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Abstract. All rings are commutative. Let M be a module. We introduce the
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structure theorem for abelian groups having this property. We conclude the
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1. Introduction

The notion studied in this article has its roots in operator theory. Let B(H)

be the algebra of all bounded linear operators on a separable infinite dimensional

complex Hilbert space H. A closed subspace M of H is said to be a non-trivial

invariant subspace for T ∈ B(H) if M 6= 0, M 6= H and T (M) ⊆M . The invariant

subspace problem can be stated as follows:

Does every bounded linear operator T ∈ B(H) have a non-trivial invariant closed

subspace?

A number of research papers have been devoted to the study of this conjecture

which is still open. Following [1], the research on this problem was initiated by J.

von Neumann who proved in the early thirties of the last century that every linear

compact operator on a Hilbert space has a non-trivial invariant closed subspace.

The proof of this result was never published. Later in 1954, Aronszajn and Smith

[1] extended von Neumann’s result to the Banach spaces setting. In 1966 [2],

Bernstein and Robinson proved that every polynomially compact operator T on a
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Hilbert space (i.e., P (T ) is compact for some nonzero polynomial P ) has a non-

trivial invariant subspace. In 1973 [5], Lomonosov showed that every bounded linear

operator on a complex Banach space which commutes with a nonzero compact

operator has a non-trivial invariant closed subspace. Further details about the

developments on the above conjecture can be found in [4].

In this paper, we examine this problem from an algebraic point of view by

extending it to a module theoretic version. Let R be a commutative ring and

let M be an R-module. A submodule N of M is said to be invariant under an

R-endomorphism f of M if f(N) ⊆ N . The module M is said to have property

(P) if every R-endomorphism f of M has a non-trivial invariant submodule. The

focus of our investigations is to explore and study modules satisfying (P).

In Section 2, we prove that every infinitely generated semisimple module has (P)

(Proposition 2.12). It is shown that for a commutative field K, a K-vector space V

with dim(V ) = n ≥ 2 satisfies (P) if and only if every monic polynomial P (X) ∈
K[X] of degree n is reducible (Theorem 2.6). Also, we determine the structure of

abelian groups having (P) (Theorem 2.21). Some examples are provided to show

that even a semisimple module needs not have (P), in general.

In the main result of Section 3, we characterize the class of rings R for which

every nonzero finitely generated R-module which is not simple has (P). It turns out

that this class of rings is precisely that of rings R for which R/m is an algebraically

closed field for every maximal ideal m of R (Theorem 3.4).

Throughout this article, all rings are commutative with identity and all modules

are unital. Let R be a ring and let M be an R-module. A submodule L of M is

called non-trivial if L 6= 0 and L 6= M . We use Rad(M), Soc(M), and EndR(M)

to denote the radical, the socle, and the endomorphism ring of M , respectively.

The notation N ⊆ M means that N is a subset of M and the notation N ≤ M

means that N is a submodule of M . By Q, Z, and N we denote the ring of rational

numbers, the ring of integer numbers, and the set of natural numbers, respectively.

2. Modules having (P)

Proposition 2.1. The following are equivalent for a module M :

(i) Every endomorphism of M has a non-trivial invariant submodule (i.e., ∀f ∈
EndR(M), ∃0 6= N ≤M such that N 6= M and f(N) ⊆ N);

(ii) Every automorphism of M has a non-trivial invariant submodule.

Proof. (i) ⇒ (ii) This is immediate.
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(ii)⇒ (i) Let f be a nonzero endomorphism of M which is not an automorphism.

Then Kerf 6= 0 or Imf 6= M . Note that Kerf 6= M and Imf 6= 0. If Kerf 6= 0,

then Kerf is a non-trivial invariant submodule under f . If Imf 6= M , then Imf

is a non-trivial invariant submodule under f . �

Definition 2.2. A module M is said to have property (P) if it satisfies any of the

equivalent two conditions in Proposition 2.1.

Recall that a submodule N of a module M is called fully invariant if f(N) ⊆ N
for every endomorphism f of M . It is well known that for any module M , Soc(M)

and Rad(M) are fully invariant submodules of M . In [6], the authors studied duo

modules (i.e., modules in which every submodule is fully invariant). It is clear

that every nonzero duo module which is not simple satisfies (P). So for every

commutative ring R which is not a field, the R-module R has (P).

