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Abstract. Let R be a commutative ring with 1 6= 0 and let m and n be

integers with 1 ≤ n < m. A proper ideal I of R is called an (m,n)-closed ideal

of R if whenever am ∈ I for some a ∈ R implies an ∈ I. Let f : A → B be

a ring homomorphism and let J be an ideal of B. This paper investigates the

concept of (m,n)-closed ideals in the amalgamation of A with B along J with

respect f denoted by A ./f J . Namely, Section 2 investigates this notion to

some extensions of ideals of A to A ./f J . Section 3 features the main result,

which examines when each proper ideal of A ./f J is an (m,n)-closed ideal.

This allows us to give necessary and sufficient conditions for the amalgamation

to inherit the radical ideal property with applications on the transfer of von

Neumann regular, π-regular and semisimple properties.
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1. Introduction

We assume throughout the whole paper that all rings are commutative with

1 6= 0. The notion of (m,n)-closed ideal was introduced and defined by Anderson

and Badawi in [2], as follow: Let R be a ring and m and n be two positive integers

with 1 ≤ n < m. A proper ideal I of R is called an (m,n)-closed ideal of R if

whenever am ∈ I for some a ∈ R implies an ∈ I. Also, an ideal I of R is a semi-n-

absorbing ideal of R if and only if I is an (n+1, n)-closed ideal of R. Recall that an

ideal I of R is a radical ideal if and only if I is a (2, 1)-closed ideal. Among other

things, they gave the basic properties of semi-n-absorbing ideals and (m,n)-closed

ideals and they also determined when every proper ideal of R is (m,n)-closed for

integers 1 ≤ n < m. Further, they gave several examples illustrating their results.

Recall that a proper ideal I of R is called an n-absorbing ideal of R as in [1] if

a1, a2, . . . , an+1 ∈ R and a1a2 · · · an+1 ∈ I, then there are n of the ai’s whose

product is in I. Notice that an n-absorbing ideal is an (m,n)-closed for every



ON (m,n)-CLOSED IDEALS IN AMALGAMATED ALGEBRA 135

positive integer m. In [4], the authors studied the notions of n-absorbing ideals,

strongly n-absorbing ideals and (m,n)-closed ideals in the trivial ring extension.

Let A be a commutative ring and E be an A-module. The trivial ring extension of

A by E (also called the idealization of E over A) is the ring R := A ∝ E whose

underlying group is A×E with multiplication given by (a, e)(a′, e′) = (aa′, ae′+a′e).

Trivial ring extensions have been studied extensively. Considerable work, part of

is summarized in Glaz’s book [12] and Huckaba’s book [13], has been concerned

with trivial ring extension these extensions have been useful for solving many open

problems and conjectures in both commutative and non-commutative ring theory.

See for instance [3,10,12,13]. We recall that if I is a proper ideal of A, then I ∝ E
is an ideal of A ∝ E. And if F is a submodule of E such that IE ⊂ F , then I ∝ F
is an ideal of A ∝ E. The ideals of A ∝ E are not all of the form I ∝ E or I ∝ F ,

but if A is an integral domain, and E an A-module divisible, the ideals of A ∝ E

are of the form I ∝ E or 0 ∝ F , where I is an ideal of A and F a submodule of

E. Let (A,B) be a pair of rings, f : A→ B be a ring homomorphism and J be an

ideal of B. In this setting, we can consider the following subring of A×B:

A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f , introduced and stud-

ied by D’Anna, Finocchiaro and Fontana in [9,10]. In particular, they have studied

amalgamations in the frame of pullbacks which allowed them to establish numer-

ous (prime) ideal and ring-theoretic basic properties for this new construction. This

construction is a generalization of the amalgamated duplication of a ring along an

ideal (introduced and studied by D’Anna and Fontana in [7,8]). The interest of

amalgamation resides, partly, in its ability to cover several basic constructions in

commutative algebra, including pullbacks and trivial ring extensions (also called

