MODULES FOR WHICH EVERY ENDOMORPHISM HAS A NON-TRIVIAL INVARIANT SUBMODULE

Mohamed Benslimane, Hanane EL Cuera and Rachid Tribak

Received: 26 January 2020; Revised: 20 June 2020; Accepted: 25 June 2020
Communicated by Christian Lomp

Abstract

All rings are commutative. Let M be a module. We introduce the property (\mathbf{P}): Every endomorphism of M has a non-trivial invariant submodule. We determine the structure of all vector spaces having (\mathbf{P}) over any field and all semisimple modules satisfying (\mathbf{P}) over any ring. Also, we provide a structure theorem for abelian groups having this property. We conclude the paper by characterizing the class of rings for which every module satisfies (\mathbf{P}) as that of the rings R for which R / \mathfrak{m} is an algebraically closed field for every maximal ideal \mathfrak{m} of R.

Mathematics Subject Classification (2020): 12E05, 12F99, 13C05, 13C99, 15A04, 15A18, 15B99 Keywords: Algebraically closed field, characteristic polynomial of a matrix (an endomorphism), fully invariant submodule, homogeneous semisimple module, invariant submodule

1. Introduction

The notion studied in this article has its roots in operator theory. Let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a separable infinite dimensional complex Hilbert space \mathcal{H}. A closed subspace M of \mathcal{H} is said to be a non-trivial invariant subspace for $T \in \mathcal{B}(\mathcal{H})$ if $M \neq 0, M \neq \mathcal{H}$ and $T(M) \subseteq M$. The invariant subspace problem can be stated as follows:

Does every bounded linear operator $T \in \mathcal{B}(\mathcal{H})$ have a non-trivial invariant closed subspace?

A number of research papers have been devoted to the study of this conjecture which is still open. Following [1], the research on this problem was initiated by J. von Neumann who proved in the early thirties of the last century that every linear compact operator on a Hilbert space has a non-trivial invariant closed subspace. The proof of this result was never published. Later in 1954, Aronszajn and Smith [1] extended von Neumann's result to the Banach spaces setting. In 1966 [2], Bernstein and Robinson proved that every polynomially compact operator T on a

Hilbert space (i.e., $P(T)$ is compact for some nonzero polynomial P) has a nontrivial invariant subspace. In 1973 [5], Lomonosov showed that every bounded linear operator on a complex Banach space which commutes with a nonzero compact operator has a non-trivial invariant closed subspace. Further details about the developments on the above conjecture can be found in [4].

In this paper, we examine this problem from an algebraic point of view by extending it to a module theoretic version. Let R be a commutative ring and let M be an R-module. A submodule N of M is said to be invariant under an R-endomorphism f of M if $f(N) \subseteq N$. The module M is said to have property (\mathbf{P}) if every R-endomorphism f of M has a non-trivial invariant submodule. The focus of our investigations is to explore and study modules satisfying (\mathbf{P}).

In Section 2, we prove that every infinitely generated semisimple module has (\mathbf{P}) (Proposition 2.12). It is shown that for a commutative field K, a K-vector space V with $\operatorname{dim}(V)=n \geq 2$ satisfies (\mathbf{P}) if and only if every monic polynomial $P(X) \in$ $K[X]$ of degree n is reducible (Theorem 2.6). Also, we determine the structure of abelian groups having (\mathbf{P}) (Theorem 2.21). Some examples are provided to show that even a semisimple module needs not have (\mathbf{P}), in general.

In the main result of Section 3, we characterize the class of rings R for which every nonzero finitely generated R-module which is not simple has (\mathbf{P}). It turns out that this class of rings is precisely that of rings R for which R / \mathfrak{m} is an algebraically closed field for every maximal ideal \mathfrak{m} of R (Theorem 3.4).

Throughout this article, all rings are commutative with identity and all modules are unital. Let R be a ring and let M be an R-module. A submodule L of M is called non-trivial if $L \neq 0$ and $L \neq M$. We use $\operatorname{Rad}(M)$, $\operatorname{Soc}(M)$, and $\operatorname{End}_{R}(M)$ to denote the radical, the socle, and the endomorphism ring of M, respectively. The notation $N \subseteq M$ means that N is a subset of M and the notation $N \leq M$ means that N is a submodule of M. By \mathbb{Q}, \mathbb{Z}, and \mathbb{N} we denote the ring of rational numbers, the ring of integer numbers, and the set of natural numbers, respectively.

