂ S is distributive [29, Proposition 3.7], and then has FIP.

In Corollary 3.4 and in Remark 3.5, we proved that for a ring extension R ⊂
S, the two socles S[R,S] and MS[R,S] may differ. Using idealization, we may

associate to some modules a ring extension. The Loewy length of some modules

can be computed as the Loewy length of a ring extension. Let M be an R-module.

The Loewy length of the R-module M is denoted by λ(M). We consider the ring

extension R ⊆ R(+)M , where R(+)M is the idealization of M in R.

Recall that R(+)M := {(r,m) | (r,m) ∈ R ×M} is a commutative ring whose

operations are defined as follows:

(r,m) + (s, n) = (r + s,m+ n) and (r,m)(s, n) = (rs, rn+ sm)

Then (1, 0) is the unit of R(+)M , and R ⊆ R(+)M is a ring morphism defining

R(+)M as an R-module, so that we can identify any r ∈ R with (r, 0).
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Proposition 3.38. Let M be an R-module with finite length and let S := R(+)M

be the idealization of M . Let {Si}ni=0 be the Loewy series of the ring extension

[R,S]. Then Si = R(+)Mi for each i ∈ {0, . . . , n} where {Mi}ni=0 is the Loewy

series of the lattice Λ(M). In particular, £[R,S] = λ(M).

Proof. Since M is an R-module with finite length, R ⊆ R(+)M is an FCP qua-

dratic extension [26, Propositions 2.2 and 2.3] and [15, Lemma 2]. Moreover, there

is an order isomorphism ψ : Λ(M) ∼= [R,R(+)M ] given by ψ(N) = R(+)N . In

particular, for N,N ′ ∈ Λ(M) such that N ⊂ N ′, [26, Proposition 2.8] says that

R(+)N ⊂ R(+)N ′ is minimal if and only if N ′/N is a simple R-module. At last,

for N,N ′ ∈ Λ(M), obviously (R(+)N)(R(+)N ′) = R(+)(N + N ′), so that ψ is

also a lattice isomorphism. Let {Si}m0 be the Loewy series of R ⊆ R(+)M . Then,

an easy induction on i shows that Si = R(+)Mi for each i ∈ {0, . . . , n}, where

{Mi}ni=0 is the Loewy series of the lattice Λ(M). Indeed, an atom N ′ of M/Mi is

of the form N/Mi, where N ∈ Λ(M) and Mi ⊂ N , and gives the atom R(+)N of

R(+)Mi ⊂ R(+)M . Moreover, all atoms of R(+)Mi ⊂ R(+)M are of this form.

In particular, £[R,S] = λ(M). �

Example 3.39. Let R be a SPIR (that is a special principal ideal ring with a

unique non zero prime ideal M = Rt such that M is nilpotent of index p > 0, a

positive integer). Then R is an R-module whose set Λ(R) of R-submodules is the

set of ideals {R,Rtk | k ∈ Np}. As Λ(R) is a chain, we get that Λ(R) = {Si}pi=0

is the Loewy series of the R-module R, where S0 = R, so that {R(+)Si}pi=0 is

the Loewy series of the ring extension R ⊂ R(+)R, and [R,R(+)R] is a chain by

Corollary 3.9.

4. Finite (distributive) field extension

We first consider a finite field extension k ⊂ L with separable closure T and

radicial closure U . The Loewy series of k ⊂ L is linked to those of k ⊂ T and

k ⊂ U . If k ⊂ L is a radicial extension, then c(k) is a prime number. We recall

that a minimal field extension is either radicial, or separable [23, Remark before

Proposition 2.2, page 371]. If K is an atom of [k, L], then k ⊂ K is either radicial

or separable. In the first case, we say that K is a radicial atom, and in this case,

[K : k] = p = c(k). In the second case, K is a separable atom. If k ⊂ L is a

finite field extension which is not separable, let T be its separable closure, so that

T ⊂ L is a radicial extension. In particular, p := c(T ) is a prime number, so that

c(k) = p. Since a finite dimensional separable field extension has FIP, we consider
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in this section mainly FIP field extension. We found less results for FCP not FIP

field extensions. We begin with the following lemma.

