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Abstract- Finite time thermodynamic optimization with respect to maximum power density has been performed for a solar-

driven heat engine with internal irreversibility. In this paper, it is considered that the heat transfer from the hot reservoir to the 

working fluid occurs in radiation mode and the heat transfer from working fluid to the cold reservoir occurs in the convection 

mode. The equation of power density function is formed, which is maximized for various design parameters. Further, the 

effects of these parameters on optimum power density is also investigated. Moreoever, the performance in the nominal power 

density output at operating conditions other than optimum working fluid temperatures has been studied with respect to the 

obtained efficiency. 
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1. Introduction 

Finite time thermodynamics has recently been used off 

late for the performance analysis of a solar driven heat 

engine. The objective function chosen for optimization is 

usually power density output.Optimization studies for 

performance analysis of heat engines using finite time 

thermodynamics were firstly done  by Chambadal [1] and 

Novikov [2].  Curzon and Ahlborn [3] analysed the 

performance of an endoreversible Carnot heat engine under 

maximum power output condition. Over the last few years, 

some works on power optimization of heat engines with 

consideration to endoreversible and irreversible models have 

been reported in the existing literature [4]. Goktun et al. [5] 

studied the performance of endoreversible radiative heat 

engine at maximum power output conditions. That work was 

extended for irreversible radiative model by Ozkaynak [6]. 

Analysis of carnot heat engine based on endoreversible 

condition with combined radiation & convection between the 

engine and the  hot/cold heat reservoirs was performed by 

Erbay & Yavuz [7]. Study on power optimization of 

endoreversible solar driven carnot engine model was carried 

out by Badescu et al. [8]. Following this many researchers 

[9-11] performed optimization of solar driven endoreversible 

carnot engine by taking specific power output (power 

output/area) as the optimization criterion. The pioneering 

work on finite time thermodynamic analysis for a solar 

driven heat engine was done by Sahin [12]. The optimum 

operating conditions for the heat engine at maximum power 

condition was reported in that paper. Further Sahin et al. 

[13–15] optimized the performances of an endoreversible 

Carnot heat engine and reversible/irreversible Joule–Brayton 

heat engines using the power density as a criterion. 

Koyun [16] compared the performances of a solar-driven 

heat engine under maximum power and maximum power 

density conditions with consideration to external 

irreversibilities.  

In this paper, the performance of optimum work density 

has been investigated  for different design parameters. Also 

performance in the nominal power density output at 

operating points other than optimum working fluid 

conditions  with variation in efficiency for various 

parameters have also been investigated. In this paper, 
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specific engine size as area ratio between hot reservoir and 

cold reservoir, extreme temperature ratios between the hot & 

cold side reservoirs have been considered as  the necessary 

design parameters 

2. The Theoretical Model 

Reversible Carnot cycle is the basis in the development 

of classical thermodynamics. The reversible Carnot cycle as 

upper performance bound is the idealised cycle in which it is 

required that the system be passed through a series of quasi 

static equilibrium states, which is also considered in the 

present analysis. The T–S diagram of the present reversible 

solar-driven heat engine with consideration to internal 

irreversibilities is shown in Fig.1. 

The heat engine works between two extreme 

temperatures (TH and TL). Assuming heat transfer from hot 

reservoir (TH) to the working fluid occurs in radiation mode, 

then the heat transfer, QH from the hot reservoir to the heat 

engine can be written as 

)(
44

XHHHH TTACQ 
                                   (1) 

The heat trasnfer, QL from the heat engine to the cold 

reservoir (TL), with an assumption of being in convection 

mode, can be written as 

)( LYLLL TTACQ 
                            (2) 

 

Fig.1. T–S diagram of a reversible solar-driven heat engine 

with internal irreversibility 

In the above two equations, CH and CL are the heat 

transfer coefficients of the hot and cold fluids respectively. 

