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Abstract. Some generalizations of BCI algebras (the RM, BH, CI, BCH,

BH**, BCH**, and *aRM** algebras) satisfying the identity (x → 1) → y =

(y → 1) → x are considered. The connections of these algebras and vari-

ous generalizations of commutative groups (such as, for example, involutive

commutative moons and commutative (weakly) goops) are described. In par-

ticular, it is proved that an RM algebra verifying this identity is equivalent to

an involutive commutative moon.
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1. Introduction

In 1966, K. Iséki [6] introduced BCI algebras as algebraic models of BCI-logic.

In 1983, Q. P. Hu and X. Li [2] defined BCH algebras, which are a generalization

of BCI algebras. Later on, in 1998, Y. B. Jun et al. [7] introduced the notion

of BH algebras. It is known that BCI and BCH algebras are contained in the

class of BH algebras. Next, in 2009, the new class of algebras called CI algebras

was introduced by B. L. Meng [11]. These algebras are a generalization of BCH

algebras (hence also a generalization of BCI algebras). BH and CI algebras are also

called aRM and RME algebras, respectively (see [3], [4], [14]). All of the algebras

mentioned above are contained in the class of RM algebras (an RM algebra is an

algebra (A;→, 1) of type (2, 0) satisfying the identities: x→ x = 1 and 1→ x = x).

Deductive systems and congruences in RM algebras were studied by A. Walendziak

[12]. The implicative and commutative properties for some subclasses of the class

of RM algebras were investigated in [13,14]. In 1985, T. Lei and C. Xi [9] defined p-

semisimple BCI algebras and proved that p-semisimple BCI algebras are equivalent

with commutative groups. The p-semisimple BCI algebras have been extensively

investigated in many papers (for example [1], [8], [10], [16]).

In this paper, we consider some generalizations of BCI algebras (the RM, BH,

CI, BCH, BH**, BCH**, and *aRM** algebras) satisfying the identity (x→ 1)→
y = (y → 1)→ x, which plays a very important role in the theory of p-semisimple
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BCI algebras. We describe the connections of considered algebras and various gen-

eralizations of commutative groups (such as, for example, involutive commutative

moons and commutative goops, which were introduced by A. Iorgulescu [5]). In

particular, we prove that RM algebras verifying (x → 1) → y = (y → 1) → x are

equivalent with involutive commutative moons.

2. Preliminaries

2.1 Generalizations of BCI algebras

Let A = (A;→, 1) be an algebra of type (2, 0). We define the binary relation 6

by: for all x, y ∈ A,

x 6 y ⇐⇒ x→ y = 1.

We consider the following list of properties (cf. [3]) that can be satisfied by A:

(An) (Antisymmetry) x→ y = 1 = y → x =⇒ x = y,

(An’) (Antisymmetry) x 6 y and y 6 x =⇒ x = y,

(B) (y → z)→ [(x→ y)→ (x→ z)] = 1,

(B’) y → z 6 (x→ y)→ (x→ z),

(BB) (y → z)→ [(z → x)→ (y → x)] = 1,

(BB’) y → z 6 (z → x)→ (y → x),

(D1) x→ ((x→ 1)→ 1) = 1,

(D1’) x 6 (x→ 1)→ 1,

(Ex) x→ (y → z) = y → (x→ z),

(M) 1→ x = x,

(Re) (Reflexivity) x→ x = 1,

(Re’) (Reflexivity) x 6 x,

(*) x→ y = 1 =⇒ (z → x)→ (z → y) = 1,

(*’) x 6 y =⇒ z → x 6 z → y,

(**) x→ y = 1 =⇒ (y → z)→ (x→ z) = 1,

(**’) x 6 y =⇒ y → z 6 x→ z,

(Tr) (Transitivity) x→ y = 1 = y → z =⇒ x→ z = 1,

(Tr’) (Transitivity) x 6 y and y 6 z =⇒ x 6 z.

Lemma 2.1. (See Proposition 2.1 and Theorem 2.7 of [3]) Let A = (A;→, 1) be

an algebra of type (2, 0). Then the following hold:

(i) (Re) + (Ex) + (An) imply (M),

(ii) (M) + (B) imply (*), (**),

(iii) (M) + (**) imply (Tr),

(iv) (Re) + (Ex) + (*) imply (BB),

(v) (M) + (BB) imply (B).
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Definition 2.2. (See [3]) An algebra A = (A;→, 1) is called:

1. RM algebra if it verifies the axioms: (Re), (M).

2. aRM algebra (or BH algebra) if it verifies the axioms: (Re), (M), (An), i.e.,

it is an RM algebra with (An).

