THE GROUP OF UNITS OF GROUP ALGEBRAS OF GROUPS D_{30} AND $C_{3} \times D_{10}$ OVER A FINITE FIELD OF CHARACTERISTIC 3

Meena Sahai and Sheere Farhat Ansari
Received: 15 March 2020; Revised: 6 May 2020; Accepted: 13 July 2020
Communicated by Burcu Üngör

Abstract

Let F be a finite field of characteristic p. There are three nonisomorphic non-abelian groups of order 30. The structure of $U\left(F\left(C_{5} \times D_{6}\right)\right)$ for $p=3$ is given in [J. Gildea and R. Taylor, Int. Electron. J. Algebra, 24 (2018), 62-67]. In this article, we give the structure of $U\left(F D_{30}\right)$ and $U\left(F\left(C_{3} \times D_{10}\right)\right)$ for $p=3$.

Mathematics Subject Classification (2020): 16U60
Keywords: Group ring, unit group, dihedral group

1. Introduction

Let $U(F G)$ be the group of units of the group algebra $F G$ of a group G over a finite field F of characteristic p having $q=p^{k}$ elements. Let $J(F G)$ be the Jacobson radical of $F G$ and let $V=1+J(F G)$. We denote by D_{n} the dihedral group of order n. In this paper, we study the structure of $U(F G)$ where $G=D_{30}$ and $C_{3} \times D_{10}$, for $p=3$.

Let $V_{1}(F G)=\left\{\sum_{g \in G} r_{g} g \in U(F G) \mid \sum_{g \in G} r_{g}=1\right\}$ be the group of normalized units of $F G$. It is well known that $U(F G)=V_{1}(F G) \times F^{*}$. If G is a finite abelian p group, then $V_{1}(F G)$ is a finite p-group of order $|F|^{|G|-1}$. In [19], Sandling provides a basis for $V_{1}(F G)$. The map $*: F G \rightarrow F G$ defined by $\left(\sum_{g \in G} a_{g} g\right)^{*}=\sum_{g \in G} a_{g} g^{-1}$ is an antiautomorphism of $F G$ and its order is 2 . An element $v \in V_{1}(F G)$ is called a unitary unit if $v^{*}=v^{-1}$. Unitary units of some modular group algebras have been studied in $[2,3]$. In $[16,17]$, the structure of the unitary subgroup of the group algebra $F D_{2^{n}}$ and $F\left(Q D_{16}\right)$, where $Q D_{16}$ is the quasi-dihedral group of order 16 and $p=2$, has been obtained.

Describing the group of units of group algebras is, in general, a hard task and it is more difficult when the group algebra is not semi-simple. Many authors have

The financial assistance provided to the second author (SFA) in the form of a Senior Research Fellowship from the University Grants Commission, India is gratefully acknowledged.
studied the structure of $U(F G)$ for the non-semisimple case, see([5]-[10]). In [4], Creedon provides a list of presentations of the unit groups $U(F G)$ of all group algebras $F G$ with $|F G|<1024$. The structure of $U\left(F D_{6}\right)$ for $p=3$, is established in terms of split extensions of elementary abelian groups in [5]. The structure of $U\left(F S_{5}\right)$ for $p>5$ is given in [12], where S_{5} is symmetric group of degree 5. For $p=3$, Monaghan[15], studied the structure of $U(F G)$ where G is a non-abelian group of 24 such that G has a normal subgroup of order 3 . The structure of $U(F G)$ where G is a group of order 12 has been studied in [20] and [21]. Recently, Ansari and Sahai in [1], obtained the structure of $U(F G)$ for $G=C_{20}, C_{10} \times C_{2}$ and $G A(1,5)$ where $G A(1,5)$ is the general affine group of order 20 . In the same paper, the structure of $U\left(F Q_{20}\right)$ for the semisimple case is also given. In [18], they established the structure of the unit groups $U\left(F Q_{2^{n}}\right)$ of the finite group algebras of the generalized quaternion groups $Q_{2^{n}}, p>2$.