2. Modules having (P)

Proposition 2.1. The following are equivalent for a module M :
(i) Every endomorphism of M has a non-trivial invariant submodule (i.e., $\forall f \in$ $\operatorname{End}_{R}(M), \exists 0 \neq N \leq M$ such that $N \neq M$ and $\left.f(N) \subseteq N\right) ;$
(ii) Every automorphism of M has a non-trivial invariant submodule.

Proof. (i) \Rightarrow (ii) This is immediate.
(ii) \Rightarrow (i) Let f be a nonzero endomorphism of M which is not an automorphism. Then $\operatorname{Kerf} \neq 0$ or $\operatorname{Imf} \neq M$. Note that $\operatorname{Kerf} \neq M$ and $\operatorname{Imf} \neq 0$. If $\operatorname{Kerf} \neq 0$, then Kerf is a non-trivial invariant submodule under f. If $\operatorname{Im} f \neq M$, then $\operatorname{Im} f$ is a non-trivial invariant submodule under f.

Definition 2.2. A module M is said to have property (\mathbf{P}) if it satisfies any of the equivalent two conditions in Proposition 2.1.

Recall that a submodule N of a module M is called fully invariant if $f(N) \subseteq N$ for every endomorphism f of M. It is well known that for any module $M, \operatorname{Soc}(M)$ and $\operatorname{Rad}(M)$ are fully invariant submodules of M. In [6], the authors studied duo modules (i.e., modules in which every submodule is fully invariant). It is clear that every nonzero duo module which is not simple satisfies (\mathbf{P}). So for every commutative ring R which is not a field, the R-module R has (\mathbf{P}).

Example 2.3. (i) It is clear that every module having a non-trivial fully invariant submodule has (\mathbf{P}). In particular, every module M with non-trivial radical or non-trivial socle has (\mathbf{P}).
(ii) Let M be an artinian module which is not semisimple. Then $\operatorname{Soc}(M) \neq M$. Moreover, it is well known that $\operatorname{Soc}(M) \neq 0$. Hence M has (\mathbf{P}).

To explore modules having (\mathbf{P}), it is natural to begin by investigating vector spaces over a field and semisimple modules.

Proposition 2.4. Let K be a field. Every infinite-dimensional K-vector space has (\mathbf{P}).

Proof. Let V be a K-vector space of infinite dimension and let T be an automorphism of V. Suppose that the only invariant subspaces of V under T are 0 and V. Let $0 \neq u \in V$ and consider the nonzero subspace W of V generated by the family $\left\{T^{k}(u), k \geq 1\right\}$. Clearly, $T(W) \subseteq W$. Therefore $W=V$ and hence $u \in W$. So there exists $p \geq 1$ such that $u=\alpha_{1} T(u)+\alpha_{2} T^{2}(u)+\cdots+\alpha_{p} T^{p}(u)$, where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} \in K$ and $\alpha_{p} \neq 0$. It follows that $T^{p}(u)$ belongs to the nonzero subspace L of V generated by the family $\left\{u, T(u), \ldots, T^{p-1}(u)\right\}$. This implies that $T(L) \subseteq L$. Note that L is a finitely generated subspace of V. Thus $L \neq V$. This is a contradiction. Consequently, V contains a non-trivial subspace which is invariant under T.

Next, we characterize finite-dimensional vector spaces having (\mathbf{P}). We begin with the following well known remark which is included for completeness.

Remark 2.5. Let K be a field and let $P(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in$ $K[X]$ be a polynomial of degree $n \geq 2$. The companion matrix of the polynomial $P(X)$ is the $n \times n$ matrix

$$
M=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & 1 & 0 \\
0 & \cdots & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & \cdots & -a_{n-1}
\end{array}\right] \in M_{n}(K)
$$

Let T be an endomorphism of K^{n} such that M is the matrix of T with respect to the standard basis. It is easy to check that the characteristic polynomial of T is $(-1)^{n} P(X)$.

Theorem 2.6. Let K be a field and let $n \geq 2$ be an integer. Then the following statements are equivalent:
(i) The K-vector space $U=K^{n}$ has (\mathbf{P});
(ii) Every monic polynomial $P(X) \in K[X]$ of degree n is reducible.