Example 2.3. (i) It is clear that every module having a non-trivial fully invariant

submodule has (P). In particular, every module M with non-trivial radical or

non-trivial socle has (P).

(ii) Let M be an artinian module which is not semisimple. Then Soc(M) 6= M .

Moreover, it is well known that Soc(M) 6= 0. Hence M has (P).

To explore modules having (P), it is natural to begin by investigating vector

spaces over a field and semisimple modules.

Proposition 2.4. Let K be a field. Every infinite-dimensional K-vector space has

(P).

Proof. Let V be a K-vector space of infinite dimension and let T be an auto-

morphism of V . Suppose that the only invariant subspaces of V under T are 0

and V . Let 0 6= u ∈ V and consider the nonzero subspace W of V generated by

the family {T k(u), k ≥ 1}. Clearly, T (W ) ⊆ W . Therefore W = V and hence

u ∈ W . So there exists p ≥ 1 such that u = α1T (u) + α2T
2(u) + · · · + αpT

p(u),

where α1, α2, . . . , αp ∈ K and αp 6= 0. It follows that T p(u) belongs to the nonzero

subspace L of V generated by the family {u, T (u), . . . , T p−1(u)}. This implies that

T (L) ⊆ L. Note that L is a finitely generated subspace of V . Thus L 6= V . This is

a contradiction. Consequently, V contains a non-trivial subspace which is invariant

under T . �

Next, we characterize finite-dimensional vector spaces having (P). We begin

with the following well known remark which is included for completeness.
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Remark 2.5. Let K be a field and let P (X) = Xn +an−1X
n−1 + · · ·+a1X+a0 ∈

K[X] be a polynomial of degree n ≥ 2. The companion matrix of the polynomial

P (X) is the n× n matrix

M =



0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . . 1 0

0 · · · · · · 0 1

−a0 −a1 · · · · · · −an−1


∈Mn(K).

Let T be an endomorphism of Kn such that M is the matrix of T with respect to

the standard basis. It is easy to check that the characteristic polynomial of T is

(−1)nP (X).

Theorem 2.6. Let K be a field and let n ≥ 2 be an integer. Then the following

statements are equivalent:

(i) The K-vector space U = Kn has (P);

(ii) Every monic polynomial P (X) ∈ K[X] of degree n is reducible.

Proof. (i) ⇒ (ii) Assume that U has (P). Let P (X) be a monic polynomial in

K[X] of degree n. By the preceding remark, there exists a nonzero endomorphism

f of U such that the characteristic polynomial of f is (−1)nP (X). Then U contains

a non-trivial subspace V such that f(V ) ⊆ V . Set h = dim(V ). Note that 1 ≤
h ≤ n − 1. Moreover, there exists a subspace W of V such that U = V ⊕W and

dim(W ) = n − h. Let B1 = {e1, e2, . . . , eh} be a basis for V and let g be the

restriction of f to V . We denote by A1 the matrix of g with respect to the basis

B1. Let {eh+1, . . . , en} be a basis for W . Then B2 = {e1, e2, . . . , en} is a basis for

U . It is easily seen that the matrix A of f with respect to the basis B has the form

A =

[
A1 A2

0 A3

]
.

Let PA(X) and PAi
(X) (i ∈ {1, 3}) be the characteristic polynomials of the matrices

A and Ai (i ∈ {1, 3}), respectively. Then PA(X) = PA1
(X)PA3

(X). It follows that

(−1)nP (X) = PA1(X)PA3(X). That is, P (X) = ((−1)nPA1(X))PA3(X). Note

that deg(PAi
(X)) ≥ 1 for each i ∈ {1, 3}.

(ii) ⇒ (i) Let T be an automorphism of U and let P (X) be the characteristic

polynomial of T . We denote by A = (αij)1≤i,j≤n the matrix of T with respect

to the standard basis. By (ii), there exists a monic irreducible polynomial Q(X)

which divides P (X) such that q = deg(Q(X)) 6= n. It is well known that K has an
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extension field L (which is isomorphic to K[X]/〈Q(X)〉) such that [L : K] = q and

Q(X) has a root λ in L. Let {σ1, σ2, . . . , σq} be a basis of the K-vector space L. For

all i, j in {1, . . . , q}, there exist γtij ∈ K (1 ≤ t ≤ q) such that σiσj =
∑q

t=1 γ
t
ijσt.