In [13], Makhijani et al. obtained the structure of the unit group of $F D_{2 n}$ for any odd $n \geq 3$ and $p=2$. This is an extension of [10] in which they have studied the unit group of $F D_{2 p}$, where p is a prime number. There are three non-abelian groups of order 30, namely, $D_{30}, C_{3} \times D_{10}$ and $C_{5} \times D_{6}$. In 2018, Gildea and Taylor [9] described the structure of $U\left(F\left(C_{n} \times D_{6}\right)\right)$ for $p=3$ which is an extension of [7]. In 2015, Makhijani et.al. [14] studied the structure of $U\left(F D_{30}\right)$, but for $p=3$ they provided only a preliminary description of the $U\left(F D_{30}\right)$. Here in Section 1, we provide a complete characterization of $U\left(F D_{30}\right)$ for $p=3$. In Section 2, we give the structure of $U\left(F\left(C_{3} \times D_{10}\right)\right)$, again for $p=3$ only.

2. Unit group of $F D_{30}$

Theorem 2.1. Let F be a finite field of characteristic 3 with $|F|=q=3^{k}$ and let $G=D_{30}$.
(1) If $q \equiv \pm 1 \bmod 5$, then $U(F G) \cong\left(C_{3}^{15 k} \rtimes C_{3}^{5 k}\right) \rtimes\left(C_{3^{k}-1}^{2} \times G L(2, F)^{2}\right)$.
(2) If $q \equiv \pm 3 \bmod 5$, then $U(F G) \cong\left(C_{3}^{15 k} \rtimes C_{3}^{5 k}\right) \rtimes\left(C_{3^{k}-1}^{2} \times G L\left(2, F_{2}\right)\right)$.

Proof. Let $G=\left\langle x, y \mid x^{15}=y^{2}=1, y x y=x^{-1}\right\rangle$. Let K be the normal subgroup of G generated by x^{5}. Then $G / K \cong H \cong\left\langle x^{3}, y\right\rangle$. Thus from the ring epimorphism $F G \rightarrow F H$ given by

$$
\sum_{j=0}^{4} \sum_{i=0}^{2} x^{5 i+3 j}\left(a_{i+3 j}+a_{i+3 j+15} y\right) \rightarrow \sum_{j=0}^{4} \sum_{i=0}^{2} x^{3 j}\left(a_{i+3 j}+a_{i+3 j+15} y\right)
$$

we get a group epimorphism $\phi: U(F G) \rightarrow U(F H)$ and $\operatorname{ker} \phi \cong 1+J(F G) \cong V$.
Further, from the ring monomorphism $F H \rightarrow F G$ given by

$$
\sum_{i=0}^{4} x^{3 i}\left(b_{i}+b_{i+5} y\right) \rightarrow \sum_{i=0}^{4} x^{3 i}\left(b_{i}+b_{i+5} y\right),
$$

we get a group monomorphism $\psi: U(F H) \rightarrow U(F G)$. Clearly, $\phi \psi=1_{U(F H)}$ and $U(F G) \cong V \rtimes U\left(F D_{10}\right)$.

If $u=\sum_{j=0}^{4} \sum_{i=0}^{2} x^{5 i+3 j}\left(a_{i+3 j}+a_{i+3 j+15} y\right) \in U(F G)$, then $u \in V$ if and only if $\sum_{i=0}^{2} a_{i}=1$ and $\sum_{i=0}^{2} a_{i+3 k}=0$ for $k=1,2, \ldots, 9$. Hence

$$
V=\left\{1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(x^{5 i}-1\right) x^{3 j}\left(b_{i+2 j}+b_{i+2 j+10} y\right) \mid b_{i} \in F\right\},
$$

$V^{3}=1$ and $|V|=3^{20 k}$.
Now we show that $V \cong C_{3}^{15 k} \rtimes C_{3}^{5 k}$. The centralizer of x^{5} in V is

$$
C_{V}\left(x^{5}\right)=\left\{v \in V \mid v x^{5}=x^{5} v\right\} .
$$

If $v=1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(x^{5 i}-1\right) x^{3 j}\left(b_{i+2 j}+b_{i+2 j+10} y\right) \in V$, then

$$
v x^{5}-x^{5} v=\widehat{x^{5}} \sum_{j=0}^{4}\left(b_{11+2 j}-b_{12+2 j}\right) x^{3 j} y
$$