Proof. (i) \Rightarrow (ii) Assume that U has (\mathbf{P}). Let $P(X)$ be a monic polynomial in $K[X]$ of degree n. By the preceding remark, there exists a nonzero endomorphism f of U such that the characteristic polynomial of f is $(-1)^{n} P(X)$. Then U contains a non-trivial subspace V such that $f(V) \subseteq V$. Set $h=\operatorname{dim}(V)$. Note that $1 \leq$ $h \leq n-1$. Moreover, there exists a subspace W of V such that $U=V \oplus W$ and $\operatorname{dim}(W)=n-h$. Let $\mathcal{B}_{1}=\left\{e_{1}, e_{2}, \ldots, e_{h}\right\}$ be a basis for V and let g be the restriction of f to V. We denote by A_{1} the matrix of g with respect to the basis \mathcal{B}_{1}. Let $\left\{e_{h+1}, \ldots, e_{n}\right\}$ be a basis for W. Then $\mathcal{B}_{2}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basis for U. It is easily seen that the matrix A of f with respect to the basis \mathcal{B} has the form

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right]
$$

Let $P_{A}(X)$ and $P_{A_{i}}(X)(i \in\{1,3\})$ be the characteristic polynomials of the matrices A and $A_{i}(i \in\{1,3\})$, respectively. Then $P_{A}(X)=P_{A_{1}}(X) P_{A_{3}}(X)$. It follows that $(-1)^{n} P(X)=P_{A_{1}}(X) P_{A_{3}}(X)$. That is, $P(X)=\left((-1)^{n} P_{A_{1}}(X)\right) P_{A_{3}}(X)$. Note that $\operatorname{deg}\left(P_{A_{i}}(X)\right) \geq 1$ for each $i \in\{1,3\}$.
(ii) \Rightarrow (i) Let T be an automorphism of U and let $P(X)$ be the characteristic polynomial of T. We denote by $A=\left(\alpha_{i j}\right)_{1 \leq i, j \leq n}$ the matrix of T with respect to the standard basis. By (ii), there exists a monic irreducible polynomial $Q(X)$ which divides $P(X)$ such that $q=\operatorname{deg}(Q(X)) \neq n$. It is well known that K has an
extension field L (which is isomorphic to $K[X] /\langle Q(X)\rangle$) such that $[L: K]=q$ and $Q(X)$ has a root λ in L. Let $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{q}\right\}$ be a basis of the K-vector space L. For all i, j in $\{1, \ldots, q\}$, there exist $\gamma_{i j}^{t} \in K(1 \leq t \leq q)$ such that $\sigma_{i} \sigma_{j}=\sum_{t=1}^{q} \gamma_{i j}^{t} \sigma_{t}$. Also, there exist $\lambda_{i} \in K(1 \leq i \leq q)$ such that $\lambda=\sum_{i=1}^{q} \lambda_{i} \sigma_{i}$. Since λ is a root of $P(X)$ in L, there exists $0 \neq v=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right] \in V=L^{n}$ such that $A v=\lambda v$. Note that for every $i \in\{1, \ldots, n\}$, there exist $\beta_{i s} \in K(1 \leq s \leq q)$ such that $b_{i}=\sum_{s=1}^{q} \beta_{i s} \sigma_{s}$. Fix $l \in\{1, \ldots, n\}$. We have $\sum_{j=1}^{n} \alpha_{l j} b_{j}=\lambda b_{l}$. Hence,

$$
\sum_{j=1}^{n} \alpha_{l j}\left(\sum_{s=1}^{q} \beta_{j s} \sigma_{s}\right)=\lambda \sum_{j=1}^{q} \beta_{l j} \sigma_{j} .
$$

That is,

$$
\sum_{s=1}^{q}\left(\sum_{j=1}^{n} \alpha_{l j} \beta_{j s}\right) \sigma_{s}=\sum_{i=1}^{q} \sum_{j=1}^{q} \lambda_{i} \beta_{l j}\left(\sigma_{i} \sigma_{j}\right) .
$$

Therefore,

$$
\sum_{s=1}^{q}\left(\sum_{j=1}^{n} \alpha_{l j} \beta_{j s}\right) \sigma_{s}=\sum_{i=1}^{q} \sum_{j=1}^{q} \lambda_{i} \beta_{l j}\left(\sum_{s=1}^{q} \gamma_{i j}^{s} \sigma_{s}\right) .
$$

i.e.,

$$
\sum_{s=1}^{q}\left(\sum_{j=1}^{n} \alpha_{l j} \beta_{j s}\right) \sigma_{s}=\sum_{s=1}^{q}\left(\sum_{j=1}^{q}\left(\sum_{i=1}^{q} \lambda_{i} \gamma_{i j}^{s}\right) \beta_{l j}\right) \sigma_{s} .
$$

It follows that

$$
\sum_{j=1}^{n} \alpha_{l j} \beta_{j s}=\sum_{j=1}^{q}\left(\sum_{i=1}^{q} \lambda_{i} \gamma_{i j}^{s}\right) \beta_{l j} \text { for every } s \in\{1, \ldots, q\} .
$$

For every j, s in $\{1, \ldots, q\}$, set $u_{j}=\left[\begin{array}{c}\beta_{1 j} \\ \vdots \\ \beta_{n j}\end{array}\right] \in U=K^{n}$ and $\varepsilon_{j s}=\sum_{i=1}^{q} \lambda_{i} \gamma_{i j}^{s} \in K$. A trivial verification shows that $A u_{s}=\sum_{j=1}^{q} \varepsilon_{j s} u_{j}$ for all $s \in\{1, \ldots, q\}$. This implies that the K-subspace $H=\left\langle u_{1}, u_{2}, \ldots, u_{q}\right\rangle$ of U generated by $\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$ is invariant under T. This completes the proof.