Lemma 4.1. Let k ⊂ L be an FCP field extension with separable closure T , radicial

closure U such that T,U 6∈ {k, L}. Let T ′ ∈ [k, T ] and U ′ ∈ [k, U ]. Set K := T ′U ′.

Then:

(1) U ′ ⊂ K is separable and T ′ ⊂ K is radicial.

(2) If there exists U ′′ ∈ [k, U ] such that U ′′ is a radicial atom of [U ′, U ], then

KU ′′ is a radicial atom of [K,L]. Moreover, if k ⊂ L has FIP, then KU ′′

is the only radicial atom of [K,L].

(3) The separable atoms V of [K,L] are of the form V = KT ′′, where T ′′ is an

atom of T ′ ⊂ T . In particular, T ′′ = V ∩ T .

Proof. Since k ⊂ U is radicial, p := c(k) is a prime number.

(1) Obvious, because T ′ (resp.: U ′) is generated by a separable element (resp.;

radicial elements) over k, which implies that this element generates a separable

(resp.; these elements generate a radicial) extension U ′ ⊂ K = U ′T ′ (resp.; T ′ ⊂
K = U ′T ′).

(2) For the same reason, K ⊂ KU ′′ is radicial, and of degree p, since [U ′′ :

U ′] = p. In particular, KU ′′ is a radicial atom of K ⊂ L. Moreover, assume that

k ⊂ L has FIP. Then, KU ′′ is the unique radicial atom of [K,L]. Deny and let

W ∈ [K,L], W 6= KU ′′, be a radicial atom of [K,L]. Then K ⊂ U ′′W is a finite

radicial extension which is not a chain, a contradiction. It follows that KU ′′ is the

only radicial atom of [K,L].

(3) Let V be a separable atom of [K,L]. We have the following diagram,

U ′ → K → V → L

↑ ↑ ↑ ↑
k → T ′ → V ∩ T → T

where V ∩T is the separable closure of T ′ ⊂ V . In particular, V ∩T ⊆ V is radicial,

with V ∩ T 6= T ′ because T ′ ⊂ V is not radicial, and V ∩ T 6= V because T ′ ⊂ V

is not separable. We claim that V is of the form KT ′′, where T ′′ is an atom of

T ′ ⊂ T . Since V ∩ T ∈]T ′, T ], there is some T ′′ ∈]T ′, V ∩ T ] such that T ′ ⊂ T ′′ is

minimal. Then, T ′ ⊂ T ′′ ⊆ V ∩ T implies K = U ′T ′ ⊆ U ′T ′′ ⊆ U ′(V ∩ T ) ⊆ V .

But K ⊂ V minimal implies that either U ′T ′′ = K (∗) or U ′T ′′ = V (∗∗). In case

(∗), we have T ′′ ∈ [T ′,K], with T ′ ⊂ K radicial, so that T ′ ⊂ T ′′ is both radicial

and separable, a contradiction. So, only case (∗∗) holds and V = U ′T ′′ = U ′(V ∩T )

= U ′T ′T ′′ = KT ′′, because T ′ ⊂ T ′′. In particular, T ′′ = V ∩ T , as the separable

closure of T ′ ⊂ V because T ′′ ⊆ U ′T ′′ = V is radicial.
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Conversely, an atom T ′′ of [T ′, T ] is such that T ′ ⊂ T ′′ is minimal separable. The

inclusion T ′ ⊂ T ′′ leads to K = U ′T ′ ⊆ U ′T ′′ separable, with T ′′ ⊂ U ′T ′′ radicial

and K 6= U ′T ′′ by a similar reasoning as before. In particular, T ′′ = U ′T ′′ ∩ T
as the separable closure of T ′ ⊆ U ′T ′′. Assume that K ⊂ U ′T ′′ is not minimal,

so that there exists V ∈]K,U ′T ′′[, with K ⊂ V separable. Then, T ′ = K ∩ T ⊆
V ∩ T ⊆ U ′T ′′ ∩ T = T ′′. As above, V ∩ T 6= T ′, because T ′ ⊆ V is not radicial,

which leads to V ∩ T = T ′′, and then to U ′T ′′ = U ′(V ∩ T ) ⊆ V , a contradiction.

