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ABSTRACT. Let F' be a finite field of characteristic p. There are three non-
isomorphic non-abelian groups of order 30. The structure of U(F(Cs x Dg)) for
p = 31is given in [J. Gildea and R. Taylor, Int. Electron. J. Algebra, 24 (2018),
62-67]. In this article, we give the structure of U(F D3o) and U(F(C3 X D1g))
for p = 3.
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1. Introduction

Let U(FG) be the group of units of the group algebra F'G of a group G over a
finite field F of characteristic p having ¢ = p* elements. Let J(FG) be the Jacobson
radical of FG and let V = 1+ J(FG). We denote by D,, the dihedral group of order
n. In this paper, we study the structure of U(FG) where G = D3 and C5 x D,
for p = 3.

Let Vi(FG) = {3 ,cq 799 € UWFG) | 3o ,eq g = 1} be the group of normalized
units of F'G. It is well known that U(FG) = V1 (FG) x F*. If G is a finite abelian p-
group, then V3 (FGQ) is a finite p-group of order |F|I“I=1, In [19], Sandling provides a
basis for V1 (FG). The map * : FG — FG defined by (3_ c5a99)" =2 cq agg?
is an antiautomorphism of F'G and its order is 2. An element v € V1 (FQG) is called
a unitary unit if v* = v~!. Unitary units of some modular group algebras have
been studied in [2,3]. In [16,17], the structure of the unitary subgroup of the group
algebra F'Dan and F(QDsg), where QD1 is the quasi-dihedral group of order 16
and p = 2, has been obtained.

Describing the group of units of group algebras is, in general, a hard task and

it is more difficult when the group algebra is not semi-simple. Many authors have
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studied the structure of U(FG) for the non-semisimple case, see([5]-[10]). In [4],
Creedon provides a list of presentations of the unit groups U(FG) of all group
algebras F'G with |FG| < 1024. The structure of U(F Dg) for p = 3, is established
in terms of split extensions of elementary abelian groups in [5]. The structure of
U(FSs) for p > 5 is given in [12], where S5 is symmetric group of degree 5. For
p = 3, Monaghan[15], studied the structure of U(FG) where G is a non-abelian
group of 24 such that G has a normal subgroup of order 3. The structure of
U(FG) where G is a group of order 12 has been studied in [20] and [21]. Recently,
Ansari and Sahai in [1], obtained the structure of U(FG) for G = Ca, C1g x Cs
and GA(1,5) where GA(1,5) is the general affine group of order 20. In the same
paper, the structure of U(FQq) for the semisimple case is also given. In [18], they
established the structure of the unit groups U(F'Qan) of the finite group algebras
of the generalized quaternion groups Qon, p > 2.

n [13], Makhijani et al. obtained the structure of the unit group of F D, for
any odd n > 3 and p = 2. This is an extension of [10] in which they have studied
the unit group of FDy,, where p is a prime number. There are three non-abelian
groups of order 30, namely, D3y, C3 X D1g and C5 X Dg. In 2018, Gildea and Taylor
[9] described the structure of U(F(Cy, x Dg)) for p = 3 which is an extension of
[7]. In 2015, Makhijani et.al. [14] studied the structure of U(F D3g), but for p =3
they provided only a preliminary description of the U(F Ds3g). Here in Section 1,
we provide a complete characterization of U(F D3p) for p = 3. In Section 2, we give

the structure of U(F(C3 x Dyp)), again for p = 3 only.

2. Unit group of FDs

Theorem 2.1. Let F be a finite field of characteristic 3 with |F| = q = 3 and let
G = D30.

(1) If ¢ = £1 mod 5, then U(FG)
(2) If g= 43 mod 5, then U(FG)

1

(C3%% % C5F) % (C2._, x GL(2,F)?).

(C3% % C3%) % (C3_y X GL(2, F2)).