To visualize the proof of the previous theorem, we provide the following example.
Example 2.7. Let \mathbb{R} denote the field of real numbers. Consider the \mathbb{R}-vector space $U=\mathbb{R}^{4}$ and the polynomial $P(X)=\left(X^{2}+1\right)^{2} \in \mathbb{R}[X]$. Then the companion
matrix of $P(X)$ is

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -2 & 0
\end{array}\right]
$$

It is clear that $P(X)$ est divisible by $Q(X)=X^{2}+1$. Moreover, it is well known that the field \mathbb{C} of complex numbers is an extension field of \mathbb{R} such that $[\mathbb{C}: \mathbb{R}]=$ $2=\operatorname{deg}(Q(X))$. So, if we regard A as a matrix over \mathbb{C} then A has two complex eigenvalues, namely i and $-i$, and $v=\left[\begin{array}{r}i \\ -1 \\ -i \\ 1\end{array}\right]$ is an eigenvector of A corresponding to the eigenvalue i. With the notation of the proof of Theorem 2.6, the coefficients $\beta_{i j}$ have the values $\beta_{11}=0, \beta_{21}=-1, \beta_{31}=0, \beta_{41}=1, \beta_{12}=1, \beta_{22}=0$, $\beta_{32}=-1$ and $\beta_{42}=0$ so that the vectors $v_{1}=\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right]$ generate a subspace of U that is invariant under A.

Corollary 2.8. Let K be a finite field and let $n \geq 2$ be an integer. Then the K-vector space K^{n} never has (\mathbf{P}).

Proof. Since K is finite, there exists an irreducible polynomial $Q(X) \in K[X]$ with $\operatorname{deg}(Q(X))=n$ (see [3, Corollary 2.11]). From Theorem 2.6, we deduce that the K-vector space K^{n} does not have (\mathbf{P}).

Proposition 2.9. Let K be a field and let n be an integer with $n \geq 2$. Then the following are equivalent:
(i) Every K-vector space of dimension $t(2 \leq t \leq n)$ has (\mathbf{P});
(ii) Every monic polynomial $P(X) \in K[X]$ of degree $t(2 \leq t \leq n)$ has a root in the field K.

Proof. (i) \Rightarrow (ii) Let t_{1} be an integer with $2 \leq t_{1} \leq n$. Let $P_{1}(X)=X^{t_{1}}+$ $a_{t_{1}-1} X^{t_{1}-1}+\cdots+a_{1} X+a_{0} \in K[X]$ be a monic polynomial of degree t_{1}. Using Remark 2.5, there exists an endomorphism T_{1} of $K^{t_{1}}$ such that the characteristic polynomial of T_{1} is $(-1)^{t_{1}} P_{1}(X)$. By Theorem 2.6, $P_{1}(X)=P_{2}(X) Q_{2}(X)$ where $P_{2}(X), Q_{2}(X) \in K[X]$ with $1 \leq t_{2}=\operatorname{deg}\left(P_{2}(X)\right)<t_{1}$. Repeating this procedure,
we show that $P_{1}(X)=P(X) Q(X)$ where $P(X), Q(X) \in K[X]$ and $\operatorname{deg}(P(X))=1$. This shows that $P_{1}(X)$ has a root in K.
(ii) \Rightarrow (i) Let V be a nonzero K-vector space with $2 \leq \operatorname{dim}(V)=t \leq n$ and let T be an automorphism of V. By hypothesis, the characteristic polynomial $P_{T}(X)$ of T has a root λ in K. Therefore there exists a nonzero $u \in V$ such that $T(u)=\lambda u$. Let $W=K u$ be the subspace of V generated by $\{u\}$. It is clear that $T(W) \subseteq W$. Note that $W \neq 0$ and $W \neq V$. So V has (\mathbf{P}).

Next, we determine semisimple modules satisfying (\mathbf{P}). Recall that a module M is called homogeneous semisimple if it is generated by a single simple module; that is, M is a direct sum of simple modules which are isomorphic to each other.

