
46 

 Koc. J. Sci. Eng., 4(1): (2021) 46-50        https://doi.org/10.34088/kojose.852170 

Kocaeli University 

  Kocaeli Journal of Science and Engineering 

http://dergipark.org.tr/kojose 

Investigation of Stability Changes in a Neural Field Model

Berrak ÖZGÜR1, *  

1 İzmir Democracy University, Department of Mathematics, Izmir, 35140, Turkey, ORCID: 0000-0002-9709-7376 

Article Info 

Research paper 

Received : January 04, 2021 

Accepted : February 08, 2021 

Keywords 

Characteristic Equation 

Neural Field Model 
Routh-Hurwitz Criterion 

Stability Analysis 

Sturm Sequence 

   Abstract 

In this paper, the stability analysis of the neural field model is studied. The special case for three 

neuron populations is considered. The work is conducted by finding the characteristic equation of 

the system first and then investigating the characteristic roots of the third-order equation by using 

the Routh-Hurwitz criterion and Sturm sequence. The main analysis is given in two parts 

considering the nonexistence and existence of the delay term. Some basic stability criteria in terms 

of coefficients of the system are given in the theorems. 

1. Introduction*

The term ‘dynamical system’ is used to determine a 

system varying with respect to time. In applied 

mathematics, in order to understand the general 

construction for a real-world phenomenon and analyse its 

future state, mathematical models are used. Differential 

equations, difference equations and functional equations 

are frequently used when writing mathematical models for 

dynamical systems representing the real phenomena. 

Hence, the important analyses related to them can be made 

by using convenient mathematical methods.  

In sciences such as biology, engineering, economics, 

since time is very important, we generally use a time delay 

in writing more realistic models. The theory of delay 

differential equations has an important role in such fields.  

The scientists aimed to model the activity of large 

neuron populations in the brain, use the neural field 

models. These models are constructed using integro-

* Corresponding Author: berrak.ozgur@idu.edu.tr

differential equations including a time delay. For the basic 

facts in neural field models, one can refer to the studies 

given in [1,2]. Besides these studies, the stability analysis 

of the neural field model and the existence and uniqueness 

of their solutions are studied in some papers [3-15].  

In stability analysis, obtaining the characteristic 

equation of the system and determining the characteristic 

roots construct the important part. There are some studies 

on investigation of the stability analysis for this model 

including functional analysis and numerical methods 

[7,9,10]. In [11-15] the analysis is made by using the D-

curves method and the Routh-Hurwitz criterion.  

In this study, we are interested in the stability of a 

neural field model for three neuron populations. The 

general overview of the study is given in the following; the 

model is given in Section 2. The stability properties for the 

model are given in Section 3. The roles of the system 

parameters on the stability of the model are shown. This 

analysis is made by using the Sturm sequence since the 

corresponding characteristic equation of the model is third 

order. The conclusion of this study is in Section 4.  
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2. Neural Field Model 

 

The scientists use neural field equations to model 

dynamics of mean membrane potential for 𝑝 neural 

populations on the space Ω ⊂ 𝑅𝑑. This model given in 

[6,7,9,10] is given below 

 

(
𝑑

𝑑𝑡
+ 𝑙𝑖) 𝑉𝑖(𝑡, 𝑟)  = ∑ ∫ 𝐽𝑖𝑗(𝑟, �̅�)𝑆[𝜎𝑗(𝑉𝑗(𝑡 −

Ω

𝑝
𝑗=1

𝜏𝑖𝑗(𝑟, �̅�), �̅�) − ℎ𝑗)] 𝑑�̅� + 𝐼𝑖
𝑒𝑥𝑡(𝑟, 𝑡) , 𝑡 ≥ 0   , 1 ≤ 𝑖 ≤ 𝑝  

𝑉𝑖(𝑡, 𝑟) = 𝜙𝑖(𝑡, 𝑟)    ,    𝑡 ∈ [−𝑇, 0]                                 (1) 