Thus $v \in C_{V}\left(x^{5}\right)$ if and only if $b_{i}=b_{i+1}$ for $i=11,13,15,17$ and 19 and

$$
C_{V}\left(x^{5}\right)=\left\{1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(x^{5 i}-1\right) c_{i+2 j} x^{3 j}+\widehat{x^{5}} \sum_{j=0}^{4} c_{j+11} x^{3 j} y \mid c_{i} \in F\right\} .
$$

Let W be a subset of V given by

$$
W=\left\{1+\sum_{j=0}^{4} \sum_{i=0}^{2} x^{5 i+3 j}\left(a_{j+1}+i a_{j+6} y\right) \mid a_{i} \in F\right\} .
$$

It can easily be shown that W is an abelian group and $W \cong C_{3}^{10 k}$. If

$$
c=1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(x^{5 i}-1\right) c_{i+2 j} x^{3 j}+\widehat{x^{5}} \sum_{j=0}^{4} c_{j+11} x^{3 j} y \in C_{V}\left(x^{5}\right)
$$

and

$$
w=1+\sum_{j=0}^{4} \sum_{i=0}^{2} x^{5 i+3 j}\left(d_{j+1}+i d_{j+6} y\right) \in W,
$$

then

$$
c^{w}=1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(x^{5 i}-1\right) c_{i+2 j} x^{3 j}+\widehat{x^{5}} \sum_{j=0}^{4}\left(c_{j+11}-s_{j+1}\right) x^{3 j} y \in C_{V}\left(x^{5}\right)
$$

where

$$
\begin{aligned}
& s_{1}=2\left(c_{1}-c_{2}\right) d_{6}+\left(\left(c_{3}-c_{4}\right)+\left(c_{9}-c_{10}\right)\right)\left(d_{7}+d_{10}\right)+\left(\left(c_{5}-c_{6}\right)+\left(c_{7}-c_{8}\right)\right)\left(d_{8}+d_{9}\right) \\
& s_{2}=2\left(c_{1}-c_{2}\right) d_{7}+\left(\left(c_{3}-c_{4}\right)+\left(c_{9}-c_{10}\right)\right)\left(d_{6}+d_{8}\right)+\left(\left(c_{5}-c_{6}\right)+\left(c_{7}-c_{8}\right)\right)\left(d_{9}+d_{10}\right) \\
& s_{3}=2\left(c_{1}-c_{2}\right) d_{8}+\left(\left(c_{3}-c_{4}\right)+\left(c_{9}-c_{10}\right)\right)\left(d_{7}+d_{9}\right)+\left(\left(c_{5}-c_{6}\right)+\left(c_{7}-c_{8}\right)\right)\left(d_{6}+d_{10}\right) \\
& s_{4}=2\left(c_{1}-c_{2}\right) d_{9}+\left(\left(c_{3}-c_{4}\right)+\left(c_{9}-c_{10}\right)\right)\left(d_{8}+d_{10}\right)+\left(\left(c_{5}-c_{6}\right)+\left(c_{7}-c_{8}\right)\right)\left(d_{6}+d_{7}\right) \\
& s_{5}=2\left(c_{1}-c_{2}\right) d_{10}+\left(\left(c_{3}-c_{4}\right)+\left(c_{9}-c_{10}\right)\right)\left(d_{6}+d_{9}\right)+\left(\left(c_{5}-c_{6}\right)+\left(c_{7}-c_{8}\right)\right)\left(d_{7}+d_{8}\right)
\end{aligned}
$$

Now

$$
R=C_{V}\left(x^{5}\right) \cap U=\left\{1+\widehat{x^{5}} \sum_{j=0}^{4} d_{j+1} x^{3 j} \mid d_{i} \in F\right\} \cong C_{3}^{5 k}
$$

So, for some subgroup $T \cong C_{3}^{5 k}$ of W, $W=R \times T \cong C_{3}^{5 k} \times C_{3}^{5 k}$. Obviously, $C_{V}\left(x^{5}\right) \cap T=1$. Thus $V \cong C_{V}\left(x^{5}\right) \rtimes T \cong C_{3}^{15 k} \rtimes C_{3}^{5 k}$.