3. RME algebra (or CI algebra) if it verifies the axioms: (Re), (M), (Ex), i.e.,

it is an RM algebra with (Ex).

4. BCH algebra if it verifies the axioms: (Re), (Ex), (An), hence (M) by

Lemma 2.1 (i), i.e., it is an RME algebra with (An).

5. aRM** algebra if it verifies the axioms: (Re), (M), (An), (**), i.e., it is an

aRM algebra with (**).

6. *aRM** algebra if it verifies the axioms: (Re), (M), (An), (*), (**), i.e., it

is an aRM algebra with (*), (**).

7. BCH** algebra if it is a BCH algebra verifying (**).

8. BCI algebra if it is a BCH algebra verifying (B).

Denote by RM, aRM = BH, RME = CI, BCH, aRM**, *aRM**, BCH**,

and BCI the classes of RM, aRM, RME, BCH, aRM**, *aRM**, BCH**, and BCI

algebras, respectively. From the definitions and Lemma 2.1(ii) it follows that

BCI ⊂ BCH** ⊂ BCH ⊂ RME ⊂ RM,

BCI ⊂ *aRM** ⊂ aRM** ⊂ aRM ⊂ RM, and BCH ⊂ aRM.

The interrelationships between the classes of algebras mentioned before are visu-

alized in Figure 1. (An arrow indicates proper inclusion, that is, if X and Y are

classes of algebras, then X −→Y means X⊂Y.)
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Fig. 1: The hierarchy between BCI and RM
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Note that, in RM algebras, 6 is a reflexive relation; in aRM algebras, it is

reflexive and antisymmetric. If A is an aRM** algebra, then 6 is also transitive by

Lemma 2.1(iii). Therefore 6 is an order relation in aRM** algebras (hence also in

BCH**,*aRM**, and BCI algebras).

2.2 Generalizations of commutative groups

A. Iorgulescu [5] introduced and studied new generalizations of groups such as

moons, goops and many others.

Definition 2.3. A moon is an algebra G = (G; ·,−1 , 1) of type (2, 1, 0) satisfying

(U) x · 1 = x = 1 · x,
(Iv) x · x−1 = 1 = x−1 · x.

A moon is involutive if it satisfies

(DN) (x−1)−1 = x.

A moon is associative if it satisfies

(Ass) x · (y · z) = (x · y) · z.

A moon is commutative if it satisfies

(Com) x · y = y · x.

Note that the associative moon is just the group.

Definition 2.4. ([5]) A goop is an algebra (G; ·,−1 , 1) of type (2, 1, 0) satisfying

(U) and the following conditions:

(GP1) y · x−1 = 1⇐⇒ x−1 · y = 1,

(GP2) y · x−1 = 1⇐⇒ x = y.

Proposition 2.5. An algebra G = (G; ·,−1 , 1) of type (2, 1, 0) is a goop if and only

if it is an involutive moon satisfying

(GP) y · x−1 = 1 =⇒ x = y.

Proof. Let G be a goop. Observe that it satisfies (Iv). Indeed, let x ∈ G. We have

x = x
(GP2)⇐⇒ x · x−1 = 1

(GP1)⇐⇒ x−1 · x = 1.

Therefore, (Iv) holds. By (Iv), (x−1)−1 · x−1 = 1. From (GP2) we conclude that

(x−1)−1 = x. Thus G is an involutive moon. By (GP2), it satisfies (GP).

Conversely, let G satisfy (U), (Iv), (DN) and (GP). Let x, y ∈ G. To prove (GP1),

we first assume that y · x−1 = 1. By (GP), x = y. Then x−1 · y = x−1 · x (Iv)
= 1.

Now suppose that x−1 · y = 1. Therefore, 1 = x−1 · y (DN)
= x−1 · (y−1)−1. Applying

(GP), we see that x−1 = y−1. Hence y · x−1 = y · y−1 = 1. Consequently, (GP1)

holds. Using (GP) and (Iv), we have (GP2). Thus, G is a goop. �
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Definition 2.6. ([15]) We say that an algebra (G; ·,−1 , 1) of type (2, 1, 0) is a

weakly goop if it is an involutive moon satisfying

(wGP) y · x−1 = 1 = x · y−1 =⇒ x = y.