 

Here, we consider this model for three neuron 

populations (𝑝 = 3). The synaptic inputs for large groups 

of neurons at position 𝑥  and time 𝑡  are represented by the 

functions 𝑉1(𝑥, 𝑡), 𝑉2(𝑥, 𝑡) and 𝑉3(𝑥, 𝑡). We consider Ω =

[−
𝜋

2
,

𝜋

2
]. The relations of neurons on different populations 

are shown by the functions 𝐽𝑖𝑗(𝑥, 𝑦). Some of the relations 

among them are restricted. The stability analysis is made in 

the special case that 𝐽12(𝑥, 𝑦) ≠ 0, 𝐽21(𝑥, 𝑦) ≠ 0,

𝐽23(𝑥, 𝑦) ≠ 0, 𝐽32(𝑥, 𝑦) ≠ 0. In this research, the delay 

term is considered constant as  𝜏(𝑥, 𝑦) = 𝜏. Hence the 

linearized model near (0,0,0) is given below. For this 

model the functions 𝑈1(𝑥, 𝑡), 𝑈2(𝑥, 𝑡) and 𝑈3(𝑥, 𝑡) are 

used. 

 

𝑑

𝑑𝑡
𝑈1(𝑥, 𝑡) + 𝑙1𝑈1(𝑥, 𝑡) = 𝜎2𝑠1 ∫ 𝐽12(𝑥, 𝑦)𝑈2(𝑦, 𝑡 −

𝜋

2

−
𝜋

2

𝜏(𝑥, 𝑦))𝑑𝑦     

𝑑

𝑑𝑡
𝑈2(𝑥, 𝑡) + 𝑙2𝑈2(𝑥, 𝑡) = 𝜎1𝑠1 ∫ 𝐽21(𝑥, 𝑦)𝑈1(𝑦, 𝑡 −

𝜋

2

−
𝜋

2

𝜏(𝑥, 𝑦))𝑑𝑦 + 𝜎3𝑠1 ∫ 𝐽23(𝑥, 𝑦)𝑈3(𝑦, 𝑡 − 𝜏(𝑥, 𝑦))𝑑𝑦
𝜋

2

−
𝜋

2

  

𝑑

𝑑𝑡
𝑈3(𝑥, 𝑡) + 𝑙3𝑈3(𝑥, 𝑡) = 𝜎2𝑠1 ∫ 𝐽32(𝑥, 𝑦)𝑈2(𝑦, 𝑡 −

𝜋

2

−
𝜋

2

𝜏(𝑥, 𝑦))𝑑𝑦                                                                        (2) 

 

3. Stability Analysis  

 

Considering the Fourier method, we are looking for 

the solutions as 𝑈1(𝑥, 𝑡) = 𝑒𝑖𝑘𝑥𝑢1(𝑡) , 𝑈2(𝑥, 𝑡) =

𝑒𝑖𝑘𝑥𝑢2(𝑡) ,  𝑈3(𝑥, 𝑡) = 𝑒𝑖𝑘𝑥𝑢3(𝑡). Here 𝑢1(𝑡) = 𝑐1𝑒𝜆𝑡, 

𝑢2(𝑡) = 𝑐2𝑒𝜆𝑡 and  𝑢3(𝑡) = 𝑐3𝑒𝜆𝑡. Writing them in the 

system (2), we get the following system 

 

𝜆𝑒𝑖𝑘𝑥𝑢1(𝑡) + 𝑙1𝑒𝑖𝑘𝑥𝑢1(𝑡) =

𝜎2𝑠1𝑒−𝜆𝜏𝑢2(𝑡) ∫ 𝐽12(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

     