By the first law of thermodynamics, the output power (W) 

from the cycle can be represented as- 

H LW Q Q 
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Now the expression for thermal efficiency becomes 
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By the assumption of ideal gas, the maximum volume in 

the cycle V4 is represented as 

4
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                            (5) 

In equation 5, ‘m’ is mass of the working fluid and ‘R’ is 

universal gas constant. Here, the pressure in the cycle at the 

minimum point (P4) is assumed to be constant. Power 

density, defined as the ratio of power to the maximum 

volume in the cycle [14–15], is the performance parameter 

for the present analysis. This can thus be represented as:   
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By the second law of thermodynamics, for an 

irreversible cycle, the resultant variation  in the entropy of 

the working fluid under heat addition and heat removal 

gives: 
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One can rewrite the inequality in Equation (7) as 
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With the above definition I becomes 
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Substituting equation (1) & (2)  in equation (8), we have 
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where,   Ar = AH/AL= ratio of area of hot reservoir to cold 

reservoir = specific engine size 

I = internal irreversibility 

Substituting equation (9) in (4) & (6), the thermal 

efficiency, dimensionless power density output  
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where,  = TX / TH = working fluid temperature ; 

τ = extreme temperature ratio =TL / TH ;  

x = temperature constant = CHTH3 / CL 

To find the optimum working fluid temperature under 

maximum power density, equation (11) is differentiated with 

respect to  and the resulting derivative is set to zero as 
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7Arx θ8 + 4ArI θ5 -(6 x + 3τ)Ar θ4 - Ar(τ + x) = 0   (12) 

The optimum values of θ have to satisfy Equation. (11) 

for maximum power density outputs. The solution of these 

equations can be done numerically. 

3. Results and Discussion 

The variations of the optimum power density (Wdmax) 

with respect to area ratio between hot side and cold side 

reservoirs, i,e specific engine size (Ar) for various extreme 

temperature ratios, τ is shown in fig.2.  Wdmax values first 

increase with Ar, but as Ar becomes high they decrease for all 

τ. Further it is observed that with the increase in  τ values, the 

optimum power densities decrease for all values of Ar. And it 

is close to zero when τ = 0.6. 

 

Fig. 2. Variation of optimum power density with respect to 

area ratio for different τ values (x = 0.01, I=0.9) 

Figure 3 shows the variations of the optimum power 

density (Wdmax) with area ratio between hot side and cold 

side reservoirs (Ar) for various values of the temperature 

constant ‘x’. It can be seen from the figure that as the value 

of x increases, the optimum power density increases but the 

interval of Ar in which the power density gets maximum 

drops as x increases. The best zone of operation would be 

Ar<5 when x is kept at 0.9 as can be seen from the figure. 

The typical values of x for solar-driven heat engine 

applications are expected to be on the order of 1, or even less 

[16]. 

 

Fig. 3. Variations of optimum power density with respect to 

area ratio for selected values of x (τ=0.3, I=0.8) 

The variations of the optimum power density (Wdmax) as 

function of area ratio between hot side and cold side 

reservoirs (Ar) for various irreversibility factors (I) is shown 

in fig. 4.  There has been a quick rise in the power density 

values for Ar up to 10 for all values of I, but after that as Ar 

increases further, the power densities decrease.  

 

Fig. 4. The variation of optimum power density with respect 

to area ratio for different irreversibility values, I (x=0.01, τ= 

0.1) 

Further, as internal irreversibilities increase (i,e,I <<0.9), 

optimum power densities decrease for all values of Ar. In fig. 

5, the variations of nominal power density output other than 

optimum working fluid temperature conditions with respect 

to thermal efficiency is shown for different values of the 

temperature constant x. The nominal outputs get high values 

in the operating efficiency range of 40-50%. Thus other than 

optimum condition of efficiency, high values of outputs can 

be obtained by operating in that efficiency range. Further, 

operating in that range, the nominal  power density outputs 

can be increased by using high values of the constant x up to 

1.0 as can be seen from fig. 5. 