Example 2.7. The algebra G = ({a, b, 1}; ·,−1 , 1), with

· a b 1

a a 1 a

b 1 1 b

1 a b 1

and a−1 = b, b−1 = a, 1−1 = 1, is a commutative weakly goop. Since b · a−1 =

b · b = 1 and a 6= b, G does not satisfy (GP2). Therefore, it is not a goop.

Let inv. com. moon, com. weakly goop, com. goop and com. group

denote the class of all involutive commutative moons, commutative weakly goops,

commutative goops and commutative groups, respectively. From the definitions we

obtain

inv. com. moon ⊂ com. weakly goop ⊂ com. goop ⊂ com. group

3. The conditions (p-s), (p-s1), (D1=) and (PS)

Let A = (A;→, 1) be an algebra of type (2, 0). Consider the following conditions

that can be satisfied by A:

(p-s) x 6 y =⇒ x = y,

(p-s1) x 6 1 =⇒ x = 1,

(D1=) x = (x→ 1)→ 1,

(PS) (x→ 1)→ y = (y → 1)→ x.

Note that, in [5], the concept of negation, −1, is defined by x−1 = x → 1, and

hence

(D1=) ⇐⇒ (x−1)−1 = x and (PS) ⇐⇒ x−1 → y = y−1 → x.

Thus (D1=) is in fact the double negation property (DN) and (PS) is the property

(pDNeg2), in the commutative case, from the book [5].

Remark that RM algebras satisfying (D1=) were studied in [15].

First we present connections between the conditions in the above list.

Lemma 3.1. Let A be an algebra of type (2, 0). Then

(i) (M) + (PS) imply (D1=),

(ii) (M) + (D1=) imply (p-s1),

(iii) (An) + (Re) + (**) + (p-s1) imply (p-s),
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(iv) (D1) + (p-s) imply (D1=),

(v) (Re) + (Ex) + (D1=) imply (p-s).

(vi) (p-s) implies (An), (*), (**).

Proof. (i) Let x ∈ A. By (PS) and (M), (x→ 1)→ 1 = (1→ 1)→ x = x, that is,

(D1=) holds.

(ii) Let x ∈ A and x 6 1. Hence x → 1 = 1. From (D1=) we have x = (x →
1)→ 1 = 1→ 1 = 1. Consequently, A satisfies (p-s1).

(iii) Let x, y ∈ A and x 6 y. By (**) and (Re), y → x 6 x→ x = 1. From (p-s1)

we obtain y → x = 1, that is, y 6 x. Applying (An), we conclude that x = y. Then

(p-s) holds.

(iv) This is immediate.

(v) Let x, y ∈ A and suppose that x 6 y. Then x → y = 1. Applying (Ex) and

(Re), we get

y → 1 = y → (x→ y) = x→ (y → y) = x→ 1.

Therefore, x = (x→ 1)→ 1 = (y → 1)→ 1 = y by (D1=). Thus (p-s) is satisfied.

(vi) Obvious. �

Definition 3.2. An RM algebra A = (A;→, 1) is p-semisimple ([5]) if (p-s) holds

in A.

Remark 3.3. From Lemma 3.1 (vi) it follows that p-semisimple RM algebras co-

incide with p-semisimple aRM algebras, with p-semisimple aRM** algebras, and

with p-semisimple *aRM** algebras. Moreover, p-semisimple RME algebras co-

incide with p-semisimple BCH algebras, with p-semisimple BCH** algebras, and

with p-semisimple BCI algebras.

Example 3.4. Consider the set A = {a, b, 1} with the following table of →:

→ a b 1

a 1 b a

b a 1 a

1 a b 1

The properties (Re), (M), (An), (*), (**) and (p-s) are satisfied. The algebra

A = (A;→, 1) does not satisfy (Ex) for x = a, y = b, z = 1. Therefore, A is a

p-semisimple *aRM** algebra, which is not an RME algebra (hence, it is also not

a BCI algebra).