𝜆𝑒𝑖𝑘𝑥𝑢2(𝑡) + 𝑙2𝑒𝑖𝑘𝑥𝑢2(𝑡) =

𝜎1𝑠1𝑒−𝜆𝜏𝑢1(𝑡) ∫ 𝐽21(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

+

𝜎3𝑠1𝑒−𝜆𝜏𝑢3(𝑡) ∫ 𝐽23(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

   

𝜆𝑒𝑖𝑘𝑥𝑢3(𝑡) + 𝑙3𝑒𝑖𝑘𝑥𝑢3(𝑡) =

𝜎2𝑠1𝑒−𝜆𝜏𝑢2(𝑡) ∫ 𝐽32(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

        (3) 

 

The solutions of the system are the functions 

𝑐𝑜𝑠(2𝑛𝑥) and 𝑠𝑖𝑛(2𝑛𝑥) [9]. Hence we have  

 

𝜆𝑢1(𝑡) + 𝑙1𝑢1(𝑡) = 𝜎2𝑠1𝑒−𝜆𝜏𝑢2(𝑡) ∫ 𝐽12(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

     

𝜆𝑢2(𝑡) + 𝑙2𝑢2(𝑡) = 𝜎1𝑠1𝑒−𝜆𝜏𝑢1(𝑡) ∫ 𝐽21(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

+

𝜎3𝑠1𝑒−𝜆𝜏𝑢3(𝑡) ∫ 𝐽23(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

   

𝜆𝑢3(𝑡) + 𝑙3𝑢3(𝑡) = 𝜎2𝑠1𝑒−𝜆𝜏𝑢2(𝑡) ∫ 𝐽32(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

  

     (4) 

Considering the coefficient determinant of this 

system with respect to 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡), we get the 

following characteristic equation arranged in terms of the 

powers of 𝜆 

 

𝜆3 + (𝑙1 + 𝑙2 + 𝑙3)𝜆2 + (𝑙2𝑙3 + 𝑙1𝑙3 + 𝑙1𝑙2)𝜆 +

𝑙1𝑙2𝑙3 − 𝐾1𝐾3𝐹3𝐹4𝑒−2𝜆𝜏(𝜆 + 𝑙1) − 𝐾1𝐾2𝐹1𝐹2𝑒−2𝜆𝜏(𝜆 +

𝑙3) = 0             (5) 

 

where  𝐾1 = 𝜎2𝑠1, 𝐾2 = 𝜎1𝑠1,  𝐾3 = 𝜎3𝑠1,   

𝐹1 = ∫ 𝐽12(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

 ,   

𝐹2 = ∫ 𝐽21(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

,   

𝐹3 = ∫ 𝐽23(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

,   

𝐹4 = ∫ 𝐽32(𝑥, 𝑦)𝑒𝑖𝑘𝑦𝑑𝑦
𝜋

2

−
𝜋

2

  

 

If there is no delay term in the system, i.e., 𝜏 = 0, the 

characteristic equation turns into the following form 
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𝜆3 + (𝑙1 + 𝑙2 + 𝑙3)𝜆2 + (𝑙2𝑙3 + 𝑙1𝑙3 + 𝑙1𝑙2 − 𝐾1𝐾3𝐹3𝐹4 −

𝐾1𝐾2𝐹1𝐹2)𝜆 + 𝑙1𝑙2𝑙3 − 𝐾1𝐾3𝐹3𝐹4𝑙1 − 𝐾1𝐾2𝐹1𝐹2𝑙3 = 0 
                        (6) 

 

According to the Routh-Hurwitz criterion, we may 

give the following theorem. 