Nagata’s idealizations) (cf. [16, page 2]). Moreover, other classical constructions

(such as the A+XB[X], A+XB[[X]] and the D+M constructions) can be studied

as particular cases of the amalgamation ([9, Examples 2.5 and 2.6]) and other clas-

sical constructions, such as the CPI extensions (in the sense of Boisen and Sheldon

[5]) are strictly related to it ([9, Example 2.7 and Remark 2.8]). In [9], the authors

studied the basic properties of this construction (e.g., characterizations for A ./f J

to be a Noetherian ring, an integral domain, a reduced ring) and they characterized

those distinguished pullbacks that can be expressed as an amalgamation. More-

over, in [10], they pursued the investigation on the structure of the rings of the form

A ./f J , with particular attention to the prime spectrum, to the chain properties



136 MOHAMMED ISSOUAL, NAJIB MAHDOU AND MOUTU ABDOU SALAM MOUTUI

and to the Krull dimension. For more details on amalgamation rings, we refer the

reader to [11], [14], [15].

In this paper, we study the notion of (m,n)-closed ideals in the amalgamation

of A with B along J with respect f denoted by A ./f J . For any ring R, we

denote by Nil(R) (resp., dim(R)), the set of nilpotent elements of R (resp., the

Krull dimension of R).

2. On some (m,n)-closed ideals of amalgamation A ./f J

To avoid unnecessary repetition, let us fix notation for the rest of the paper. Let

(A,B) be a pair of rings, f : A→ B be a ring homomorphism and J be an ideal of

B. All along this paper, A ./f J will denote the amalgamation of A and B along

J with respect to f . Let I be an ideal of A and K be an ideal of f(A) + J. Notice

that I ./f J := {(i, f(i) + j)/i ∈ I, j ∈ J} and K
f

:= {(a, f(a) + j)/a ∈ A, j ∈
J, f(a) + j ∈ K} are ideals of A ./f J . Our first result gives a characterization

about when the ideals I ./f J and K
f

are (m,n)-closed ideals of A ./f J , for all

positive integers m and n, with 1 ≤ n < m.

Proposition 2.1. Under the above notations, the following statements hold:

(1) I ./f J is an (m,n)-closed ideal of A ./f J if and only if I is an (m,n)-

closed ideal of A.

(2) K
f

is an (m,n)-closed ideal of A ./f J if and only if K is an (m,n)-closed

ideal of f(A) + J .

Proof. (1) Assume that I ./f J is an (m,n)-closed ideal of A ./f J for m and

n two positive integers with 1 ≤ n < m. Let am ∈ I, with a ∈ A. Clearly

(a, f(a))m ∈ I ./f J. Since I ./f J is an (m,n)-closed ideal of A ./f J ,

we have (a, f(a))n ∈ I ./f J and so an ∈ I. Hence, I is an (m,n)-closed

ideal of A. Conversely, assume that I is an (m,n)-closed ideal of A. Let

xm = (a, f(a) + j)m ∈ I ./f J with x = (a, f(a) + j) ∈ A ./f J. Clearly,

am ∈ I. Since I is an (m,n)-closed ideal of A, we have an ∈ I. One can

easily check that xn = (an, (f(a) + j)n) ∈ I ./f J, as desired.

(2) Suppose that K
f

is an (m,n)-closed ideal of A ./f J . We claim that K

is an (m,n)-closed ideal of f(A) + J . Indeed, let (f(a) + j)m ∈ K with

(f(a)+j) ∈ f(A)+J . Then (am, (f(a)+j)m) ∈ Kf
. Since K

f
is an (m,n)-

closed ideal, (a, f(a) + j)n ∈ Kf
. Therefore, (f(a) + j)n ∈ K. Hence, K is

an (m,n)-closed ideal of f(A)+J . Conversely, assume that K is an (m,n)-

closed ideal of f(A)+J . Let (a, f(a)+j)m ∈ Kf
with (a, f(a)+j) ∈ A ./f J .
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Obviously, f(a) + j ∈ f(A) + J and (f(a) + j)m ∈ K which is an (m,n)-

closed ideal. So, (an, (f(a) + j)n) ∈ K
f
. Hence, K

f
is an (m,n)-closed

ideal of A ./f J , as desired. �

The following corollary is an immediate consequence of Proposition 2.1.