From Lemma 3.1(i) and (ii) we have

Lemma 3.5. If an algebra A verifies (M), then

(PS) =⇒ (D1=) =⇒ (p-s1).
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Proposition 3.6. Let A be an aRM** algebra satisfying (D1). Then

(p-s1)⇐⇒ (p-s)⇐⇒ (D1=).

Proof. (p-s1) =⇒ (p-s) By Lemma 3.1 (iii).

(p-s) =⇒ (D1=) Follows from Lemma 3.1 (iv).

(D1=) =⇒ (p-s1) Obviously, by Lemma 3.1 (ii). �

Proposition 3.7. ([16]) Let A be a BCI algebra. Then

(p-s) ⇐⇒ (p-s1) ⇐⇒ (D1=) ⇐⇒ (PS).

We introduced now the following definition.

Definition 3.8. Let A = (A;→, 1) be an algebra of type (2, 0).

9. A is an RM(PS) algebra if it is an RM algebra verifying (PS).

10. A is an aRM(PS) algebra (resp. aRM**(PS), *aRM**(PS) algebra) if it is

an aRM algebra (resp. aRM**, *aRM** algebra) verifying (PS).

11. A is an RME(PS) algebra (resp. BCH(PS), BCH**(PS), and BCI(PS) al-

gebra) if it is an RME algebra (resp. BCH, BCH**, and BCI algebra)

verifying (PS).

Remark 3.9. From Lemma 3.1 (i)–(iii) we see that every *aRM**(PS) algebra is

p-semisimple. The converse is not true, that is, there is a p-semisimple *aRM**

algebra that does not satisfy (PS); see Example 3.4.

Proposition 3.10. Let A = (A;→, 1) be an algebra of type (2, 0). The following

are equivalent:

(i) A is a BCH(PS) algebra,

(ii) A is an RME(PS) algebra,

(iii) A is a BCH**(PS) algebra,

(iv) A is a BCI(PS) algebra,

(v) A is a p-semisimple BCI algebra.

Proof. (i) ⇒ (ii) This is obvious.

(ii) ⇒ (iii) Let A verify (Re), (M), (Ex) and (PS). From Lemma 3.1 (i) and (v)

we deduce that A satisfies (p-s). Hence, by Lemma 3.1 (vi), (An) and (**) hold in

A. Thus, A is a BCH**(PS) algebra.

(iii)⇒ (iv) By Lemma 3.1 (i)–(iii) we conclude that A satisfies (p-s). From (p-s)

it follows that A also satisfies (*). Applying Lemma 2.1 (iv) and (v) we see that

(B) holds in A. Consequently, A is a BCI algebra.

(iv) ⇒ (v) By Remark 3.9.

(v) ⇒ (i) This follows from Proposition 3.7. �
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Proposition 3.11. Let A = (A;→, 1) be an algebra of type (2, 0). Then A is an

aRM**(PS) algebra if and only if it is an *aRM**(PS) algebra.

Proof. Let A be an aRM**(PS) algebra. Then A satisfies (An), (Re), (M), (**),

(PS). Applying Lemma 3.1 (i)–(iii) and (vi) we deduce that (*) holds in A. Thus

A is an *aRM**(PS) algebra. The converse is obvious. �

Let us denote by RM(PS), aRM(PS), aRM**(PS), *aRM**(PS), RME(PS),

BCH(PS), BCH**(PS), and BCI(PS) the classes of RM(PS), aRM(PS), aRM**(PS),

*aRM**(PS), RME(PS), BCH(PS), BCH**(PS), and BCI(PS) algebras, respectively.

From Propositions 3.10 and 3.11 it follows that

RME(PS) = BCH(PS) = BCH**(PS) = BCI(PS) = p-s-BCI and

aRM**(PS) = *aRM**(PS),

where p-s-BCI denotes the class of all p-semisimple BCI algebras.

Furthermore, there are inclusions:

p-s-BCI ⊂ *aRM**(PS) ⊂ aRM(PS) ⊂ RM(PS).

These inclusions are proper, see examples below.

Example 3.12. Consider the set A = {a, b, 1} and the operation → given by the

following table:

→ a b 1

a 1 b b

b b 1 a

1 a b 1

It is easy to see that the properties (An), (Re), (M), (*), (**) and (PS) are satisfied;

(Ex) is not satisfied for (x, y, z) = (a, b, a). Hence, A = (A;→, 1) is an *aRM**(PS)

algebra, which is not a BCI algebra.