Example 2.10. Consider the semisimple \mathbb{Z}-module $M=(\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}) \oplus \mathbb{Z} / 2 \mathbb{Z}$. Note that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 2 \mathbb{Z})=0$. Then $N=(\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}) \oplus 0$ is a fully invariant submodule of M by [6, Lemma 1.9]. It follows that M has (\mathbf{P}). In the same manner we can see that every semisimple module which is not homogeneous has (\mathbf{P}).

Proposition 2.11. Let I be an ideal of a commutative ring R and let M be an R / I-module. Then the R-module ${ }_{R} M$ has (\mathbf{P}) if and only if the R / I-module ${ }_{R / I} M$ has (\mathbf{P}).

Proof. Let M be a nonsimple R / I-module. Then M is an R-module and the lattices of R-submodules and R / I-submodules of M coincide. Moreover, any group endomorphism of M is an R-endomorphism of M if and only if it is an R / I endomorphism of M. The result follows.

Proposition 2.12. Every infinitely generated semisimple module has (\mathbf{P}).
Proof. Let M be an infinitely generated semisimple module. By Example 2.10, there is no loss of generality in assuming that M is homogeneous semisimple. Therefore $M \cong(R / \mathfrak{m})^{(\Lambda)}$ for some maximal ideal \mathfrak{m} of R and an infinite index set Λ. Then M can be viewed as an R / \mathfrak{m}-module. By Proposition 2.4 , the R / \mathfrak{m}-module M has (\mathbf{P}). Thus ${ }_{R} M$ satisfies (\mathbf{P}) by Proposition 2.11.

In the following proposition, we characterize finitely generated homogeneous semisimple modules which have (\mathbf{P}).

Proposition 2.13. Let M be a homogeneous semisimple R-module such that $M \cong$ $(R / \mathfrak{m})^{n}$ for some maximal ideal \mathfrak{m} of R and some positive integer $n \geq 2$. Let $K=R / \mathfrak{m}$. Then the following are equivalent:
(i) M has (\mathbf{P}) as an R-module;
(ii) M has (\mathbf{P}) as a K-module;
(iii) Every monic polynomial $P(X) \in K[X]$ of degree n is reducible.

Proof. This follows from Theorem 2.6 and Proposition 2.11.
The next corollary follows easily from Proposition 2.13.
Corollary 2.14. Let a module $M=S_{1} \oplus S_{2}$ be a direct sum of two simple submodules S_{1} and S_{2} such that $S_{1} \cong S_{2} \cong R / \mathfrak{m}$ for some maximal ideal \mathfrak{m} of R. Then the following are equivalent:
(i) $M \operatorname{has}(\mathbf{P})$;
(ii) Every monic polynomial $P(X) \in K[X]$ of degree 2 has a root in the field $K=R / \mathfrak{m}$.

A direct summand of a module having (\mathbf{P}) may not have (\mathbf{P}), in general, as shown below.

Example 2.15. Consider the \mathbb{Z}-modules $M_{1}=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}, M_{2}=\mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and $M=M_{1} \oplus M_{2}$.
(i) Let $K_{2}=\mathbb{Z} / 2 \mathbb{Z}$ and let the polynomial $P_{1}(X)=X^{2}-X+1 \in K_{2}[X]$. It is clear that $P_{1}(X)$ does not have a root in K_{2}. Thus M_{1} does not have (\mathbf{P}) by Corollary 2.14.
(ii) Consider the polynomial $P_{2}(X)=X^{2}+X+2 \in K_{3}[X]$, where $K_{3}=\mathbb{Z} / 3 \mathbb{Z}$. It is easy to check that $P_{2}(X)$ does not have a root in K_{3}. From Corollary 2.14, it follows that the module M_{2} does not have (\mathbf{P}).
(iii) From Example 2.10, we conclude that the module M has (\mathbf{P}). Also, note that both $M_{1}^{(\mathbb{N})}$ and $M_{2}^{(\mathbb{N})}$ have (\mathbf{P}) by Proposition 2.12 .

The next result is a direct consequence of Corollary 2.8 and Proposition 2.13.
Corollary 2.16. Let \mathfrak{m} be a maximal ideal of a commutative ring R such that R / \mathfrak{m} is a finite field (for instance, R can be the ring of integers \mathbb{Z} and $\mathfrak{m}=p \mathbb{Z}$ for some prime number p). Then for any positive integer $n \geq 2$, the R-module $M=(R / \mathfrak{m})^{n}$ does not have (\mathbf{P}).

The next proposition provides more examples of modules having (\mathbf{P}) over a commutative ring.