Corollary 2.2. Under the above notations, the following statements hold:

(1) I ./f J is a radical ideal of A ./f J if and only if I is a radical ideal of A.

(2) I ./f J is a semi-n-absorbing ideal of A ./f J if and only if I is a semi-n-

absorbing ideal of A.

(3) K
f

is a semi-n-absorbing ideal of A ./f J if and only if K is a semi-n-

absorbing ideal of f(A) + J .

(4) K
f

is a radical ideal of A ./f J if and only if K is a radical ideal of

f(A) + J .

Let I be a proper ideal of A. The (amalgamated) duplication of A along I is a

special amalgamation given by

A ./ I := A ./idA I =
{

(a, a+ i) | a ∈ A, i ∈ I
}
.

The next corollary is an immediate consequence of Proposition 2.1 and Corollary

3.5 on the transfer of (m,n)-closed ideal property to duplications.

Corollary 2.3. Let A be a ring and I be an ideal of A. Consider K an ideal of A.

Then the following statements hold:

(1) K ./ I is an (m,n)-closed ideal of A ./ I if and only if I is an (m,n)-closed

ideal of A.

(2) K ./ I is a semi-n-absorbing ideal of A ./ I if and only if I is a semi-n-

absorbing ideal of A.

(3) K ./ I is a radical ideal of A ./ I if and only if I is a radical ideal of A.

Let I (resp., K) be an ideal of A (resp., f(A) + J). Observe that

I ×Kf
:= {(a, f(a) + j) | j ∈ J, a ∈ I, f(a) + j ∈ K}

is an ideal of A ./f J . The following proposition establishes a partial result about

when the ideal I ×Kf
is an (m,n)-closed ideal of A ./f J .

Proposition 2.4. Let m1, n1, m2 and n2 be positive integers such that m1 < n1

and m2 < n2. Under the above notations: If I is an (m1, n1)-closed ideal of A and

K is an (m2, n2)-closed ideal of f(A) + J , then I ×Kf
is an (m,n)-closed ideal of

A ./f J for all positive m ≤ min(m1,m2) and n ≥ max(n1, n2).
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Proof. Assume that I is an (m1, n1)-closed ideal of A and K is an (m2, n2)-closed

ideal of f(A)+J . Notice that I ×Kf
= (I×K)∩(A ./f J). From [2, Theorem 2.12],

I ×K is an (m,n)-closed ideal of A× (f(A) + J) for all positive m ≤ min(m1,m2)

and n ≥ max(n1, n2). Since A ./f J ⊂ A × (f(A) + J), by [2, Corollary 2.11(1)],

it follows that I ×Kf
is an (m,n)-closed ideal of A ./f J for all positive m ≤

min(m1,m2) and n ≥ max(n1, n2), as desired. �

As a direct consequence of Proposition 2.4, we obtain the following corollary:

Corollary 2.5. (1) If I is a semi-n-absorbing ideal of A and K is a semi-n-

absorbing ideal of f(A) + J , then I ×Kf
is a semi-n-absorbing ideal of

A ./f J .

(2) If I is a radical ideal of A and K is a radical ideal of f(A)+J , then I ×Kf

is a radical ideal of A ./f J .

Let f : A → B be a ring homomorphism and J be an ideal of B. Consider an

ideal I (resp., H) of A (resp., f(A) + J) such that f(I)J ⊆ H ⊆ J. Observe that

I ./f H := {(i, f(i) + h)/i ∈ I, h ∈ H} is an ideal of A ./f J .