1%

Proof. Let G = (x,y | 2'° = y?> = 1,yzy = v71). Let K be the normal subgroup
of G generated by z°. Then G/K = H = (23, y). Thus from the ring epimorphism
FG — FH given by

~

4 2 2
5i+3j 3j
E E 2 (545 + aiysjr15y) — E § a7 (aiv3j + aiy3ji159),

7=0 =0 7j=0 i=
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we get a group epimorphism ¢: U(FG) — U(FH) and ker¢ 2 1+ J(FG) 2V
Further, from the ring monomorphism FH — F'G given by

4 4
Z 23 (b; 4 biysy) — Z 2% (b; + bitsy),
i=0 =0

we get a group monomorphism ¢: U(FH) — U(FG). Clearly, ¢1 = 1y(pp) and
Ifu=3"" o3 2% % (aissj + aipsj15y) € U(FG), then u € V' if and only if
Z?:o a; =1 and Z?:o Giysr =0 for k=1,2,...,9. Hence

4 2
V={1+ ZZ (bi+2; + biyajrr0y) | bi € F},

7=0i=1

V3 =1and |V| =320k

Now we show that V = C1%% x C3*. The centralizer of 2° in V is
Cy(2%) = {v eV |va® = 250},

If o =143 Y7, (@ — Da® (biya; + bisaji10y) € V, then
4

5 5 ’\Z 34
v’ — x°v = 2 (bll+2j — b12+2j)$ jy.
=0

Thus v € Cy (2°) if and only if b; = b;1; for i = 11,13,15,17 and 19 and

4

={1+ ZZ 1)ciyoj2° +x5Zc]+1133 y|c € F}.

7=0 =1 7=0
Let W be a subset of V' given by
4 2
W = {1 + Z Z xoi 3 (CLj+1 + iaj+6y) | a; € F}
§=0 i=0

It can easily be shown that W is an abelian group and W =2 C1%% If

4 2
:1+ZZ 1)¢iyox 5+SE5ZCJ+11»T y€CV( )

7j=01i=1 j=0
and
4 2
w=1+ % 2" (dj +idjiey) € W,
7=0 =0
then
4 2 4
=1+ ZZ Dciaja® + a® Z (¢jr11 = sj41)2%y € Cy (2)

3=0i=1 7=0
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where

s1=2(c1 — ca)dg + ((c3 — ca) + (co — ¢10))(d7 + d10) + ((c5 — ¢6) + (c7 — ¢s))(ds + dg)
s2 =2(c1 — ca)d7 + ((c3 — ca) + (cg — c10))(ds + dg) + ((¢5 — ¢6) + (c7 — ¢8))(dg + di0)
s3 =2(c1 — co)ds + ((c3 — ca) + (cg — c10))(d7 + dy) + ((¢5 — ¢6) + (c7 — ¢8))(ds + d10)
s4=2(c1 — ca)dg + ((c3 — ca) + (co — ¢10))(ds + d10) + ((c5 — ¢6) + (c7 — ¢s))(ds + d7)
s5 = 2(c1 — c2)d1g + ((c3 — ca) + (cg — c10))(ds + do) + ((¢5 — c6) + (c7 — ¢8))(d7 + ds).

Now
4
R=Cy(z®)NU ={1+2°Y dj12% | d; € F} = C5*.
3=0
So, for some subgroup T = C3% of W, W = R x T = C3¥ x C3*. Obviously,
Cy (%) NT = 1. Thus V = Cy (a°) x T = C3°% x O3k,
By [11, Theorem 2.1],

Cs_y x GL(2,F)?, if ¢ = +1 mod 5;

U(FDl()) =
C2. | x GL(2,Fy), if ¢=+3mod 5.

Hence
U(FG) = (C3%% x C5%) x (C2._, x GL(2,F)?), if ¢ =41 mod 5

and

U(FG) = (C5°%F x O3%) x (C3._, x GL(2, Fy)), if ¢ = 43 mod 5. 0

3. Unit group of F(C3 x D1o)

Theorem 3.1. Let F be a finite field of characteristic 3 with |F| = q = 3* and let
G = C3 x Dqy.

(1) If g = +£1 mod 5, then U(FG) =V x (C3, | x GL(2,F)?),

(2) If g=+3 mod 5, then U(FG) =2V x (C3, | x GL(2, F,))
where V2= (((((C5°* x C§) % CF) x CF) % Cf) x CF).