Proposition 2.17. Let R be a commutative ring. Let M be an R-module which is not semisimple such that $\operatorname{Rad}(M) \neq M$. Then M has a nonzero proper submodule N that is fully invariant in M. In particular, M has (\mathbf{P}).

Proof. Let Ω denote the set of all maximal ideals of R. It is well known that $\operatorname{Rad}(M)=\bigcap_{\mathfrak{m} \in \Omega} M \mathfrak{m}$. Note that $M \mathfrak{m} \neq 0$ for every $\mathfrak{m} \in \Omega$, since otherwise M will be semisimple. In addition, since $\operatorname{Rad}(M) \neq M$, there exists a maximal ideal \mathfrak{m}_{0} of R such that $M \mathfrak{m}_{0} \neq M$. Take $N=M \mathfrak{m}_{0}$. It is easily seen that N is fully invariant in M.

Using Example 2.10 and Proposition 2.17, we get the following result.
Corollary 2.18. Let M be a nonzero finitely generated module. If M is not homogeneous semisimple, then M has (\mathbf{P}).

Next, we determine all abelian groups which have (\mathbf{P}). Let \mathbb{Q} denote the field of rational numbers.

Proposition 2.19. Every direct sum of copies of the \mathbb{Z}-module \mathbb{Q} has (\mathbf{P}).
Proof. Case 1: Assume that $M=\mathbb{Q}^{(I)}$ where I is an infinite index set. Notice that M has a structure of a \mathbb{Q}-module defined by the following operation: given $x \in M, r \in \mathbb{Z}$ and $0 \neq s \in \mathbb{Z}$, we put $(r / s) x=r x^{\prime}$ with x^{\prime} is the unique element of M which satisfies $x=s x^{\prime}$. Note that x^{\prime} exists and is unique because M is a divisible torsion-free \mathbb{Z}-module. It is easily seen that $E n d_{\mathbb{Z}}(M)=E n d_{\mathbb{Q}}(M)$. Also, it is clear that every \mathbb{Q}-submodule of M is a \mathbb{Z}-submodule of M. Applying Proposition 2.4, it follows that M has (\mathbf{P}) as a \mathbb{Q}-module and hence also as a \mathbb{Z}-module.

Case 2: Assume that $M=M_{1} \oplus M_{2}$ such that $M_{i}=\mathbb{Q}$ for each $i=1,2$. It is well known that for any \mathbb{Z}-endomorphism φ of \mathbb{Q}, there exists a nonzero $q \in \mathbb{Q}$ such that $\varphi(x)=q x$ for all $x \in \mathbb{Q}$. Now let f be a nonzero \mathbb{Z}-endomorphism of M. So there exist integers a_{1}, a_{2}, c_{1} and c_{2} and nonzero integers b_{1}, b_{2}, d_{1} and d_{2} such that for every $\left(x_{1}, x_{2}\right) \in \mathbb{Q}^{2}$, we have $f\left(\left(x_{1}, x_{2}\right)\right)=\left(\left(a_{1} / b_{1}\right) x_{1}+\left(c_{1} / d_{1}\right) x_{2},\left(a_{2} / b_{2}\right) x_{1}+\right.$ $\left.\left(c_{2} / d_{2}\right) x_{2}\right)$. Let p be a prime integer which does not divide $b_{1} d_{1} b_{2} d_{2}$. Consider the non-trivial \mathbb{Z}-submodule $L=\{m / n \mid p$ does not divide $n\}$ of \mathbb{Q}. Set $N=N_{1} \oplus N_{2}$ such that $N_{i}=L$ for each $i=1,2$. Then N is a non-trivial submodule of M that is invariant under f. This shows that M has (\mathbf{P}). In the same manner we can see that every finite direct sum of copies of \mathbb{Q} satisfies (\mathbf{P}).

Remark 2.20. Consider the \mathbb{Z}-module $M=\mathbb{Q}^{2}$. Let $P(X)=X^{2}-2 \in \mathbb{Q}[X]$. It is clear that $P(X)$ does not have a root in \mathbb{Q}. By Corollary $2.14, M$ considered as a \mathbb{Q}-module does not have (\mathbf{P}). On the other hand, M viewed as a \mathbb{Z}-module satisfies (P) by Proposition 2.19.

Theorem 2.21. The following are equivalent for a \mathbb{Z}-module M :
(i) M has (\mathbf{P});
(ii) M satisfies any one of the following conditions:
(a) M is not semisimple, or
(b) M is a semisimple module which is infinitely generated or not homogeneous.