Remark 2.6. Under the above notations. Let m and n be two integers with

1 ≤ n < m. If I ./f H is an (m,n)-closed ideal of A ./f J , then by using similar

argument as statement (1) of Proposition 2.1, it follows that I is an (m,n)-closed

ideal of A. The converse is not true, in general, as shown by the next example

which exhibits an ideal I that is a (2, 1)-closed ideal of A such that f(I)J ⊆ H ⊂ J
but I ./f H is not a (2, 1)-closed ideal of A ./f J .

Example 2.7. Let A := Z be the ring of integers, B := Q[[X]] be the ring of

formal power series over Q in an indeterminate X, f : Z ↪→ Q[[X]] be the natural

embedding and J := XQ[[X]]. Let H = {XP (X);P ∈ f(A) + J = Z + XQ[[X]]}.
Obviously, H is an ideal of f(A) + J = Z + XQ[[X]]. Note that I := 0 is a prime

ideal of A and so is an (m, 1)-closed ideal of A for all positive integer m. Since

f(I)J = 0 ⊂ H ⊂ J , 0 ./f H is an ideal of Z ./f XQ[[X]]. We claim that 0 ./f H is

not a (2, 1)-closed ideal of Z ./f XQ[[X]]. Indeed, 0 ./f H = {(0, XP (X)), P (X) ∈
Z + XQ[[X]]}, we have (0,

√
2X)2 = (0, 2X2) ∈ 0 ./f H but (0,

√
2X) /∈ 0 ./f H.

Hence, 0 ./f H is not a (2, 1)-closed ideal of Z ./f XQ[[X]].

Now, we examine about when the ideal I ./f H is an (m,n)-closed ideal of

A ./f J .
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Proposition 2.8. Let f : A → B be a ring homomorphism and J be an ideal of

B. Let H be an ideal of f(A) + J such that f(I)J ⊆ H ⊆ J . Then the following

statements hold:

(1) If I ./f H is an (m,n)-closed ideal of A ./f J , then I is an (m,n)-closed

ideal of A, for all positive integers m and n, with 1 ≤ n < m.

(2) Assume that I is an (m, 1)-closed ideal of A and xn ∈ H for every x ∈ J
with n ≥ 1 a positive integer. Then I ./f H is an (m,n)-closed ideal of

A ./f J .

Proof. (1) From Remark 2.6.

(2) Assume that I is an (m, 1)-closed ideal of A. We claim that I ./f H is an

(m,n)-closed ideal of A ./f J . Let xm = (a, f(a) + j)m ∈ I ./f H for some

x = (a, f(a) + j) ∈ A ./f J . Then am ∈ I. Since I is an (m, 1)-closed ideal

of A, we have a ∈ I and so ai ∈ I for every positive integer 1 ≤ i ≤ m.

Let h =

n−1∑
i=1

(
n

i

)
f(ai)jn−i + jn. Observe that for every positive integer

i ≤ n − 1, we have f(ai)jn−i ∈ H (as (a, f(a) + j)m ∈ I ./f H). Since

jn ∈ H for every j ∈ J , by using the Binomial theorem, it follows that

xn = (an, f(an) + h) ∈ I ./f H. Hence, I ./f H is an (m,n)-closed ideal of

A ./f J, as desired. �

The following corollary is a consequence of Proposition 2.8.

Corollary 2.9. Let f : A → B be a homomorphism of rings and J be an ideal of

B. Assume that I is a (m, 1)-closed ideal of A and xn ∈ (f(I)B)J for every x ∈ J,
with n ≥ 1 a positive integer. Then the extension ideal of I to A ./f J , denoted by

Ie := I ./f (f(I)B)J is an (m,n)-closed ideal of A ./f J, for all positive integers

m and n, with 1 ≤ n < m.

Proof. Applying Proposition 2.8 with H := (f(I)B)J , it follows that Ie is an

(m,n)-closed ideal of A ./f J, as desired. �

Next, we show how one may use Proposition 2.8 to construct original example

of (m,n)-closed ideals of the form I ./f H of amalgamation A ./f J .