Example 3.13. Let A = {a, b, 1} and → be defined as follows:

→ a b 1

a 1 1 b

b a 1 a

1 a b 1

The algebra A = (A;→, 1) satisfies properties (An), (Re), (M), (PS). It does not

satisfy (*) for (x, y, z) = (b, a, b), (**) for (x, y, z) = (a, a, b). Then A is an aRM(PS)

algebra, which is not an *aRM** algebra.
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Example 3.14. Consider the set A = {a, b, c, 1} and the operation→ given by the

following table:

→ a b c 1

a 1 1 b a

b 1 1 c b

c b c 1 c

1 a b c 1

Then the properties (Re), (M), (PS) are satisfied. (An) is not satisfied for (x, y) =

(a, b). Therefore, A = (A;→, 1) is an RM(PS) algebra, which is not an aRM algebra.

4. RM(PS) algebras and involutive commutative moons

In this section, we establish the connections between:

— RM(PS) algebras and involutive commutative moons,

— aRM(PS) algebras and commutative weakly goops,

— *aRM**(PS) algebras and commutative goops.

Note that connections between goops and implicative-goops are presented in

Chapter 12 of [5].

Let A = (A;→, 1) be an algebra of type (2, 0). Define Φ(A) =
(
A; ·,−1 , 1

)
by:

for all x, y ∈ A, x · y = (y → 1)→ x and x−1 = x→ 1.

Let G =
(
G; ·,−1 , 1

)
be an algebra of type (2, 1, 0). Define Ψ(G) = (G;→, 1) by:

for all x, y ∈ G, x→ y = y · x−1.

Lemma 4.1. Let A = (A;→, 1) be an algebra of type (2, 0). Then

(i) (M) and (D1=) imply (U) in Φ(A),

(ii) (Re) and (D1=) imply (Iv) in Φ(A),

(iii) (D1=) implies (DN) in Φ(A),

(iv) (An) implies (wGP) in Φ(A),

(v) (Re), (D1=), and (p-s) imply (GP) in Φ(A),

(vi) (M) and (PS) imply (Com) in Φ(A).

Proof. (i) Let x ∈ A. By (M), x · 1 = (1→ 1)→ x = x. Applying (D1=), we get

1 · x = (x→ 1)→ 1 = x. Therefore, Φ(A) satisfies (U).

(ii) From (D1=) and (Re) we obtain

x · x−1 = ((x→ 1)→ 1)→ x = x→ x = 1 and

x−1 · x = (x→ 1)→ (x→ 1) = 1.

Then (Iv) holds in Φ(A).

(iii) and (iv) are obvious.
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(v) To prove (GP), let x, y ∈ A and y ·x−1 = 1. Then x→ y = ((x→ 1)→ 1)→
y = y · x−1 = 1. Hence x 6 y. By (p-s), x = y. Therefore (GP) holds in Φ(A).

(vi) Let (M) and (PS) are satisfied and let x, y ∈ A. From Lemma 3.1(i) we

obtain (D1=). Consequently, (DN) holds in Φ(A). We have

x · y (DN)
= x · (y−1)−1 = y−1 → x = (y → 1)→ x

(PS)
= (x→ 1)→ y = y · x,

that is, (Com) is satisfied in Φ(A). �

Lemma 4.2. Let G =
(
G; ·,−1 , 1

)
be an algebra of type (2, 1, 0). Then

(i) (Iv) implies (Re) in Ψ(G),

(ii) (U) and (Iv) imply (M) in Ψ(G),

(iii) (Com) and (DN) imply (PS) in Ψ(G),

(iv) (wGP) implies (An) in Ψ(G).

Proof. (i) Let x ∈ G. By (Iv), x→ x = x · x−1 = 1, that is, (Re) holds in Ψ(G).

(ii) Applying (U) and (Iv), we get

1→ x = x · 1−1 = x · (1 · 1−1) = x · 1 = x,

i.e., Ψ(G) satisfies (M).

(iii) Let x, y ∈ G. We have

(x→ 1)→ y = y · (x−1)−1 (DN)
= y · x (Com)

= x · y = (y → 1)→ x,

that is, (PS) holds in Ψ(G).