By [11, Theorem 2.1],

$$
U\left(F D_{10}\right) \cong \begin{cases}C_{3^{k}-1}^{2} \times G L(2, F)^{2}, & \text { if } q \equiv \pm 1 \bmod 5 \\ C_{3^{k}-1}^{2} \times G L\left(2, F_{2}\right), & \text { if } q \equiv \pm 3 \bmod 5\end{cases}
$$

Hence

$$
U(F G) \cong\left(C_{3}^{15 k} \rtimes C_{3}^{5 k}\right) \rtimes\left(C_{3^{k}-1}^{2} \times G L(2, F)^{2}\right), \text { if } q \equiv \pm 1 \bmod 5
$$

and

$$
U(F G) \cong\left(C_{3}^{15 k} \rtimes C_{3}^{5 k}\right) \rtimes\left(C_{3^{k}-1}^{2} \times G L\left(2, F_{2}\right)\right), \text { if } q \equiv \pm 3 \bmod 5
$$

3. Unit group of $F\left(C_{3} \times D_{10}\right)$

Theorem 3.1. Let F be a finite field of characteristic 3 with $|F|=q=3^{k}$ and let $G=C_{3} \times D_{10}$.
(1) If $q \equiv \pm 1 \bmod 5$, then $U(F G) \cong V \rtimes\left(C_{3^{k}-1}^{2} \times G L(2, F)^{2}\right)$,
(2) If $q \equiv \pm 3 \bmod 5$, then $U(F G) \cong V \rtimes\left(C_{3^{k}-1}^{2} \times G L\left(2, F_{2}\right)\right)$
where $V \cong\left(\left(\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right)$.
Proof. Let $G=\left\langle x, y, z \mid x^{2}=y^{5}=z^{3}=1, x y x=y^{-1}, x z=z x, y z=z y\right\rangle$. Let K be the normal subgroup of G generated by z. Then $G / K \cong H \cong\langle x, y\rangle$. Thus from the ring epimorphism $F G \rightarrow F H$ given by

$$
\sum_{j=0}^{4} \sum_{i=0}^{2} z^{i} y^{j}\left(a_{i+3 j}+a_{i+3 j+15} x\right) \rightarrow \sum_{j=0}^{4} \sum_{i=0}^{2} y^{j}\left(a_{i+3 j}+a_{i+3 j+15} x\right)
$$

we get a group epimorphism $\phi: U(F G) \rightarrow U(F H)$ and $\operatorname{ker} \phi \cong 1+J(F G) \cong V$.
Further, from the ring monomorphism $F H \rightarrow F G$ given by

$$
\sum_{i=0}^{4} y^{i}\left(b_{i}+b_{i+5} x\right) \rightarrow \sum_{i=0}^{4} y^{i}\left(b_{i}+b_{i+5} x\right),
$$

we get a group monomorphism $\psi: U(F H) \rightarrow U(F G)$. Clearly, $\phi \psi=1_{U(F H)}$ and $U(F G) \cong V \rtimes U\left(F D_{10}\right)$.

If $u=\sum_{j=0}^{4} \sum_{i=0}^{2} z^{i} y^{j}\left(a_{i+3 j}+a_{i+3 j+15} x\right) \in U(F G)$, then $u \in V$ if and only if $\sum_{i=0}^{2} a_{i}=1$ and $\sum_{i=0}^{2} a_{i+3 k}=0$ for $k=1,2, \ldots, 9$. Hence

$$
V=\left\{1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(z^{i}-1\right) y^{j}\left(b_{i+2 j}+b_{i+2 j+10} x\right) \mid b_{i} \in F\right\},
$$

$V^{3}=1$ and $|V|=3^{20 k}$. Now we complete the proof in following steps:
Step 1: Let H_{1} be the subgroup of V given by

$$
H_{1}=\left\{1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+a_{i+10} x\right)+\widehat{z} \sum_{i=1}^{4} a_{i+12} y^{i} x \mid a_{i} \in F\right\} .
$$

Then $H_{1} \cong C_{3}^{15 k} \rtimes C_{3}^{k}$.
Let P_{1} and Q_{1} be the abelian subgroups of H_{1} given by

$$
P_{1}=\left\{1+b_{1} \widehat{z}+b_{2} z(1-z) x \mid b_{i} \in F\right\}
$$

and

$$
Q_{1}=\left\{1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(z^{i}-1\right) a_{i+2 j} y^{j}+\widehat{z} \sum_{i=0}^{4} a_{i+11} y^{i} x \mid a_{i} \in F\right\} .
$$