Then, K ⊂ U ′T ′′ is minimal. �

Definition 4.2. [12] A finite field extension k ⊂ L is said to be exceptional if

k = Lr and Ls 6= L.

Proposition 4.3. Let k ⊂ L be an FIP field extension with separable closure T ,

radicial closure U and T,U 6∈ {k, L}. Let {Si}ni=0 (resp. {Ti}mi=0, {Ui}ri=0, {Ti}si=m)

be the Loewy series of k ⊂ L (resp. k ⊂ T, k ⊂ U, T ⊂ L). Then:

(1) If i ≤ inf(m, r), then Si = TiUi.

(2) If m ≤ r, then Si = Ti+m for i ≥ m. In particular, £[k, L] = n = s−m.

(3) If r < m and U ⊂ L is separable, then U is the complement of T . Moreover,

Si = UrTi = UTi for i ∈ {r, . . . ,m}, with L = Sn = Ts = UTn. In

particular, £[k, L] = n = m = £[k, T ] and s = £[k, T ] + £[k, U ] = m+ r.

(4) Assume that r < m and U ⊂ L is not separable. For i ≥ r, the Si’s are

gotten by induction on i in the following way: if Si ⊂ L is exceptional, then

Si+1 = SiTi+1; if Si ⊂ L is not exceptional, then Si+1 = ViTi+1, where

Vi is the unique radicial atom of [Si, L]. In this way, we obtain the family

{Si}ti=r, for the least t such that St ∈ [Tm, L]. As there exists some l such

that St = Tl, then Si = Tl+i−t, for i ≥ t. In particular, n = s+ t− l.

Proof. Set p := c(k).

(1) We show by induction on i that Si = TiUi for any i ≤ inf(m, r). For i = 0,

we have k = S0 = T0 = U0 = T0U0. Assume that for some i < inf(m, r), we have

Si = TiUi. We are going to determine the atoms of Si ⊂ L. Since any minimal field

extension is either radicial or separable, it is enough to characterize any V ∈ [Si, L]

which is either a radicial atom (∗), or a separable atom (∗∗). We use Lemma 4.1.

In case (∗), V = SiUi+1, since Ui+1 is the only radicial atom of [Ui, L]. In case

(∗∗), V = SiT
′′, where T ′′ is any atom of Ti ⊂ T . Because Si+1 is the product of

all atoms of Si ⊂ L, we get that Si+1 = SiUi+1Ti+1. But, Si = TiUi with Ti ⊂ Ti+1

and Ui ⊂ Ui+1 leads to Si+1 = Ui+1Ti+1, and the induction is proved.

(2) Assume that m ≤ r. In view of (1), we have Sm = TmUm = TUm with

Sm ⊆ L radicial. Indeed, Tm ⊂ L is radicial, and then a chain, and Sm ∈ [Tm, L] =
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{Ti}si=m. We have the following diagram

Um

↗ ↘
k TmUm → L

↘ ↗
Tm

with k ⊂ Um, Tm ⊂ TmUm both radicial, and k ⊂ Tm, Um ⊂ TmUm both separable.

In particular, [Um : k] = [TmUm : Tm] = pm since Ui+1 is a radicial atom of [Ui, L]

for each i ∈ {0, . . . ,m− 1}. It follows that TmUm = Sm = T2m and Si = Tm+i for

any i ∈ {m, . . . , n}, so that m+ n = s because S = Sn = Ts = Tm+n.

(3) Assume that m > r, so that Sr = TrUr = UTr. Let V be an atom of Sr ⊂ L.