Also, there exist λi ∈ K (1 ≤ i ≤ q) such that λ =
∑q

i=1 λiσi. Since λ is a root of

P (X) in L, there exists 0 6= v =


b1
...

bn

 ∈ V = Ln such that Av = λv. Note that

for every i ∈ {1, . . . , n}, there exist βis ∈ K (1 ≤ s ≤ q) such that bi =
∑q

s=1 βisσs.

Fix l ∈ {1, . . . , n}. We have
∑n

j=1 αljbj = λbl. Hence,

n∑
j=1

αlj(

q∑
s=1

βjsσs) = λ

q∑
j=1

βljσj .

That is,
q∑

s=1

(

n∑
j=1

αljβjs)σs =

q∑
i=1

q∑
j=1

λiβlj(σiσj).

Therefore,
q∑

s=1

(

n∑
j=1

αljβjs)σs =

q∑
i=1

q∑
j=1

λiβlj(

q∑
s=1

γsijσs).

i.e.,
q∑

s=1

(

n∑
j=1

αljβjs)σs =

q∑
s=1

(

q∑
j=1

(

q∑
i=1

λiγ
s
ij)βlj)σs.

It follows that

∑n
j=1 αljβjs =

∑q
j=1(

∑q
i=1 λiγ

s
ij)βlj for every s ∈ {1, . . . , q}.

For every j, s in {1, . . . , q}, set uj =


β1j

...

βnj

 ∈ U = Kn and εjs =
∑q

i=1 λiγ
s
ij ∈ K.

A trivial verification shows that Aus =
∑q

j=1 εjsuj for all s ∈ {1, . . . , q}. This

implies that the K-subspace H = 〈u1, u2, . . . , uq〉 of U generated by {u1, u2, . . . , uq}
is invariant under T . This completes the proof. �

To visualize the proof of the previous theorem, we provide the following example.

Example 2.7. Let R denote the field of real numbers. Consider the R-vector

space U = R4 and the polynomial P (X) = (X2 + 1)2 ∈ R[X]. Then the companion
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matrix of P (X) is

A =


0 1 0 0

0 0 1 0

0 0 0 1

−1 0 −2 0

 .
It is clear that P (X) est divisible by Q(X) = X2 + 1. Moreover, it is well known

that the field C of complex numbers is an extension field of R such that [C : R] =

2 = deg(Q(X)). So, if we regard A as a matrix over C then A has two complex

eigenvalues, namely i and −i, and v =


i

−1

−i
1

 is an eigenvector of A corresponding

to the eigenvalue i. With the notation of the proof of Theorem 2.6, the coefficients

βij have the values β11 = 0, β21 = −1, β31 = 0, β41 = 1, β12 = 1, β22 = 0,

β32 = −1 and β42 = 0 so that the vectors v1 =


0

−1

0

1

 and v2 =


1

0

−1

0

 generate

a subspace of U that is invariant under A.

Corollary 2.8. Let K be a finite field and let n ≥ 2 be an integer. Then the

K-vector space Kn never has (P).

Proof. Since K is finite, there exists an irreducible polynomial Q(X) ∈ K[X] with

deg(Q(X)) = n (see [3, Corollary 2.11]). From Theorem 2.6, we deduce that the

K-vector space Kn does not have (P). �

Proposition 2.9. Let K be a field and let n be an integer with n ≥ 2. Then the

following are equivalent:

(i) Every K-vector space of dimension t (2 ≤ t ≤ n) has (P);

(ii) Every monic polynomial P (X) ∈ K[X] of degree t (2 ≤ t ≤ n) has a root

in the field K.

Proof. (i) ⇒ (ii) Let t1 be an integer with 2 ≤ t1 ≤ n. Let P1(X) = Xt1 +

at1−1X
t1−1 + · · · + a1X + a0 ∈ K[X] be a monic polynomial of degree t1. Using

Remark 2.5, there exists an endomorphism T1 of Kt1 such that the characteristic

polynomial of T1 is (−1)t1P1(X). By Theorem 2.6, P1(X) = P2(X)Q2(X) where

P2(X), Q2(X) ∈ K[X] with 1 ≤ t2 = deg(P2(X)) < t1. Repeating this procedure,
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we show that P1(X) = P (X)Q(X) where P (X), Q(X) ∈ K[X] and deg(P (X)) = 1.

This shows that P1(X) has a root in K.