If

$$
p_{1}=1+b_{1} \widehat{z}+b_{2} z(1-z) x \in P_{1}
$$

and

$$
q_{1}=1+\sum_{j=0}^{4} \sum_{i=1}^{2}\left(z^{i}-1\right) a_{i+2 j} y^{j}+\widehat{z} \sum_{i=0}^{4} a_{i+11} y^{i} x \in Q_{1}
$$

then

$$
\begin{aligned}
q_{1}^{p_{1}}= & +\sum_{j=0}^{4} \sum_{i=1}^{2}\left(z^{i}-1\right) a_{i+2 j} y^{j}+\widehat{z}\left\{a_{11}+\left(a_{12}+t_{1}\right) y+\left(a_{13}+t_{2}\right) y^{2}\right. \\
& \left.+\left(a_{14}-t_{2}\right) y^{3}+\left(a_{15}-t_{1}\right) y^{4}\right\} x \in Q_{1}
\end{aligned}
$$

where $t_{1}=b_{2}\left\{\left(a_{4}-a_{3}\right)-\left(a_{10}-a_{9}\right)\right\}$ and $t_{2}=b_{2}\left\{\left(a_{6}-a_{5}\right)-\left(a_{8}-a_{7}\right)\right\}$.
Now

$$
R_{1}=P_{1} \cap Q_{1}=\left\{1+b_{1} \widehat{z} \mid b_{1} \in F\right\} \cong C_{3}^{k} .
$$

So, for some subgroup $S_{1} \cong C_{3}^{k}$ of $P_{1}, P_{1}=R_{1} \times S_{1}$. Clearly $Q_{1} \cap S_{1}=1$. Hence

$$
H_{1} \cong Q_{1} \rtimes S_{1} \cong C_{3}^{15 k} \rtimes C_{3}^{k}
$$

Step 2: Let H_{2} be the subgroup of V given by

$$
H_{2}=\left\{1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{1} a_{i+2 j+10} y^{j} x\right)+\widehat{z} \sum_{i=2}^{4} a_{i+13} y^{i} x \mid a_{i} \in F\right\}
$$

Then $H_{2} \cong\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}$.
Let P_{2} be the abelian subgroup of H_{2} given by

$$
P_{2}=\left\{1+b_{1} \widehat{z}+b_{2} z(1-z) y x \mid b_{i} \in F\right\}
$$

If

$$
p_{2}=1+b_{1} \widehat{z}+b_{2} z(1-z) y x \in P_{2}
$$

and

$$
h_{1}=1+\sum_{i=0}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+a_{i+10} x\right)+\widehat{z} \sum_{i=1}^{4} a_{i+12} y^{i} x \in H_{1}
$$

then

$$
\begin{aligned}
h_{1}^{p_{2}}= & 1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left\{a_{i}+\left(a_{i+2}-t_{0}\right) y+a_{i+4} y^{2}+a_{i+6} y^{3}+\left(a_{i+8}+t_{0}\right) y^{4}\right. \\
& \left.+\left(a_{i+10}-t_{1}\right) x\right\}+\widehat{z}\left\{a_{13} y+\left(a_{14}+t_{1}\right) y^{2}+\left(a_{15}+t_{2}\right) y^{3}+\left(a_{16}-t_{2}\right) y^{4}\right\} x \in H_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
& t_{0}=b_{2}\left(a_{12}-a_{11}\right) \\
& t_{1}=b_{2}\left\{\left(a_{4}-a_{3}\right)-\left(a_{10}-a_{9}\right)\right\} \\
& t_{2}=b_{2}\left\{\left(a_{6}-a_{5}\right)-\left(a_{8}-a_{7}\right)\right\}
\end{aligned}
$$

Now

$$
R_{2}=P_{2} \cap H_{1}=\left\{1+b_{1} \widehat{z} \mid b_{1} \in F\right\} \cong C_{3}^{k}
$$

So, for some subgroup $S_{2} \cong C_{3}^{k}$ of $P_{2}, P_{2}=R_{2} \times S_{2}$. Clearly $H_{1} \cap S_{2}=1$. Hence

$$
H_{2} \cong H_{1} \rtimes S_{2} \cong\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}
$$