(iv) is immediate. �

Theorem 4.3. (i) Let A = (A;→, 1) is an RM(PS) algebra. Then Φ(A) =(
A; ·,−1 , 1

)
is an involutive commutative moon.

(ii) Let G =
(
G; ·,−1 , 1

)
is an involutive commutative moon. Then Ψ(G) =

(G;→, 1) is an RM(PS) algebra.

(iii) Given A and G as above we have ΨΦ(A) = A and ΦΨ(G) = G.

Proof. (i) Let A be an RM(PS) algebra. Then A satisfies (Re), (M), (PS) and, by

Lemma 3.1(i), also satisfies (D1=). From Lemma 4.1 it follows that (U), (Iv), (DN)

and (Com) hold in Φ(A). Therefore, Φ(A) is an involutive commutative moon.

(ii) Let G verify (U), (Iv), (DN) and (Com). By Lemma 4.2(i)–(iii), Ψ(G) verifies

(Re), (M) and (PS). Hence Ψ(G) is an RM(PS) algebra.

(iii) Suppose A = (A;→, 1) is an RM(PS) algebra and x ∈ A. Then, in Φ(A) =(
A; ·,−1 , 1

)
, we obtain x−1 = x→ 1 and

y · x−1 = y · (x→ 1) = ((x→ 1)→ 1)→ y = x→ y.

Thus ΨΦ(A) = A.
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Next suppose G =
(
G; ·,−1 , 1

)
is an involutive moon and x, y ∈ G. Then, in

Ψ(G) = (G;→, 1), we get x→ 1 = 1 · x−1 = x−1 and

(y → 1)→ x = y−1 → x = x · (y−1)−1 = x · y.

Thus ΦΨ(G) = G. �

Hence, by above Theorem 4.3, we have the equivalence

RM(PS) ⇐⇒ inv. com. moon.

Theorem 4.4. (i) Let A = (A;→, 1) be an aRM(PS) algebra (*aRM**(PS)

algebra). Then Φ(A) =
(
A; ·,−1 , 1

)
is a commutative weakly goop (commu-

tative goop, respectively).

(ii) Let G =
(
G; ·,−1 , 1

)
be a commutative weakly goop (commutative goop).

Then Ψ(G) = (G;→, 1) is an aRM(PS) algebra (*aRM**(PS) algebra, re-

spectively).

(iii) Given A and G as above we have ΨΦ(A) = A and ΦΨ(G) = G.

Proof. (i) Let A be an aRM(PS) algebra. By Theorem 4.3, Φ(A) is an involutive

commutative moon. Since (An) implies (wGP) (by Lemma 4.1(iv)), Φ(A) is a

weakly goop. Therefore, it is a commutative weakly goop. If A is an *aRM**(PS)

algebra then, by Lemma 3.1(i)–(iii), A satisfies (p-s). From Lemma 4.1(v) we see

that (GP) holds in Φ(A). Thus Φ(A) is a goop by Proposition 2.5. Finally, Φ(A)

is a commutative goop.

(ii) Let G be a commutative weakly goop. Since G is an involutive commutative

moon, Ψ(G) is an RM(PS) algebra by Theorem 4.3. From Lemma 4.2 (iv) we deduce

that (An) holds in Ψ(G). Thus Ψ(G) is an aRM(PS) algebra.

Now let G be a commutative goop. From (GP) it follows that (p-s) holds in

Ψ(G). Hence, Ψ(G) satisfies (*) and (**). Thus Ψ(G) is an aRM**(PS) algebra.

(iii) See the proof of Theorem 4.3 (iii). �

Hence, by above Theorem 4.4, we have the equivalences:

aRM(PS) ⇐⇒ com. weakly goop and *aRM**(PS) ⇐⇒ com. goop.

Theorem 4.5. ([9]) If A = (A;→, 1) is a p-semisimple BCI algebra (or, equiv-

alently, BCH**(PS) algebra), then Φ(A) =
(
A; ·,−1 , 1

)
is a commutative group.

Conversely, if G =
(
G; ·,−1 , 1

)
is a commutative group, then Ψ(G) = (G;→, 1) is a

p-semisimple BCI algebra.

Hence, by Theorem 4.5, we have the equivalence

p-s-BCI = BCH**(PS) = BCH(PS) = RME(PS) ⇐⇒ com. group.
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