(ii)⇒ (i) Let V be a nonzero K-vector space with 2 ≤ dim(V ) = t ≤ n and let T

be an automorphism of V . By hypothesis, the characteristic polynomial PT (X) of

T has a root λ in K. Therefore there exists a nonzero u ∈ V such that T (u) = λu.

Let W = Ku be the subspace of V generated by {u}. It is clear that T (W ) ⊆ W .

Note that W 6= 0 and W 6= V . So V has (P). �

Next, we determine semisimple modules satisfying (P). Recall that a module M

is called homogeneous semisimple if it is generated by a single simple module; that

is, M is a direct sum of simple modules which are isomorphic to each other.

Example 2.10. Consider the semisimple Z-module M = (Z/3Z⊕ Z/3Z)⊕ Z/2Z.

Note that HomZ(Z/3Z⊕Z/3Z,Z/2Z) = 0. Then N = (Z/3Z⊕Z/3Z)⊕0 is a fully

invariant submodule of M by [6, Lemma 1.9]. It follows that M has (P). In the

same manner we can see that every semisimple module which is not homogeneous

has (P).

Proposition 2.11. Let I be an ideal of a commutative ring R and let M be an

R/I-module. Then the R-module RM has (P) if and only if the R/I-module R/IM

has (P).

Proof. Let M be a nonsimple R/I-module. Then M is an R-module and the

lattices of R-submodules and R/I-submodules of M coincide. Moreover, any group

endomorphism of M is an R-endomorphism of M if and only if it is an R/I-

endomorphism of M . The result follows. �

Proposition 2.12. Every infinitely generated semisimple module has (P).

Proof. Let M be an infinitely generated semisimple module. By Example 2.10,

there is no loss of generality in assuming that M is homogeneous semisimple.

Therefore M ∼= (R/m)(Λ) for some maximal ideal m of R and an infinite index set Λ.

Then M can be viewed as an R/m-module. By Proposition 2.4, the R/m-module

M has (P). Thus RM satisfies (P) by Proposition 2.11. �

In the following proposition, we characterize finitely generated homogeneous

semisimple modules which have (P).

Proposition 2.13. Let M be a homogeneous semisimple R-module such that M ∼=
(R/m)n for some maximal ideal m of R and some positive integer n ≥ 2. Let

K = R/m. Then the following are equivalent:
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(i) M has (P) as an R-module;

(ii) M has (P) as a K-module;

(iii) Every monic polynomial P (X) ∈ K[X] of degree n is reducible.

Proof. This follows from Theorem 2.6 and Proposition 2.11. �

The next corollary follows easily from Proposition 2.13.

Corollary 2.14. Let a module M = S1 ⊕ S2 be a direct sum of two simple

submodules S1 and S2 such that S1
∼= S2

∼= R/m for some maximal ideal m of

R. Then the following are equivalent:

(i) M has (P);

(ii) Every monic polynomial P (X) ∈ K[X] of degree 2 has a root in the field

K = R/m.

A direct summand of a module having (P) may not have (P), in general, as

shown below.

Example 2.15. Consider the Z-modules M1 = Z/2Z⊕Z/2Z, M2 = Z/3Z⊕Z/3Z
and M = M1 ⊕M2.

(i) Let K2 = Z/2Z and let the polynomial P1(X) = X2 − X + 1 ∈ K2[X]. It

is clear that P1(X) does not have a root in K2. Thus M1 does not have (P) by

Corollary 2.14.

(ii) Consider the polynomial P2(X) = X2 +X + 2 ∈ K3[X], where K3 = Z/3Z.

It is easy to check that P2(X) does not have a root in K3. From Corollary 2.14, it

follows that the module M2 does not have (P).

(iii) From Example 2.10, we conclude that the module M has (P). Also, note

that both M
(N)
1 and M

(N)
2 have (P) by Proposition 2.12.

The next result is a direct consequence of Corollary 2.8 and Proposition 2.13.

Corollary 2.16. Let m be a maximal ideal of a commutative ring R such that R/m

is a finite field (for instance, R can be the ring of integers Z and m = pZ for some

prime number p). Then for any positive integer n ≥ 2, the R-module M = (R/m)n

does not have (P).

The next proposition provides more examples of modules having (P) over a

commutative ring.