Step 3: Let H_{3} be the subgroup of V given by

$$
H_{3}=\left\{1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{2} a_{i+2 j+10} y^{j} x\right)+\widehat{z} \sum_{i=3}^{4} a_{i+14} y^{i} x \mid a_{i} \in F\right\}
$$

Then $H_{3} \cong\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}$.
Let P_{3} be the abelian subgroup of H_{3} given by

$$
P_{3}=\left\{1+b_{1} \widehat{z}+b_{2} z(1-z) y^{2} x \mid b_{i} \in F\right\} .
$$

If

$$
p_{3}=1+b_{1} \widehat{z}+b_{2} z(1-z) y^{2} x \in P_{3}
$$

and

$$
h_{2}=1+\sum_{i=0}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{1} a_{i+2 j+10} y^{j} x\right)+\widehat{z} \sum_{i=2}^{4} a_{i+13} y^{i} x \in H_{2},
$$

then

$$
\begin{aligned}
h_{2}^{p_{3}}= & 1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left\{a_{i}+\left(a_{i+2}-t_{3}\right) y+\left(a_{i+4}-t_{0}\right) y^{2}+\left(a_{i+6}+t_{0}\right) y^{3}+\left(a_{i+8}+t_{3}\right) y^{4}\right. \\
& \left.+\left(a_{i+10}-t_{2}\right) x+\left(a_{i+12}-t_{1}\right) y x\right\}+\widehat{z}\left\{a_{15} y^{2}+\left(a_{16}+t_{1}\right) y^{3}+\left(a_{17}+t_{2}\right) y^{4}\right\} x \in H_{2}
\end{aligned}
$$

where

$$
\begin{array}{ll}
t_{0}=b_{2}\left(a_{12}-a_{11}\right), & t_{1}=b_{2}\left\{\left(a_{4}-a_{3}\right)-\left(a_{10}-a_{9}\right)\right\} \\
t_{2}=b_{2}\left\{\left(a_{6}-a_{5}\right)-\left(a_{8}-a_{7}\right)\right\}, & t_{3}=b_{2}\left(a_{14}-a_{13}\right)
\end{array}
$$

Now

$$
R_{3}=P_{3} \cap H_{2}=\left\{1+b_{1} \widehat{z} \mid b_{1} \in F\right\} \cong C_{3}^{k}
$$

So, for some subgroup $S_{3} \cong C_{3}^{k}$ of $P_{3}, P_{3}=R_{3} \times S_{3}$. Clearly $H_{2} \cap S_{3}=1$. Hence

$$
H_{3} \cong H_{2} \rtimes S_{3} \cong\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k} .
$$

Step 4: Let H_{4} be the subgroup of V given by

$$
H_{4}=\left\{1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{3} a_{i+2 j+10} y^{j} x\right)+\widehat{z} a_{19} y^{4} x \mid a_{i} \in F\right\}
$$

Then $H_{4} \cong\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}$.
Let P_{4} be the abelian subgroup of H_{4} given by

$$
P_{4}=\left\{1+b_{1} \widehat{z}+b_{2} z(1-z) y^{3} x \mid b_{i} \in F\right\}
$$

If

$$
p_{4}=1+b_{1} \widehat{z}+b_{2} z(1-z) y^{3} x \in P_{4}
$$

and

$$
h_{3}=1+\sum_{i=0}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{2} a_{i+2 j+10} y^{j} x\right)+\widehat{z} \sum_{i=3}^{4} a_{i+14} y^{i} x \in H_{3},
$$

then

$$
\begin{aligned}
h_{3}^{p_{4}}= & 1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left\{a_{i}+\left(a_{i+2}-t_{3}\right) y+\left(a_{i+4}+t_{0}\right) y^{2}+\left(a_{i+6}-t_{0}\right) y^{3}\right. \\
& \left.+\left(a_{i+8}+t_{3}\right) y^{4}+\left(a_{i+10}+t_{2}\right) x+\left(a_{i+12}-t_{2}\right) y x+\left(a_{i+14}-t_{1}\right) y^{2} x\right\} \\
& +\widehat{z}\left\{a_{17} y^{3}+\left(a_{18}+t_{1}\right) y^{4}\right\} x \in H_{3}
\end{aligned}
$$