If V is a separable atom of [Sr, L], then V = SrT
′′, where T ′′ is an atom of Tr ⊂ T

in view of Lemma 4.1. In particular, SrTr+1 = UrTrTr+1 = UrTr+1 is the product

of the separable atoms of Sr ⊂ L. Since U ⊂ L is separable, there is no radicial

atom in [Sr, L]. It follows that Sr+1 = UrTr+1. An obvious induction shows that

Si = UrTi for any i ∈ {r,m}. Since TU ∈ [T, L]∩ [U,L], we get L = TU . Therefore,

U is a complement of T because k = T ∩ U , which is obviously unique. Moreover,

T = Tm ⊂ UrTm and U = Ur ⊂ UrTm, so that L = UrTm = Sm = Sn = Ts = UTn

since U ⊂ L is separable and T ⊂ L is radicial. Then, n = m. Moreover, s = m+ r

since [L : T ] = [U : k] = pr = ps−m.

(4) Assume that r < m and that U ⊂ L is not separable. We have Sr = UrTr

by (1). We get by induction on i ≥ r the Si’s in the following way: Assume

that Si is gotten. If Si ⊂ L is exceptional, there is no V ∈ [Si, L] such that

Si ⊂ V is minimal radicial, then Si+1 = SiTi+1 as in case (3). If Si ⊂ L is not

exceptional, there is a unique radicial atom Vi of [Si, L]. But in this case, since

SiTi+1 is the product of separable atoms of [Si, L], then Si+1 = SiTi+1Vi = ViTi+1

because Si ⊂ Vi. Since {Si}ni=r is an increasing sequence, there is a least t ≥ r

such that St ∈ [Tm, L]. Indeed, Tm ⊆ Sm, and there exists some l ≥ m such that

St = Tl because [Tm, L] = {Ti}si=m. Then Si = Tl+i−t, for i ≥ t, which implies that

s = l + n− t, that is n = s+ t− l. �

Proposition 4.4. Let k ⊂ L be an FCP radicial field extension. Set p := c(k) and

[L : k] = pn.

(1) Then S[k, L] = {x ∈ L | xp ∈ k}.
(2) If k ⊂ L has FIP, the Loewy series of k ⊂ L is [k, L] and £[k, L] = n.

Proof. (1) S[k, L] =
∏
A∈AA, where A is the set of atoms of [k, L]. Now, A ∈

A ⇔ k ⊂ A is minimal ⇔ A = k[x] with k ⊂ k[x] minimal radicial ⇔ [k[x] :



42 GABRIEL PICAVET AND MARTINE PICAVET-L’HERMITTE

k] = p ⇔ A = k[x] with xp ∈ k. In particular, tp ∈ k for any t ∈ A since

c(k) = p. Let y ∈ S[k, L]. Then y is a finite sum of products z := x1 · · ·xn of

elements of atoms of [k, L]. But zp = xp1 · · ·xpn ∈ k, which yields that yp ∈ k.

Then, S[k, L] ⊆ {x ∈ L | xp ∈ k}. Conversely, if xp ∈ k for some x ∈ L \ k, it

follows that k ⊂ k[x] is minimal, so that k[x] ∈ A which leads to x ∈ S[k, L]. Then,

S[k, L] = {x ∈ L | xp ∈ k}.
(2) Obvious since [k, L] is a chain. �

Remark 4.5. Contrary to FCP separable field extensions which are always FIP,

there exist FCP radicial field extensions which are not FIP. Take for instance k :=

Z/2Z(Y, T ), the field of rational functions over Z/2Z in two indeterminates Y and

T . Let α (resp. β) be a zero of F (X) := X2 − Y (resp. G(X) := X2 − T ) in the

same algebraically closed field extension of k. Then, k ⊂ k[α, β] is an FCP radicial

extension of length 2. But, it has not FIP by [28, Theorem 6.1 (8) (a)], because

|[k, k[α, β]]| ≥ 4 gives |[k, k[α, β]]| =∞.

Actually, the following proposition gives a characterization of FIP radicial field

extensions.

Proposition 4.6. Let k ⊂ L be an FCP radicial field extension. The following

conditions are equivalent:

(1) k ⊂ L is a chain.

(2) k ⊂ L is distributive.

(3) k ⊂ L has FIP.

Proof. (1) ⇒ (2) by [29, Proposition 2.3].

(1) ⇒ (3) since k ⊂ L has FCP.

(3) ⇒ (1) by [29, Lemma 4.1].