Proof. (i) \Rightarrow (ii) From Example 2.10, Proposition 2.12 and Corollary 2.16, it follows that a semisimple \mathbb{Z}-module has (\mathbf{P}) if and only if it is infinitely generated or not homogeneous. Now assume that M is not semisimple.
Case 1: $\operatorname{Rad}(M) \neq M$. In this case M has (\mathbf{P}) by Proposition 2.17.
Case 2: $\operatorname{Rad}(M)=M$ and $\operatorname{Soc}(M) \neq 0$. Since M is not semisimple, we have $\operatorname{Soc}(M) \neq M$. Hence $\operatorname{Soc}(M)$ is a non-trivial fully invariant submodule of M. This clearly implies that M has (\mathbf{P}).
Case 3: $\operatorname{Rad}(M)=M$ and $\operatorname{Soc}(M)=0$. In this case M is a divisible torsion-free \mathbb{Z}-module. Hence M is isomorphic to a direct sum of copies of \mathbb{Q}. Therefore M has (\mathbf{P}) by Proposition 2.19.

3. Rings whose modules satisfy (P)

The aim of this section is to characterize the class of rings R over which every nonzero finitely generated R-module M which is not simple satisfies (\mathbf{P}). Let R be a commutative ring and consider the following properties:
$\left(\mathbf{P}_{\mathbf{1}}\right)$: Every nonzero finitely generated R-module M which is not simple satisfies (\mathbf{P}).
$\left(\mathbf{P}_{\mathbf{2}}\right)$: Every nonsimple R-module M with $\operatorname{Rad}(M) \neq M$ satisfies (\mathbf{P}).
$\left(\mathbf{P}_{\mathbf{3}}\right)$: Every nonzero R-module M which is not simple satisfies (\mathbf{P}).
Recall that a field K is called an algebraically closed field if any polynomial in $K[X]$ of degree $n \geq 1$ has at least one root in K.

Proposition 3.1. Let K be a field. Then the following are equivalent:
(i) K satisfies $\left(\mathbf{P}_{\mathbf{1}}\right)$;
(ii) K satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$;
(iii) K satisfies $\left(\mathbf{P}_{\mathbf{3}}\right)$;
(iv) K is algebraically closed.

Proof. (iii) \Rightarrow (ii) \Rightarrow (i) are immediate.
(i) \Rightarrow (iv) This follows from Proposition 2.9.
(iv) \Rightarrow (iii) Let V be a K-vector space with $\operatorname{dim}(V) \geq 2$. If V is of infinite dimension, then V has (\mathbf{P}) by Proposition 2.4. If V is finite-dimensional, then V has (\mathbf{P}) by Theorem 2.6. Therefore K satisfies $\left(\mathbf{P}_{\mathbf{3}}\right)$.

Proposition 3.2. Let R be a commutative ring. If R satisfies $\left(\mathbf{P}_{\mathbf{1}}\right)$ (resp., $\left(\mathbf{P}_{\mathbf{2}}\right)$ or $\left(\mathbf{P}_{\mathbf{3}}\right)$), then R / I satisfies $\left(\mathbf{P}_{\mathbf{1}}\right)$ (resp., $\left(\mathbf{P}_{\mathbf{2}}\right)$ or $\left(\mathbf{P}_{\mathbf{3}}\right)$) for every ideal I of R.

Proof. This follows from Proposition 2.11.
Combining Propositions 3.1 and 3.2 , we obtain the following corollary.
Corollary 3.3. Let R be a commutative ring. If R satisfies $\left(\mathbf{P}_{\mathbf{1}}\right)$, then the field R / \mathfrak{m} is algebraically closed for every maximal ideal \mathfrak{m} of R.

We call a ring $R \mathfrak{m}$-algebraically closed if R / \mathfrak{m} is an algebraically closed field for all maximal ideals \mathfrak{m} of R.

Theorem 3.4. The following conditions are equivalent for a commutative ring R :
(i) R satisfies $\left(\mathbf{P}_{\mathbf{1}}\right)$;
(ii) R satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$;
(iii) R is an \mathfrak{m}-algebraically closed ring.

Proof. (ii) \Rightarrow (i) This is clear.
(i) \Rightarrow (iii) This follows from Corollary 3.3.
(iii) \Rightarrow (ii) Using Example 2.10 and Proposition 2.17, we only need to show that every semisimple homogeneous R-module which is not simple satisfies (\mathbf{P}). Let M be a nonzero semisimple homogeneous R-module such that M is not simple. Note that $M \cong(R / \mathfrak{m})^{(\Lambda)}$ for some maximal ideal \mathfrak{m} of R and some index set Λ. Hence M can be considered as an R / \mathfrak{m}-module. Since R / \mathfrak{m} is algebraically closed, it follows that the R / \mathfrak{m}-module ${ }_{R / \mathfrak{m}} M$ satisfies (\mathbf{P}) by Proposition 3.1. Therefore the R-module ${ }_{R} M$ satisfies (\mathbf{P}) by Proposition 2.11. This proves the theorem.