where

$$
\begin{array}{ll}
t_{0}=b_{2}\left\{\left(a_{12}-a_{11}\right)-\left(a_{14}-a_{13}\right)\right\}, & t_{1}=b_{2}\left\{\left(a_{4}-a_{3}\right)-\left(a_{10}-a_{9}\right)\right\} \\
t_{2}=b_{2}\left\{\left(a_{6}-a_{5}\right)-\left(a_{8}-a_{7}\right)\right\}, & t_{3}=b_{2}\left(a_{16}-a_{15}\right)
\end{array}
$$

Now

$$
R_{4}=P_{4} \cap H_{3}=\left\{1+b_{1} \widehat{z} \mid b_{1} \in F\right\} \cong C_{3}^{k}
$$

So, for some subgroup $S_{4} \cong C_{3}^{k}$ of $P_{4}, P_{4}=R_{4} \times S_{4}$. Clearly $H_{3} \cap S_{4}=1$. Hence

$$
H_{4} \cong H_{3} \rtimes S_{4} \cong\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}
$$

Step 5: $V \cong\left(\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}$.
Let P_{5} be the abelian subgroup of V given by

$$
P_{5}=\left\{1+b_{1} \widehat{z}+b_{2} z(1-z) y^{4} x \mid b_{i} \in F\right\}
$$

If

$$
p_{5}=1+b_{1} \widehat{z}+b_{2} z(1-z) y^{4} x \in P_{5}
$$

and

$$
h_{4}=1+\sum_{i=0}^{2}\left(z^{i}-1\right)\left(\sum_{j=0}^{4} a_{i+2 j} y^{j}+\sum_{j=0}^{3} a_{i+2 j+10} y^{j} x\right)+\widehat{z} a_{19} y^{4} x \in H_{4}
$$

then

$$
\begin{aligned}
h_{4}^{p_{5}}= & 1+\sum_{i=1}^{2}\left(z^{i}-1\right)\left\{a_{i}+\left(a_{i+2}+t_{3}\right) y+\left(a_{i+4}+t_{4}\right) y^{2}+\left(a_{i+6}-t_{4}\right) y^{3}\right. \\
& +\left(a_{i+8}-t_{3}\right) y^{4}+\left(a_{i+10}+t_{1}\right) x+\left(a_{i+12}+t_{2}\right) y x+\left(a_{i+14}-t_{2}\right) y^{2} x \\
& \left.+\left(a_{i+16}-t_{1}\right) y^{3} x\right\}+\widehat{z} a_{19} y^{4} x \in H_{4}
\end{aligned}
$$

where

$$
\begin{array}{ll}
t_{1}=b_{2}\left\{\left(a_{4}-a_{3}\right)-\left(a_{10}-a_{9}\right)\right\}, & t_{2}=b_{2}\left\{\left(a_{6}-a_{5}\right)-\left(a_{8}-a_{7}\right)\right\} \\
t_{3}=b_{2}\left\{\left(a_{12}-a_{11}\right)-\left(a_{18}-a_{17}\right)\right\}, & t_{4}=b_{2}\left\{\left(a_{14}-a_{13}\right)-\left(a_{16}-a_{15}\right)\right\}
\end{array}
$$

Now

$$
R_{5}=P_{5} \cap H_{4}=\left\{1+b_{1} \widehat{z} \mid b_{1} \in F\right\} \cong C_{3}^{k}
$$

So, for some subgroup $S_{5} \cong C_{3}^{k}$ of $P_{5}, P_{5}=R_{5} \times S_{5}$. Clearly $H_{4} \cap S_{5}=1$. Hence

$$
V \cong H_{4} \rtimes S_{5} \cong\left(\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}
$$

By [11, Theorem 2.1],

$$
U(F G) \cong V \rtimes\left(C_{3^{k}-1}^{2} \times G L(2, F)^{2}\right), \text { if } q \equiv \pm 1 \bmod 5
$$

and

$$
U(F G) \cong V \rtimes\left(C_{3^{k}-1}^{2} \times G L\left(2, F_{2}\right)\right), \text { if } q \equiv \pm 3 \bmod 5
$$

where $V \cong\left(\left(\left(\left(C_{3}^{15 k} \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}\right) \rtimes C_{3}^{k}$.