(2) ⇒ (1) Assume that k ⊂ L is distributive and not a chain. There exist

K1,K2,K3 ∈ [k, L] such that K1 ⊂ Ki is minimal for i = 2, 3 with K2 6= K3. We

get that |[K1,K2K3]| = 4 because `[K1,K2K3]| = 2. Indeed, k ⊂ L is distribu-

tive, so that [K1,K2K3] does not contain a diamond [13, Theorem 1, page 59], a

contradiction with [28, Theorem 6.1 (8) (a)]. �

The last case to consider is the case of a finite separable field extension. We

recall here some results gotten in [29].

Let L := k[x] be a finite separable (whence FIP) field extension of k and f(X) ∈
ku[X] (the set of monic polynomials of k[X]) the minimal polynomial of x over k.

If g(X) ∈ Lu[X] divides f(X), we denote by Kg the k-subalgebra of L generated

by the coefficients of g. For any K ∈ [k, L], we denote by fK(X) ∈ Ku[X] the
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minimal polynomial of x over K. The proof of the Primitive Element Theorem

shows that K = KfK . Of course, fK(X) divides f(X) in K[X] (and in L[X]). We

set D := {fK | K ∈ [k, L]}. Then, (D,≤) is a poset for the order ≤ defined as

follows: if fK , fK′ ∈ D, then fK ≤ fK′ if and only if fK divides fK′ in L[X], which

is equivalent to K ′ ⊆ K by [29, Lemma 4.7]. In particular, inf is gcd in D.

Corollary 4.7. [29, Corollary 4.9] The map ϕ : [k, L]→ D defined by K 7→ fK is

a reversing order bijection such that fKK′ = inf(fK , fK′) for K,K ′ ∈ [k, L].

Proposition 4.8. Let k ⊂ L := k[x] be a finite separable field extension of k and

K ⊂ K ′ a subextension. Then, K ⊂ K ′ is minimal if and only if fK′ is a maximal

proper divisor of fK in D.

Proof. In view of Corollary 4.7, we have K ⊂ K ′ if and only if fK′ divides fK in

D. Moreover, K ⊂ K ′ is minimal if and only if there is no K ′′ ∈ [k, L] such that

K ⊂ K ′′ ⊂ K ′ if and only if there is no proper divisor of fK divided strictly by fK′

if and only if fK′ is a maximal proper divisor of fK in D. �

Proposition 4.9. Let k ⊂ L := k[x] be a finite separable field extension of k. The

Loewy series {Si}ni=0 of k ⊂ L is gotten by induction in the following way: S0 = k

and for i ∈ {0, . . . , n − 1}, we have Si+1 = Kg, where g = inf{h ∈ D | h is a

maximal proper divisor of fSi in D}.

Proof. For a given Si, we have Si+1 =
∏
{V | Si ⊂ V minimal}. In view of

Proposition 4.8, Si ⊂ V is minimal ⇔ fV is a maximal proper divisor of fSi
. It

follows from Corollary 4.7 that Si+1 = Kg ⇔ g = fSi+1 = inf{h ∈ D | h is a

maximal proper divisor of fSi
}. �

Example 4.10. We have seen in Example 3.28 (1) how we can get the Loewy

series of a finite cyclic field extension k ⊂ L := k[x] of degree 12. Assume that

k contains a primitive 12th root of unity and that x12 = a ∈ k. According to

[19, Proposition 9.6 and Corollary 9.7], the minimal polynomial of x over k is

P1(T ) = T 12 − a. Moreover, any element of [k, L] is of the form k[y], where

y = xj for some divisor j of 12. Set i := 12/j, so that yi = a. Then, keeping

the notation of Example 3.28 (1) and Proposition 4.9, we get Li = k[xj ] and the

minimal polynomial of x over Li is Pi(T ) = T j − xj ∈ Li[X] (of degree j = 12/i),

so that D = {Pi(T ) | i = 1, 2, 3, 4, 6, 12}. Since S0 = k and P1(T ) = T 12 − a, the

maximal proper divisors of fS0
= P1 are P2 and P3, with P6 = inf{P2, P3}. Then,

we recover S1 = L6 as in Example 3.28(1). Now, S2 = L is obvious.
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Proposition 4.11. Let k ⊂ L := k[x] be a minimal separable field extension. Let N

be the normal closure of L. Then, £[k,N ] = 1. Moreover, the following conditions

are equivalent:

(1) k ⊂ N is distributive.