Remark 3.5. It is well known that a finite field could not be algebraically closed. From Theorem 3.4, it follows that a finite ring could not satisfy $\left(\mathbf{P}_{\mathbf{1}}\right)$.

Next, we exhibit some examples of rings satisfying properties $\left(\mathbf{P}_{\mathbf{1}}\right)$ and $\left(\mathbf{P}_{\mathbf{2}}\right)$.
Example 3.6. (i) Let $K_{1}, K_{2}, \ldots, K_{n}$ be algebraically closed fields. Applying Theorem 3.4, we see that the ring $R=K_{1} \times K_{2} \times \cdots \times K_{n}$ satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$.
(ii) Let K be an algebraically closed field and let $R=K\left[X_{1}, \ldots, X_{n}\right]$. It is well known (see Hilbert's Nullstellensatz) that the maximal ideals of the ring R are the ideals $\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-a_{n}\right)$, where $a_{1}, a_{2}, \ldots, a_{n} \in K$. Moreover, for any $a_{1}, a_{2}, \ldots, a_{n} \in K,\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-a_{n}\right)$ is the kernel of the epimorphism

$$
\varphi: R \rightarrow K \text { defined by } f \mapsto f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

Thus $R /\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-a_{n}\right)$ is isomorphic to K. This implies that $R /\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-a_{n}\right)$ is an algebraically closed field. Hence R satisfies $\left(\mathbf{P}_{2}\right)$ by Theorem 3.4. Note that the ring R has infinitely many maximal ideals.
(iii) Let K be a field and let R be a subring of K. Recall that R is called a valuation ring of K if, for any $0 \neq x \in K$, either $x \in R$ or $x^{-1} \in R$. Note that every valuation ring of K is a local ring.

Now assume that K is an algebraically closed field and let R be a valuation ring of K. It is well known that the residue field of R is also algebraically closed. From Theorem 3.4, we see that the ring R satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$.

Proposition 3.7. A finite product $R=\prod_{i=1}^{n} R_{i}(n \geq 2)$ of rings satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$ if and only if so is each $R_{i}(1 \leq i \leq n)$.

Proof. There is no loss of generality in assuming that $n=2$. The necessity follows from Proposition 3.2. Conversely, let \mathfrak{m} be a maximal ideal of R. Then $\mathfrak{m}=\mathfrak{m}_{1} \times R_{2}$ or $\mathfrak{m}=R_{1} \times \mathfrak{m}_{2}$, where $\mathfrak{m}_{i}(i \in\{1,2\})$ is a maximal ideal of R_{i}. Hence $R / \mathfrak{m} \cong R_{1} / \mathfrak{m}_{1}$ (as fields) or $R / \mathfrak{m} \cong R_{2} / \mathfrak{m}_{2}$ (as fields). Using Theorem 3.4 twice, we conclude that R / \mathfrak{m} is an algebraically closed field and hence the ring R satisfies $\left(\mathbf{P}_{\mathbf{2}}\right)$.

Acknowledgement. The authors would like to thank the referee for helpful comments that improved the paper and for providing them with Example 2.7.

References

[1] N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math., 60(2) (1954), 345-350.
[2] A. R. Bernstein and A. Robinson, Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math., 16(3) (1966), 421-431.
[3] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Revised edition, The Press Syndicate of the University of Cambridge, Cambridge University Press, Cambridge, 1994.
[4] M. Liu, The invariant subspace problem and its main developments, Int. J. Open Problems Compt. Math., 3(5) (2010), 88-97.
[5] V. I. Lomonosov, Invariant subspaces for the family of operators which commute with a completely continuous operator, Funct. Anal. Appl., 7(3) (1973), 213-214.
[6] A. Ç. Özcan, A. Harmanci and P. F. Smith, Duo modules, Glasg. Math. J., 48(3) (2006), 533-545.

Mohamed Benslimane and Hanane EL Cuera

Department of Mathematics
Faculty of Sciences
Abdelmalek Essaâdi University
B.P. 2121 Tetouan, Morocco
e-mails: med.bens@gmail.com (M. Benslimane)
hanane.cuera@gmail.com (H. EL Cuera)

Rachid Tribak (Corresponding Author)
Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger
Avenue My Abdelaziz, Souani, B.P. 3117, Tangier, Morocco
e-mail: tribak12@yahoo.com