Example 2.10. Let A be a ring, E be an A-module and B := A ∝ E be the

trivial ring extension of A by E. Let I be an ideal of A and F be a submodule

of E such that IE ⊂ F, and J := I ∝ E be an ideal of B. Consider the ring

homomorphism f : A ↪→ B defined by f(a) = (a, 0). Notice that H := I ∝ F

is an ideal of f(A) + J = A ∝ 0 + I ∝ E = (A + I) ∝ E = A ∝ E and
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f(I)J = (I ∝ 0)(I ∝ E) ⊂ I ∝ F ⊂ J . So, I ./f H is an ideal of A ./f J.

Let n be a positive integer and let (i, e) ∈ J . Clearly, (i, e)n = (in, nin−1e) ∈ H.
By Proposition 2.8, we conclude that I is an (m, 1)-closed ideal of A if and only if

I ./f H is an (m,n)-closed ideal of A ./f J for every positive integer 1 ≤ n < m.

(For instance, if I is a prime ideal of A, then I ./f H is an (m, 1)-closed ideal of

A ./f J for every positive integer m ≥ 1. Therefore, I ./f H is a radical ideal of

A ./f J .)

Now, we give a characterization of (m,n)-closed ideals of the form I ./f H in

the case (A,M) is local and J an ideal of B such that f(M)J = 0.

Theorem 2.11. Let A be a local ring with maximal ideal M, f : A→ B be a ring

homomorphism and J be an ideal of B such that f(M)J = 0. Let I be a proper

ideal of A. Consider an ideal H of f(A)+J such that H ⊂ J and xn ∈ H for every

x ∈ J. Then the following statements are equivalent:

(1) I ./f H is an (m,n)-closed ideal of A ./f J for every positive integer

1 ≤ n < m.

(2) I is an (m,n)-closed ideal of A for every positive integer 1 ≤ n < m.

Proof. Notice that I ./f H is an ideal of A ./f J since f(I)J = 0 ⊂ H.
(1)⇒ (2) Assume that I ./f H is an (m,n)-closed ideal of A ./f J for every positive

integer 1 ≤ n < m. Then by Remark 2.6, it follows that I is an (m,n)-closed ideal

of A for every positive integer 1 ≤ n < m.

(2) ⇒ (1) Let x = (a, f(a) + j) ∈ A ./f J such that xm ∈ I ./f H. Then am

is an element of I which is an (m,n)-closed ideal of A. Therefore, an ∈ I. Let

1 ≤ l ≤ n− 1. Two cases are then possible:

Case 1: al ∈ M. Then f(al)jn−l = 0 and so by using the Binomial theorem, it

follows that (a, f(a) + j)n = (an, f(an) + jn) ∈ I ./f H.

Case 2: al /∈ M . Then al is invertible in A and so an ∈ I is invertible, which is a

contradiction since I is a proper ideal of A. So, xn = (an, (f(a) + j)n) ∈ I ./f H.
Hence, in all cases, I ./f H is an (m,n)-closed ideal of A ./f J. �

Before giving an explicit example of Theorem 2.11, we establish the following

lemma which will be useful.

Lemma 2.12. Let (A,M) be local ring such that Mn = 0, where n is a positive

integer. Then every ideal of A is an n-absorbing ideal of A. In particular, every

proper ideal of A is an (m,n)-ideal of A, for every positive integer 1 ≤ n < m.
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Proof. Let I be a proper ideal of A. Let a1, . . . , an+1 ∈ A such that
∏n+1

i=1 ai ∈ I.
Two cases are then possible:

Case 1: There exists j ∈ {1, . . . , n + 1} such that aj 6∈ M . Then aj is invertible

and so it follows that
∏n+1

i=1,i6=j ai ∈ I, as desired.