Vaz = z2x,yz = 2y). Let K

Proof. Let G = (z,y,2 | 22 = y° = 2 = L,ayz = y~
be the normal subgroup of G generated by z. Then G/K = H = (x,y). Thus from
the ring epimorphism FG — F'H given by

2 4

2
E 2"y (@ivsj + aipsjr15T) — E E Y (@it35 + Qiy3j+15T),
j=0 i=0 j=0 i=0
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we get a group epimorphism ¢: U(FG) — U(FH) and ker¢ 2 1+ J(FG) 2V
Further, from the ring monomorphism FH — F'G given by

4 4
D oy (bi+biysz) = Yy (bi+ biysr),
i=0 =0

we get a group monomorphism ¢: U(FH) — U(FG). Clearly, ¢¢ = lypm) and
If u = Z?:o Z?:o 2'yI (aiys; + aiv3jr157) € U(FG), then u € V if and only if
Z?:o a; =1 and Z?:o ajr3r =0 for k=1,2,...,9. Hence

2
V:{1+ZZZ — )¢ (biyaj + biyajir07) | bi € F},

V3 =1 and |V| = 32°%. Now we complete the proof in following steps:
Step 1: Let H; be the subgroup of V' given by

2 4 4

Hy= {1+ (' = DO atirojy’ + ais100) + 2 _ aipr2y'z | a; € F}.
i=1 =0 i=1

Then H; = C1°F x C%.
Let P; and @ be the abelian subgroups of H; given by

P1:{1+b12+b22(1—2)1’|b16F}

and
4 2 4
Q1={1+ZZ Daiy2;y’ +Zzaz+11y$\az€F}
7j=01i=1 =0
If
p1=1+bZ+bz(l1-2)z e P,
and
4 2 4
1+ZZ z'=1) az+2jy +22a1+11yx € Q1,
7j=0i=1 =0
then

4 2
=1+ Y (2 = Dairoyy’ + Zan + (a2 + 1)y + (a13 + t)y”

7=01i=1
+ (a14 — 752)y + (a15 — 751)y tr e @

where t; = bo{(aq — a3) — (a10 — ag)} and to = ba{(ag — a5) — (as — a7)}.
Now

R1:P10Q1:{1+b1/2\‘l)1€F}gC§
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So, for some subgroup S; = C¥ of P;, P, = Ry x S;. Clearly Q; N'S; = 1. Hence
Hl ng X]Sl 20315k ><IC§

Step 2: Let Hs be the subgroup of V' given by
4 1

2 4
Hy = {1+ Z(Zi - 1)(2 aivoiy’ + Zai+2j+1oij) + 52 aiy13y'z | a; € F}.

i=1 j=0 §=0 i=2
Then Hy 22 (C3%F x CF) x Ck.
Let P, be the abelian subgroup of Hy given by

Py, = {1 + b1z + b22(1 — Z)y?[: | b; € F}

If
p2=14+bZ+baz(l —2)yz € P
and
2 4 4
h1 =1+ Z(ZZ — 1)(2 angyj + ai+10$) + EZ aiﬂgy% € Hl,
i=0 =0 i=1
then

2
i =1+ Z(zi — D{ai + (aiv2 = to)y + airay® + airey® + (airs + to)y*
i=1

+ (aip10 — 1)z} + 2{a1zy + (a14 + 1)y + (a15 + t2)y° + (a6 — t2)y* }o € Hy

where
to = ba(a12 — a11),
t1 = ba{(as — az) — (a0 — ag)},
to = ba{(ag — as) — (ag —ar)}.
Now

Ro=P,NH ={1+b7|b € F} =C}.
So, for some subgroup So = C:ﬂf of Py, P, = Ry x Sy. Clearly H; NSy = 1. Hence
Hy 22 Hy xSy = (C3%% x CF) x C¥.
Step 3: Let Hs be the subgroup of V given by

2 4 2 4
Hy={1+Y (' = DO airo;y/ + > aiy2jr109’2) +2Y_airuay'a | a; € F}.
i=1 =0 =0 i=3

Then Hj =2 ((C35% x Ck) x CF) x C¥.
Let P3 be the abelian subgroup of H3 given by

Py = {1+ b2+ boz(1 — 2)y’x | b; € F}.
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If
pP3 = 1 =+ b12+ bQZ(l — Z)yzl’ S P3
and
2 4 1 4
hg =1+ Z(ZZ — 1)(2 aiijJ + Zai+2j+10ij) + EZ ai+13y’x € HQ,
=0 j=0 j=0 =2
then