(2) k ⊂ N is Boolean.

(3) k ⊂ N is a cyclic extension and [N : k] is square-free.

Proof. Let G be the Galois group of k ⊂ N . Then N = k[{σ(x) | σ ∈ G}] =∏
σ∈G k[σ(x)]. Since k ⊂ k[σ(x)] is obviously minimal for any σ ∈ G, it follows

that N = S[k,N ], so that £[k,N ] = 1.

(1) ⇔ (2) by Lemma 3.6 and by definition of a Boolean extension.

(2) ⇔ (3) by [29, Theorem 4.19]. �

Corollary 4.12. Let k ⊂ L be a finite Galois extension with Galois group G. The

socle S[k, L] is globally invariant by the elements of G. Moreover, k ⊂ S[k, L] is

Galois.

Proof. By definition, S[k, L] =
∏
A∈AA. For any A ∈ A, there exists xA ∈ A

such that A = k[xA], so that S[k, L] =
∏
A∈A k[xA]. For any σ ∈ G, we have

σ(S[k, L]) = σ(
∏
A∈A k[xA]) =

∏
A∈A k[σ(xA)]. Obviously, k[σ(xA)] ∈ A which

yields σ(S[k, L]) ⊆ S[k, L]. But σ being a k-isomorphism, for any x ∈ L such that

k[x] ∈ A, and setting y := σ−1(x), that is x = σ(y), we have k[x] = k[σ(y)], with

k[y] ∈ A. To conclude, S[k, L] ⊆ σ(S[k, L]) and S[k, L] = σ(S[k, L]). This equality

shows that k ⊂ S[k, L] is Galois by [3, Proposition 5, page A V.54]. �

We give here a complete study of the case of finite Galois distributive field

extensions. They are evidently FIP. Recall that a finite Galois field extension

is minimal if and only if its degree is a prime integer [23, Proposition 2.2] and is

Boolean if and only if it is a cyclic extension with a square-free degree [29, Theorem

4.19].

Proposition 4.13. A finite Galois field extension is distributive if and only if it

is cyclic.

Proof. Let k ⊂ L be a finite Galois field extension with Galois group G and let

G be the set of subgroups of G. In view of the Fundamental Theorem of Ga-

lois Theory, the maps ϕ : [k, L] → G defined by ϕ(K) :=AutK(L), the group

of K-automorphisms of L, for each K ∈ [k, L] and ψ : G → [k, L] defined by

ψ(H) :=Fix(H), the fixed field of H in L, for each H ∈ G are reversing order iso-

morphisms of lattices, with ϕ = ψ−1 (see [3, Corollaire 2, page A V.65]). It follows
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that k ⊂ L is distributive if and only if G is distributive if and only if G is cyclic

[14, Theorem 19.2.1]. �

Theorem 4.14. Let k ⊂ L be a finite cyclic field extension. Set r := [L : k] =∏m
i=1 p

αi
i , where the pi are distinct prime integers. Let Dr be the set of divisors of

r and A be the set of atoms of [k, L]. Then:

(1) For each i ∈ Nm, there is a unique Ai ∈ A such that [Ai : k] = pi. Let

T ∈ [k, L]. Then, T ∈ A if and only if [T : k] = pi for some i ∈ Nm.

(2) S[k, L] =
∏m
i=1Ai.

(3) Set α := sup{αi | i ∈ Nm}. Let {Sj}nj=0 be the Loewy series of k ⊂ L

and let j ∈ {0, . . . , n}. Then, [Sj : k] =
∏m
i=1 p

βi

i , where either βi = αi if

αi < j or βi = j if αi ≥ j. Moreover, T ∈ [k, L] is an atom of [Sj , Sj+1]

if and only if [T : k] =
∏m
i=1 p

γi
i , where there exists a unique i0 such that

βi0 < αi0 , satisfying γi = βi for each i 6= i0 and γi0 = βi0 +1. In particular,

α = n = £[k, L].