Case 2: For every j ∈ {1, . . . , n + 1}, aj ∈ M . So, for every j ∈ {1, . . . , n + 1},
aj is not invertible in A. Therefore,

∏n
i=1 ai = 0 ∈ I. Thus in all cases, I is an

n-absorbing ideal of A. In particular, I is an (m,n)-closed ideal of A. �

Next, we show how one may use Theorem 2.11 and Lemma 2.12 to construct

original examples of (m,n)-closed ideals of the form I ./f H.

Example 2.13. Let (A,M) be a local ring with a maximal ideal M such that

Mn = 0, and E be an
A

M
-vector space. Consider the ring homomorphism f : A ↪→

B := A ∝ E defined by f(a) = (a, 0), for every a ∈ A. Let J := M ∝ E be an

ideal of B and H = I ∝ E be an ideal of f(A) + J , where I  M is an ideal A

with m and n two positive integers such that 2 ≤ n ≤ m. One can easily check

that Jn = 0 and for every ideal I of A, we get f(I)J = (I ∝ E)(M ∝ E) ⊆ H,

and Jn ⊆ H. Hence, by Theorem 2.11, the ideal I ./f H is an (m,n)-closed ideal

of A ./f J since I is an n-absorbing ideal of A (by Lemma 2.12).

We denote by Char(R), the characteristic of a ring R. We close this section

by giving a characterization of (m,n)-closed ideals of the form I ./f H under the

condition “Char(f(A) + J) = n”.

Proposition 2.14. Let f : A → B be a ring homomorphism and J be an ideal

of B. Assume that char(f(A) + J) = n. Let H be an ideal of f(A) + J such that

f(I)J ⊂ H ⊂ J and for every j ∈ J, jn ∈ H. Then I ./f H is an (m,n)-closed ideal

of A ./f J if and only if I is an (m,n)-closed ideal of A, for all positive integer

m ≥ n.

Proof. Assume that I is an (m,n)-closed ideal of A, for all positive integer m ≥ n.

Let (a, f(a) + j)m ∈ I ./f H for every (a, f(a) + j) ∈ A ./f J. From assumption,

it follows that an ∈ I. Using the fact that char(f(A) + J) = n and jn ∈ H, then

(a, f(a)+ j)n = (an, f(an)+ jn) ∈ I ./f H. Hence, I ./f H is an (m,n)-closed ideal

of A ./f J . The converse is trivial via Remark 2.6. �

3. When every proper ideal of amalgamation A ./f J is an (m,n)-closed

ideal?

The following result gives a characterization about when every proper ideal of

the amalgamation A ./f J is an (m,n)-closed ideal, for some integers 1 ≤ n < m.
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Theorem 3.1. Assume that f−1(J) is a radical ideal of A. Then every proper

ideal of A ./f J is an (m,n)-closed ideal of A ./f J if and only if the following

statements hold:

(i) Every proper ideal of A is an (m,n)-closed ideal of A.

(ii) Every proper ideal of f(A) + J is an (m,n)-closed ideal of f(A) + J .

The proof of this theorem requires the following lemmas.

Lemma 3.2. [2, Theorem 2.14] Let R be a commutative ring and m and n integers

with 1 ≤ n < m. Then the following statements are equivalent.

(1) Every proper ideal of R is an (m,n)-closed ideal of R.

(2) dim(R) = 0 and wn = 0 for every w ∈ Nil(R).

Lemma 3.3. [6, Lemma 2.10] Let f : A → B be a ring homomorphism and J be

an ideal of B. Then:

Nil(A ./f J) := {(a, f(a) + j)/a ∈ Nil(A), j ∈ Nil(B) ∩ J}.

Lemma 3.4. [10, Proposition 4.1] Let f : A→ B be a ring homomorphism and J

be an ideal of B. Then: dim(A ./f J) = Max(dim(A), dim(f(A) + J)).

Proof of Theorem 3.1: Assume that every proper ideal of A ./f J is an (m,n)-

closed ideal of A ./f J .