Proposition 2.17. Let R be a commutative ring. Let M be an R-module which is

not semisimple such that Rad(M) 6= M . Then M has a nonzero proper submodule

N that is fully invariant in M . In particular, M has (P).
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Proof. Let Ω denote the set of all maximal ideals of R. It is well known that

Rad(M) =
⋂

m∈ΩMm. Note that Mm 6= 0 for every m ∈ Ω, since otherwise M will

be semisimple. In addition, since Rad(M) 6= M , there exists a maximal ideal m0 of

R such that Mm0 6= M . Take N = Mm0. It is easily seen that N is fully invariant

in M . �

Using Example 2.10 and Proposition 2.17, we get the following result.

Corollary 2.18. Let M be a nonzero finitely generated module. If M is not

homogeneous semisimple, then M has (P).

Next, we determine all abelian groups which have (P). Let Q denote the field

of rational numbers.

Proposition 2.19. Every direct sum of copies of the Z-module Q has (P).

Proof. Case 1: Assume that M = Q(I) where I is an infinite index set. Notice

that M has a structure of a Q-module defined by the following operation: given

x ∈M , r ∈ Z and 0 6= s ∈ Z, we put (r/s)x = rx′ with x′ is the unique element of

M which satisfies x = sx′. Note that x′ exists and is unique because M is a divisible

torsion-free Z-module. It is easily seen that EndZ(M) = EndQ(M). Also, it is clear

that every Q-submodule of M is a Z-submodule of M . Applying Proposition 2.4,

it follows that M has (P) as a Q-module and hence also as a Z-module.

Case 2: Assume that M = M1 ⊕M2 such that Mi = Q for each i = 1, 2. It is

well known that for any Z-endomorphism ϕ of Q, there exists a nonzero q ∈ Q such

that ϕ(x) = qx for all x ∈ Q. Now let f be a nonzero Z-endomorphism of M . So

there exist integers a1, a2, c1 and c2 and nonzero integers b1, b2, d1 and d2 such that

for every (x1, x2) ∈ Q2, we have f((x1, x2)) = ((a1/b1)x1 + (c1/d1)x2, (a2/b2)x1 +

(c2/d2)x2). Let p be a prime integer which does not divide b1d1b2d2. Consider the

non-trivial Z-submodule L = {m/n | p does not divide n} of Q. Set N = N1 ⊕N2

such that Ni = L for each i = 1, 2. Then N is a non-trivial submodule of M that

is invariant under f . This shows that M has (P). In the same manner we can see

that every finite direct sum of copies of Q satisfies (P). �

Remark 2.20. Consider the Z-module M = Q2. Let P (X) = X2 − 2 ∈ Q[X]. It

is clear that P (X) does not have a root in Q. By Corollary 2.14, M considered

as a Q-module does not have (P). On the other hand, M viewed as a Z-module

satisfies (P) by Proposition 2.19.
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Theorem 2.21. The following are equivalent for a Z-module M :

(i) M has (P);

(ii) M satisfies any one of the following conditions:

(a) M is not semisimple, or

(b) M is a semisimple module which is infinitely generated or not homo-

geneous.

Proof. (i) ⇒ (ii) From Example 2.10, Proposition 2.12 and Corollary 2.16, it

follows that a semisimple Z-module has (P) if and only if it is infinitely generated

or not homogeneous. Now assume that M is not semisimple.

Case 1: Rad(M) 6= M . In this case M has (P) by Proposition 2.17.

Case 2: Rad(M) = M and Soc(M) 6= 0. Since M is not semisimple, we have

Soc(M) 6= M . Hence Soc(M) is a non-trivial fully invariant submodule of M . This

clearly implies that M has (P).

Case 3: Rad(M) = M and Soc(M) = 0. In this case M is a divisible torsion-free

Z-module. Hence M is isomorphic to a direct sum of copies of Q. Therefore M has

(P) by Proposition 2.19. �

3. Rings whose modules satisfy (P)

The aim of this section is to characterize the class of rings R over which every

nonzero finitely generated R-module M which is not simple satisfies (P). Let R be

a commutative ring and consider the following properties:

(P1): Every nonzero finitely generated R-module M which is not simple satisfies

(P).

(P2): Every nonsimple R-module M with Rad(M) 6= M satisfies (P).

(P3): Every nonzero R-module M which is not simple satisfies (P).

Recall that a field K is called an algebraically closed field if any polynomial in

K[X] of degree n ≥ 1 has at least one root in K.