(4) Sj ⊂ Sj+1 is Boolean for each j ∈ {0, . . . , n− 1}.
(5) Let T ∈]k, L]. Then, T is a Π-irreducible element of [k, L] if and only if

[T : k] = pβi

i for some βi ∈ Nαi
and some i ∈ Nm.

(6) |[k, L]| = d([L : k]) =
∏m
i=1(αi + 1) = |Dr|. Let Aj be the set of atoms of

[Sj , Sj+1]. Then, `[k, L] =
∑α−1
j=0 |Aj | =

∑m
i=1 αi which is the number of

Π-irreducible elements of ]k, L].

(7) The following conditions are equivalent:

(a) k ⊂ L is a P-extension.

(b) k ⊂ L is either Boolean or a chain.

(c) either m = 1 or α = 1.

Proof. First observe that any subextension of k ⊂ L is still cyclic and k ⊂ L is

Galois distributive. Moreover, there is a lattice isomorphism Dr → [k, L], where

d 7→ T such that [T : k] = d.

(1) Let G be the Galois group of k ⊂ L. Then, G ∼= Z/rZ, with |G| = r.

Since k ⊂ L is cyclic, it follows that for any integer d ∈ Dr, there exists a unique

T ∈ [k, L] such that [T : k] = d, and conversely, [T : k] ∈ Dr for any T ∈ [k, L]. In

particular, k ⊂ T is minimal if and only if [T : k] is a prime integer. Then, T ∈ A
if and only if [T : k] = pi for some i ∈ Nm, and for each i ∈ Nm, there is a unique

Ai ∈ A such that [Ai : k] = pi.

(2) By definition, S[k, L] =
∏
A∈AA =

∏m
i=1Ai.

(3) We show by induction on j ≥ 0 that [Sj : k] =
∏m
i=1 p

βi

i , where either βi = αi

if αi < j or βi = j if αi ≥ j. The induction hypothesis holds clearly for j = 0.
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Assume that the induction hypothesis holds for some j ∈ {0, . . . , n− 1} so that

Sj ⊂ L. Then, [Sj : k] =
∏m
i=1 p

βi

i , where either βi = αi if αi < j or βi = j if

αi ≥ j. Set mj := |{αi ∈ Nm | αi > j}|. There is no harm to renumber the αi’s

so that αi > j for each i ≤ mj and αi ≤ j for each i > mj . Let T be an atom

of [Sj , Sj+1], so that Sj ⊂ T is minimal and [T : Sj ] = pi0 , for some i0 ∈ Nm.

In particular, [T : k] = p
βi0+1
i0

∏
i6=i0 p

βi

i , so that βi0 + 1 ≤ αi0 , which leads to

βi0 < αi0 . Then, βi0 = j, that is αi0 > j and i0 ≤ mj .

Conversely, if i ≤ mj , then αi > j, so that there exists T ∈ [Sj , L] such that

[T : Sj ] = pi, and T is an atom of Sj ⊂ L.

Since Sj+1 is the product of all atoms of Sj ⊂ L, it follows that [Sj+1 : Sj ] =∏mj

i=1 pi, giving

[Sj+1 : k] = [Sj+1 : Sj ][Sj : k] = (

mj∏
i=1

pi)(

m∏
i=mj+1

pβi

i )(

mj∏
i=1

pβi

i ) =

m∏
i=1

p
β′
i
i ,

where β′i = βi + 1 if i ≤ mj and β′i = βi for i > mj . This means the following: if

αi ≥ j + 1 > j, then, β′i = βi + 1 = j + 1, if αi < j, then, β′i = βi = αi, and, if

αi = j, then, β′i = βi = j = αi. Hence, the induction hypothesis holds for Sj+1.

Therefore, L = Sα = Sn and α = n = £[k, L].

(4) Sj ⊂ Sj+1 is Boolean for each j ∈ {0, . . . , n − 1} by Proposition 3.8 since

k ⊂ L is distributive. In particular, we recover the fact that [Sj+1 : Sj ] is square-free

for each j ∈ {0, . . . , n− 1}.
(5) Let T ∈]k, L] be such that [T : k] = pβi

i for some βi ∈ Nαi and some i ∈ Nm.