Acknowledgement. The authors thank the referees for valuable suggestions that led to a better presentation of the paper.

References

[1] S. F. Ansari and M. Sahai, Unit groups of group algebras of groups of order 20, Quaest. Math., to appear, https://doi.org/10.2989/16073606.2020.1727583.
[2] A. Bovdi and L. Erdei, Unitary units in modular group algebras of 2-groups, Comm. Algebra, 28(2) (2000), 625-630.
[3] V. Bovdi and L. G. Kovács, Unitary units in modular group algebras, Manuscripta Math., 84(1) (1994), 57-72.
[4] L. Creedon, The unit group of small group algebras and the minimum counterexample to the isomorphism problem, Int. J. Pure Appl. Math., 49(4) (2008), 531-537.
[5] L. Creedon and J. Gildea, The structure of the unit group of the group algebra $F_{3^{k}} D_{6}$, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
[6] L. Creedon and J. Gildea, The structure of the unit group of the group algebra $F_{2^{k}} D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
[7] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{k}}\left(C_{3} \times D_{6}\right)$, Comm. Algebra, 38(9) (2010), 3311-3317.
[8] J. Gildea, Units of the group algebra $\mathbb{F}_{5^{k}}\left(C_{5} \rtimes C_{4}\right)$, Int. Electron. J. Algebra, 9 (2011), 220-227.
[9] J. Gildea and R. Taylor, Units of the group algebra of the group $C_{n} \times D_{6}$ over any finite field of characteristic 3, Int. Electron. J. Algebra, 24 (2018), 62-67.
[10] K. Kaur and M. Khan, Units in $F_{2} D_{2 p}$, J. Algebra Appl., 13(2) (2014), 1350090 (9 pp).
[11] M. Khan, Structure of the unit group of $F D_{10}$, Serdica Math. J., 35(1) (2009), 15-24.
[12] Y. Kumar, R. K. Sharma and J. B. Srivastava, The structure of the unit group of the group algebra $\mathbb{F} S_{5}$ where \mathbb{F} is a finite field with $\operatorname{char}(\mathbb{F})=p>5$, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 33(2) (2017), 187-191.
[13] N. Makhijani, R. K. Sharma and J. B. Srivastava, Units in $\mathbb{F}_{2^{k}} D_{2 n}$, Int. J. Group Theory, 3(3) (2014), 25-34.
[14] N. Makhijani, R. K. Sharma and J. B. Srivastava, The unit group of $\mathbb{F}_{q}\left[D_{30}\right]$, Serdica Math. J., 41(2-3) (2015), 185-198.
[15] F. Monaghan, Units of some group algebras of non-abelian groups of order 24 over any finite field of characteristic 3, Int. Electron. J. Algebra, 12 (2012), 133-161.
[16] Z. Raza and M. Ahmad, On the structure of the unitary subgroup of the group algebra $\mathbb{F}_{2^{q}} D_{2^{n}}$, J. Algebra Appl., 13(4) (2014), 1350139 (8 pp).
[17] Z. Raza and M. Ahmad, Structure of the unitary subgroup of the group algebra $\mathbb{F}_{2^{n}}(Q D)_{16}$, J. Algebra Appl., 17(4) (2018), 1850060 (7 pp).
[18] M. Sahai and S. F. Ansari, Unit groups of the finite group algebras of generalized quaternion groups, J. Algebra Appl., 19(6) (2020), 2050112 (5 pp).
[19] R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra, 33(3) (1984), 337-346.
[20] G. Tang and G. Yanyan, The unit groups of FG of groups with order 12, Int. J. Pure Appl. Math., 73(2) (2011), 143-158.
[21] G. Tang, Y. Wei and Y. Li, Unit groups of group algebras of some small groups, Czechoslovak Math. J., 64(1) (2014), 149-157.

Meena Sahai (Corresponding Author) and Sheere Farhat Ansari
Department of Mathematics and Astronomy
University of Lucknow, Lucknow
226007, U.P., India
e-mails: meena_sahai@hotmail.com (M. Sahai)
sheere_farhat@rediffmail.com (S. F. Ansari)