Proposition 3.1. Let K be a field. Then the following are equivalent:

(i) K satisfies (P1);

(ii) K satisfies (P2);

(iii) K satisfies (P3);

(iv) K is algebraically closed.

Proof. (iii) ⇒ (ii) ⇒ (i) are immediate.

(i) ⇒ (iv) This follows from Proposition 2.9.
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(iv) ⇒ (iii) Let V be a K-vector space with dim(V ) ≥ 2. If V is of infinite

dimension, then V has (P) by Proposition 2.4. If V is finite-dimensional, then V

has (P) by Theorem 2.6. Therefore K satisfies (P3). �

Proposition 3.2. Let R be a commutative ring. If R satisfies (P1) (resp., (P2)

or (P3)), then R/I satisfies (P1) (resp., (P2) or (P3)) for every ideal I of R.

Proof. This follows from Proposition 2.11. �

Combining Propositions 3.1 and 3.2, we obtain the following corollary.

Corollary 3.3. Let R be a commutative ring. If R satisfies (P1), then the field

R/m is algebraically closed for every maximal ideal m of R.

We call a ring R m-algebraically closed if R/m is an algebraically closed field for

all maximal ideals m of R.

Theorem 3.4. The following conditions are equivalent for a commutative ring R:

(i) R satisfies (P1);

(ii) R satisfies (P2);

(iii) R is an m-algebraically closed ring.

Proof. (ii) ⇒ (i) This is clear.

(i) ⇒ (iii) This follows from Corollary 3.3.

(iii)⇒ (ii) Using Example 2.10 and Proposition 2.17, we only need to show that

every semisimple homogeneous R-module which is not simple satisfies (P). Let

M be a nonzero semisimple homogeneous R-module such that M is not simple.

Note that M ∼= (R/m)(Λ) for some maximal ideal m of R and some index set Λ.

Hence M can be considered as an R/m-module. Since R/m is algebraically closed,

it follows that the R/m-module R/mM satisfies (P) by Proposition 3.1. Therefore

the R-module RM satisfies (P) by Proposition 2.11. This proves the theorem. �

Remark 3.5. It is well known that a finite field could not be algebraically closed.

From Theorem 3.4, it follows that a finite ring could not satisfy (P1).

Next, we exhibit some examples of rings satisfying properties (P1) and (P2).

Example 3.6. (i) Let K1,K2, . . . ,Kn be algebraically closed fields. Applying

Theorem 3.4, we see that the ring R = K1 ×K2 × · · · ×Kn satisfies (P2).

(ii) Let K be an algebraically closed field and let R = K[X1, . . . , Xn]. It is well

known (see Hilbert’s Nullstellensatz) that the maximal ideals of the ring R are the

ideals (X1−a1, X2−a2, . . . , Xn−an), where a1, a2, . . . , an ∈ K. Moreover, for any

a1, a2, . . . , an ∈ K, (X1−a1, X2−a2, . . . , Xn−an) is the kernel of the epimorphism
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ϕ : R→ K defined by f 7→ f(a1, a2, . . . , an).

Thus R/(X1 − a1, X2 − a2, . . . , Xn − an) is isomorphic to K. This implies that

R/(X1−a1, X2−a2, . . . , Xn−an) is an algebraically closed field. Hence R satisfies

(P2) by Theorem 3.4. Note that the ring R has infinitely many maximal ideals.

(iii) Let K be a field and let R be a subring of K. Recall that R is called a

valuation ring of K if, for any 0 6= x ∈ K, either x ∈ R or x−1 ∈ R. Note that

every valuation ring of K is a local ring.

Now assume that K is an algebraically closed field and let R be a valuation ring

of K. It is well known that the residue field of R is also algebraically closed. From

Theorem 3.4, we see that the ring R satisfies (P2).

Proposition 3.7. A finite product R =
∏n

i=1Ri (n ≥ 2) of rings satisfies (P2) if

and only if so is each Ri (1 ≤ i ≤ n).

Proof. There is no loss of generality in assuming that n = 2. The necessity follows

from Proposition 3.2. Conversely, let m be a maximal ideal of R. Then m = m1×R2

or m = R1×m2, where mi (i ∈ {1, 2}) is a maximal ideal of Ri. Hence R/m ∼= R1/m1

(as fields) or R/m ∼= R2/m2 (as fields). Using Theorem 3.4 twice, we conclude that

R/m is an algebraically closed field and hence the ring R satisfies (P2). �
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