(i) By Lemmas 3.2 and 3.4, it follows that dim(A ./f J) = Max(dim(A), dim(f(A)+

J)) = 0. So, dim(A) = 0. Next, let a ∈ Nil(A). Then (a, f(a)) ∈ Nil(A ./f J).

Using the fact that every proper ideal of A ./f J is an (m,n)-closed ideal of A ./f J ,

then by Lemma 3.2, it follows that (a, f(a))n = (0, 0). Therefore, an = 0. Hence,

every proper ideal of A is an (m,n)-closed ideal of A.

(ii) With similar argument as (i) above, it follows that dim(f(A) + J) = 0. Let

f(a) + j ∈ Nil(f(A) + J). Clearly, f(a)k ∈ J for some integer k ≥ 1. So,

ak ∈ f−1(J) which is radical. Therefore, a ∈ f−1(J). Consequently, f(a) + j ∈ J .

By Lemma 3.3, (0, f(a) + j) ∈ Nil(A ./f J). Hence, (0, f(a) + j)n = (0, 0) and so

(f(a) + j)n = 0. From Lemma 3.2, it follows that every proper ideal of f(A) + J

is an (m,n)-closed ideal of f(A) + J . Conversely, assume that every proper ideal

of A (resp., f(A) + J) is an (m,n)-closed ideal of A (resp., f(A) + J). We claim

that every proper ideal of A ./f J is an (m,n)-closed ideal of A ./f J . Indeed, by

Lemma 3.4, dim(A ./f J) = Max(dim(A), dim(f(A) + J)) = 0 since dim(A) =

dim(f(A) + J) = 0. It remains to show that for all (a, f(a) + j) ∈ Nil(A ./f J),

(a, f(a) + j)n = 0. Let (a, f(a) + j) ∈ Nil(A ./f J). Then a ∈ Nil(A) and

f(a)+j ∈ Nil(f(A)+J). By Lemma 3.2, it follows that an = 0 and (f(a)+j)n = 0.
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Therefore, (a, f(a) + j)n = 0. Hence, every proper ideal of A ./f J is an (m,n)-

closed ideal of A ./f J , as desired. �

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. Let f : A → B be a ring homomorphism and J be an ideal of B.

Then the following statements hold:

(1) Every proper ideal of A ./f J is a radical ideal of A ./f J if and only if the

following statements hold:

(i) Every proper ideal of A is a radical ideal of A.

(ii) Every proper ideal of f(A) + J is a radical ideal of f(A) + J .

(2) Assume that f−1(J) is a radical ideal of A. Then every proper ideal of

A ./f J is a semi-n-absorbing ideal of A ./f J if and only if the following

statements hold:

(i) Every proper ideal of A is a semi-n-absorbing ideal of A.

(ii) Every proper ideal of f(A) + J is a semi-n-absorbing of f(A) + J .

Remark 3.6. Observe that the assumption “f−1(J) is a radical ideal of A” is

omitted in Corollary 3.5(1). Indeed, if every proper ideal of A ./f J is a radical

ideal of A ./f J , then f−1(J) × {0} is a radical ideal of A ./f J and so f−1(J) '
f−1(J)× {0} is also a radical ideal of A. Conversely if the statements (i) and (ii)

hold, then f−1(J) is radical ideal of A.

Theorem 3.1 and Corollary 3.5 cover the special case of duplications, as recorded

below.

Corollary 3.7. Let A be a ring and I be an ideal of A. Then the following state-

ments hold:

(1) Assume that I is a radical ideal of A. Then every proper ideal of A ./ I is

an (m,n)-closed ideal of A ./ I if and only every proper ideal of A is an

(m,n)-closed ideal of A.

(2) Every proper ideal of A ./ I is a radical ideal of A ./ I if and only every

proper ideal of A is a radical ideal of A.

(3) Assume that I is a radical ideal of A. Then every proper ideal of A ./ I is

a semi-n-absorbing ideal of A ./ I if and only every proper ideal of A is a

semi-n-absorbing ideal of A.