It follows that [k, T ] is a chain, since so is the Galois group of k ⊂ T (isomorphic

to Z/pβi

i Z). Then, T is Π-irreducible by Proposition 2.5.

Assume now that [T : k] is divided by at least two distinct prime integers. After

a suitable reordering, we may assume that [T : k] =
∏r
i=1 p

βi

i , r > 1 and βi > 0

for each i ∈ Nr. In view of the Fundamental Theorem of Galois Theory, there exist

T1, T2 ∈ [k, T ] such that [T : Ti] = pi for i = 1, 2, so that T1 ⊂ T and T2 ⊂ T are

two minimal field extensions as it is recalled before Proposition 4.13. Then, T is

not Π-irreducible by Proposition 2.5.

(6) The equality |[k, L]| = d([L : k]) is obvious because of the lattice isomorphism

recalled at the beginning of the proof. By [18, Lemma 4, p.486], `[k, L] is the

number of Π-irreducible elements of ]k, L]. Then, `[k, L] =
∑m
i=1 αi by (5). To end,

`[k, L] =
∑α−1
j=0 `[Sj , Sj+1] by Proposition 3.8. But each [Sj , Sj+1] is Boolean, so

that `[Sj , Sj+1] = |Aj | again by [18, Lemma 4, page 486] since an element of the

Boolean lattice [Sj , Sj+1] is a Π-irreducible element different from Sj if and only if

it is an atom of [Sj , Sj+1]. This yields `[k, L] =
∑α−1
j=0 |Aj |.



THE LOEWY SERIES OF AN FCP (DISTRIBUTIVE) RING EXTENSION 47

We can remark that we may consider `[k, L] in two different ways : when we

write
`[k, L] = 1 + . . . + . . . = α1

1 + . . . + . . . = α2

· · · · · · · · · · · · · · · · · ·
1 + . . . + . . . = αm

= =

|A0| |A1| · · ·
in line i, we have the power of pi in [L : k], which is the number of Π-irreducible

elements whose degree of extension over k is a power of pi, and in column j, we

have the number of atoms of Sj ⊂ Sj+1, with either 1 or 0 instead of . . ., and 0

after and under each 0.

(7) We discuss with respect to m and α.

If m = 1, then k ⊂ L is a chain and a P-extension by Corollary 3.9.

Assume m > 1.

If α = 1, then [L : k] =
∏m
i=1 pi shows that k ⊂ L is Boolean by the remark

before Proposition 4.13, because its degree is square-free, and then a P-extension

since [k, L] = [k, S1].

Assume that α > 1. After reordering, we may assume that α1 > 1. There exists

T ∈ [k, L] such that [T : k] = p21. Since [S1 : k] =
∏m
i=1 pi by (3), we get that

T 6∈ [k, S1] ∪ [S1;L], so that [k, L] 6= ∪n−1i=0 [Si, Si+1] and k ⊂ L is not a P-extension

in this case. In particular, k ⊂ L is neither Boolean nor a chain.

Gathering the different cases we get (7). �

Example 4.15. Example 3.28 (1) illustrates Theorem 4.14. Since [L : k] = r =

12 = 3.22, we recover results of Theorem 4.14 with p1 = 3 and p2 = 2, α1 = 1 and

α2 = 2, giving that S1 = L2L3 = L6, the product of the atoms of k ⊂ L, and S2 =

L, because L6 ⊂ L is minimal. Moreover, |[k, L]| = 6 = d(12), `[k, L] = 3, where

the Π-irreducible elements of ]k, L] are L2, L3 and L4, and £[R,S] = sup{α1, α2} =

2.

Remark 4.16. Comparing Theorem 3.22 and Theorem 4.14 (4), we see that the

latter is a generalization of Theorem 3.22 in case of a finite cyclic field extension.

Indeed, k ⊂ L is distributive and Sj ⊂ Sj+1 is Boolean for each j ∈ {0, . . . , n− 1}.
The condition P does not matter.
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