 

Fig.5. Variation of nominal power density with respect to 

thermal efficiency for different x values (I= 0.8, τ = 0.3 & Ar 

= 2) 

In Fig. 6, variations of nominal power density other than 

optimum working fluid temperature conditions with respect 

to thermal efficiency is shown for different values of area 

ratio, Ar. The nominal power density outputs get high values 

in the operating efficiency range 40-50%. Thus other than 

optimum condition of efficiency, high values of  outputs can 

be obtained by operating in that efficiency range when Ar is 

the important design parameter under consideration. Further, 

being in that range, the nominal outputs can be increased by 

keeping high values of Ar. 
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Fig 6. Variations of nominal power density with respect to 

thermal efficiency for different values of Ar (I= 0.8, τ = 0.3 

&  x =0.01) 

The variations of nominal power density output other 

than optimum conditions with respect to thermal efficiency 

for different values of irreversibility factors I is shown in fig. 

7. It is observed that efficiencies at maximum values of 

nominal power density outputs decrease with the increase in 

internal irreversibilities( i,e, when I<<0.9) For engine as 

reversible as I = 0.9, better performance in nominal power 

density output can be obtained in the efficiency range 50-

60% as can be seen from fig. 7. 

 

Fig.7. Variation of power density output with thermal 

efficiency for different values of I   (Ar= 8; τ = 0.3; x = 0.01) 

The variations of nominal power densities with respect 

to thermal efficiency for different values of extreme 

temperature ratio, τ   is shown in fig. 8.  The efficiencies at 

maximum values of nominal power density outputs decrease 

with the increase in the extreme temperature ratio, τ . The 

nominal work densities decrease as τ increases for the whole 

operating range of thermodynamic efficiency.  Further as can 

be seen from fig. 8, minimum work density output is 

obtained when τ = 0.6.  

 

Fig. 8. Variation of power density with thermal 

efficiency for different values of τ (Ar = 2; I = 0.8; x = 0.01) 

In figures 9,10,11, variations of optimum efficiencies for 

maximum power density output have been studied with 

respect to the specific engine size (area ratio between the 

reservoirs) for different values of I, τ & x  respectively. The 

optimum thermal efficiency values stay high for  Ar <5 for 

all values of I, but as Ar crosses that mark, the optimum 

efficiencies decrease. Further maximum values of optimum 

efficiency can be obtained by keeping irreversibilities as low 

as I =0.9 for all Ar. But if Ar is more than 15 units, high 

efficiency outputs decrease even if irreversibilities are low. 

The results are equivalent to the findings in the variation of 

optimum power density output with respect to the area ratio, 

Ar for the corresponding values of I and τ as shown in figures 

2 & 4 previously. There, the optimum power densities stayed 

high low values of Ar  under same values of I & τ  and then 

dropped with increase in Ar .  

 

Fig.9. Variation of efficiency at max. power density with 

respect to area ratio for different irreversibility values  

(x=0.01, τ= 0.1) 

In the variation of ηdmax for different values of x, it is 

found that ηdmax decreases sharply in the range Ar < 5 for x = 

0.08 up to x =0.9. It is only when x = 0.01 that efficiency 

drops slowly with Ar until it is only 10% when Ar = 30. This 

result is also equivalent to the variations in max power 

density with respect to Ar for the corresponding values of x 

where maximum work density outputs have been obtained in 

Ar <<5 when  x is kept up to 0.9. 
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Fig.10. Variation of efficiency at max. power (work) density 

with respect to area ratio for different τ values   (x=0.01,  I= 

0.9) 

 

Fig.11. Variations of optimum efficiency at max. power 

density with respect to area ratio for different values of x 

(τ=0.3, I=0.8) 

4. Conclusion 

A performance analysis of solar driven heat engine with 

internal irreversibility has been done in the present study. It 

is observed that maximum optimized power density outputs 

depend on design parameters. It has been found that for 

better performance in Wdmax, low values of extreme 

temperature ratio, τ and low values of area ratio Ar and high 

values of irreversibility factors should be employed. The 

effects of design parameters on nominal work density output 

have also been investigated in this paper. Further, the 

variation of optimum efficiencies corresponding to the 

maximum power densities with respect to area ratio for 

different parameters like τ, I, x etc have also been studied. 

The results of finite time thermodynamics and 

endoreversibility are entirely equivalent to the same case 

analyzed by a classical reversible Carnot cycle with internal 

irreversibility of heat transfer. However more investigations 

may be required to arrive at concrete conclusions for the 

study been made.  
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