Theorem 3.1 recovers a known result for trivial ring extensions which is [4, The-

orem 6.12].
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Corollary 3.8. Let A be an integral domain with quotient field K, E be a K-vector

space, and B := A ∝ E be the trivial ring extension of A by E. Then the following

statements are equivalent:

(1) Every proper ideal of A is an (m,n)-closed ideal of A for some integers

1 ≤ n < m.

(2) Every proper ideal of B is an (m,n)-closed ideal of B for some integers

1 ≤ n < m.

Proof. Consider the injective ring homomorphism f : A ↪→ B defined by f(a) =

(a, 0), for every a ∈ A, J := 0 ∝ E is an ideal of B. Clearly, f−1(J) = 0. Therefore,

from [9, Proposition 5.1 (3)], f(A) + J = A ∝ 0 + 0 ∝ E = A ∝ E = B ' A ./f J .

Since A is an integral domain, f−1(J) = 0 is a radical ideal of A. Hence, by

Theorem 3.1, we have the desired result. �

As a consequence of Theorem 3.1, we give a complete characterization of those

D +M rings such that every proper ideal is (m,n)-closed.

Corollary 3.9. Let M be a maximal ideal of an integral domain T , and D be a

subring of T such that D∩M = {0}. Then every proper ideal of D+M is an (m,n)-

closed ideal of D+M if and only if every proper ideal of D is an (m,n)-closed ideal

of D for some integers 1 ≤ n < m.

Proof. Let f : D ↪→ T be the natural embedding and J := M is the maximal

ideal of T . Since f−1(J) = D ∩M = {0} (which is radical ideal of D, as 0 is prime

ideal of D), it is easy to see that D+M ' D ./f M. Therefore, by Theorem 3.1, it

follows that every proper ideal of D+M is an (m,n)-closed ideal of D+M if and

only if every proper ideal of D ./f M is an (m,n)-closed ideal if and only if every

proper ideal of D is an (m,n)-closed ideal of D, for some integers 1 ≤ n < m. �

As an application Theorem 3.1, we give a new characterization for the amalga-

mation A ./f J to be von Neumann regular. Recall that a ring R is von Neumann

regular if and only if every proper ideal of R is a radical ideal [2, Theorem 2.13

(2)]. A combination of this fact and Corollary 3.5(1) establishes the transfer of von

Neumann regular property to the amalgamation A ./f J .

Corollary 3.10. Let f : A → B be a ring homomorphism and J be an ideal of

B. Then A ./f J is von Neumann regular if and only if A and f(A) + J are von

Neumann regular.
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The next result is an application of Corollary 3.10 on the transfer of π-regular

property to the amalgamation. Recall that a ring R is π-regular if and only if

R/Nil(R) is von Neumann regular.

Corollary 3.11. Let f : A→ B be a ring homomorphism and J be an ideal of B.

Then A ./f J is π-regular if and only if A and f(A) + J are π-regular.

Proof. Set A = A/Nil(A), B = B/Nil(B), p : B → B the canonical projection

and J = p(J) and let f : A → B, defined by f(x) = f(x). Observe that f is well

defined. From [6, Proof of Theorem 2.9], we get A ./f J/Nil(A ./f J) ' A ./f J .

Consequently, A ./f J is a π-regular ring if and only if A ./f J is von Neumann

regular if and only if A and f(A) + J are von Neumann regular (by Corollary 3.10).

Hence, the conclusion is straightforward. �

As another application of Theorem 3.1, we get necessary and sufficient conditions

for an amalgamation to be semisimple.

Corollary 3.12. Let f : A→ B be a ring homomorphism and J be an ideal of B.

Then A ./f J is semisimple if and only if A and f(A) + J are semisimple.

Proof. It is well known that semisimple rings collapse with von Neumann regular

rings that are Noetherian. A combination of this fact with Corollary 3.10 and [9,

Proposition 5.6] (on the transfer of the Noetherian property) leads to the conclusion.

�
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