2
hE =14 (2" = ){ai + (a2 — ta)y + (aira — to)y” + (@it + o)y’ + (aits + ta)y"

i=1

+ (ait10 — t2)z + (ait12 — t1)yx} + ’2’\{(1153/2 + (a16 + t1)y3 + (a17 + t2)y4}x € H»

where

to = ba(a12 — a11), t1 = bo{(as —ag) — (@10 — av)},

ty = ba{(as — as) — (ag — ar)}, t3 = ba(a14 — ai3).
Now
Ry=PsNHy={1+b7|b € F} =C}.
So, for some subgroup S3 = C§ of P3, P3 = R3 x S3. Clearly Hy N S3 = 1. Hence
Hjz = Hy x S3 = ((C3%%F % CF) % C%) x CF.

Step 4: Let Hy be the subgroup of V' given by

2 4 3
H4 = {1 —+ Z(Zz — 1)(2 ai+2jyj + Zai+2j+10yj$) + 2@19y4x | a; c F}

i=1 §j=0 §=0
Then Hy =2 (((C37F x CF) x C¥) x CF) x CF.
Let P, be the abelian subgroup of H, given by

Py ={1+b0,2+byz(1 - 2)yx | b; € F}.

If
ps=1+ b1z + bZZ(l — z)ysx € Py

and

2 4 2 4

hs =1+ Z(ZZ - 1)(2 ai+2jyj + Zai+2j+10yj$) + EZ ai+14yi$ € M3,
i=0 j=0 =0 i=3
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then
2
RE* =1+ Z(zl — D{ai + (aiva — t3)y + (aira + to)y* + (aire — to)y®
i=1

+ (aivs +t3)y" + (aiv10 + t2)x + (@i412 — t2)yz + (aip1a — t1)y’a}
+ 2{a17y® + (a1s + t1)y*}z € Hy

where
to = ba{(a12 — a11) — (a14 — a13)}, t1 = ba{(as — az) — (a10 — ag)},
ty = ba{(ag — as) — (ag — ar)}, t3 = ba(aie — ais).

Now

Ry=PyNHy={1+bZ|b €F}=Ch.
So, for some subgroup S; = C§ of Py, P, = R4y x Sy. Clearly H3 NS, = 1. Hence
Hy = Hz xSy =2 (((C3°F % CF) x CF) x C¥) x Ck.

Step 5: V = ((((C3°F x Ck) x CF) x CF) x C¥) x Ck.
Let Ps be the abelian subgroup of V' given by

Ps = {1+ b2+ byz(1 — 2)y'x | b; € F}.

If
ps =14+ b2+ boz(1 — 2)y'z € Ps
and
2 4 3
hy =1+ Z(ZZ - 1)(2 aiv25y’ + Zaz‘+2j+1oy]33) + Zagytz € Hy,
=0 J=0 =0
then
2
hi® =1+ Z(Zl — D{a; + (aipo +t3)y + (airs +ta)y* + (aive — ta)y®
i=1
+ (ai48 — t3)y* + (aip10 + t1)x + (aip10 + t2)yx + (aip14 — t2)y’x
+ (aiv16 — t)y*2} + Zary’x € Hy
where
t, = b2{((l4 — ag) — (am — ag)}7 to = b2{(a6 _ a5) _ (a8 _ 017)}7
ty = bo{(a12 —an1) — (m1s —ar7)},  ta = ba{(a1a — az) — (a16 — a15)}.
Now

Rs=PsNH;={14+07Z|b € F}=Ck
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So, for some subgroup S5 = C¥ of P5, Ps = R5 x Ss. Clearly H; N S5 = 1. Hence
V2 Hyx S5 2 (G5 % C5) % CF) % C5) % CF) x Cf.

By [11, Theorem 2.1],

U(FG) 2V x (Caw_; x GL(2,F)?), if ¢ = £1 mod 5
and
U(FG) =V x (Ca_, x GL(2,F,)), if ¢ = 43 mod 5
where V 22 ((((C3%F 3 CF) x Ck) x CF) x CF) x Ck. O
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