 

Theorem: Consider the system (2). If the following 

conditions are satisfied 

 

𝑙1 + 𝑙2 + 𝑙3 > 0 , 

 

𝑙1𝑙2𝑙3 − 𝐾1𝐾3𝐹3𝐹4𝑙1 − 𝐾1𝐾2𝐹1𝐹2𝑙3 > 0  

 

and 

 

(𝑙1 + 𝑙2 + 𝑙3)(𝑙2𝑙3 + 𝑙1𝑙3 + 𝑙1𝑙2 − 𝐾1𝐾3𝐹3𝐹4 −

𝐾1𝐾2𝐹1𝐹2) − (𝑙1𝑙2𝑙3 − 𝐾1𝐾3𝐹3𝐹4𝑙1 − 𝐾1𝐾2𝐹1𝐹2𝑙3) > 0  

 

then the system is stable near (0,0,0) in the absence of 

delay term. 

 

Proof: If the conditions given above are satisfied 

then, according to the Routh-Hurwitz criterion, all roots of 

the characteristic equation have negative real parts and the 

system is stable near (0,0,0) in the absence of delay term. 

 

In case of existence of a delay term, we apply the 

procedure given in [16]. Because of the critical delays, 

some characteristic roots change from having negative real 

parts to having positive real parts. For this reason, we will 

examine the purely imaginary roots 𝜆 = 𝑖𝜎. To get the 

characteristic equation and see such a change, we 

substitute 𝜆 = 𝑖𝜎 in Eq. (5) , and separating the real and 

imaginary parts, we get 

 

−𝜎2(𝑙1 + 𝑙2 + 𝑙3) + 𝑙1𝑙2𝑙3 − 𝐾1𝐾3𝐹3𝐹4𝜎𝑠𝑖𝑛(2𝜎𝜏) −

𝐾1𝐾3𝐹3𝐹4𝑙1𝑐𝑜𝑠(2𝜎𝜏) − 𝐾1𝐾2𝐹1𝐹2𝜎𝑠𝑖𝑛(2𝜎𝜏) −

𝐾1𝐾2𝐹1𝐹2𝑙3𝑐𝑜𝑠(2𝜎𝜏) = 0         (7) 

 

−𝜎3 + 𝜎(𝑙2𝑙3 + 𝑙1𝑙3 + 𝑙1𝑙2) − 𝐾1𝐾3𝐹3𝐹4𝜎𝑐𝑜𝑠(2𝜎𝜏) +

𝐾1𝐾3𝐹3𝐹4𝑙1𝑠𝑖𝑛(2𝜎𝜏) − 𝐾1𝐾2𝐹1𝐹2𝜎𝑐𝑜𝑠(2𝜎𝜏) +

𝐾1𝐾2𝐹1𝐹2𝑙3𝑠𝑖𝑛(2𝜎𝜏) = 0         (8) 

 

Rearranging them we get the following two equations 

 

−𝜎2(𝑙1 + 𝑙2 + 𝑙3) + 𝑙1𝑙2𝑙3 = 𝐾1𝐾3𝐹3𝐹4𝜎𝑠𝑖𝑛(2𝜎𝜏) +

𝐾1𝐾3𝐹3𝐹4𝑙1𝑐𝑜𝑠(2𝜎𝜏) + 𝐾1𝐾2𝐹1𝐹2𝜎𝑠𝑖𝑛(2𝜎𝜏) +

𝐾1𝐾2𝐹1𝐹2𝑙3𝑐𝑜𝑠(2𝜎𝜏)          (9) 

 

−𝜎3 + 𝜎(𝑙2𝑙3 + 𝑙1𝑙3 + 𝑙1𝑙2) = 𝐾1𝐾3𝐹3𝐹4𝜎𝑐𝑜𝑠(2𝜎𝜏) −

𝐾1𝐾3𝐹3𝐹4𝑙1𝑠𝑖𝑛(2𝜎𝜏) + 𝐾1𝐾2𝐹1𝐹2𝜎𝑐𝑜𝑠(2𝜎𝜏) −

𝐾1𝐾2𝐹1𝐹2𝑙3𝑠𝑖𝑛(2𝜎𝜏)        (10) 

 

Taking squares of both sides in these two equations 

and adding them we get the polynomial equation given 

below 

 

𝜎6 + (𝑙1
2 + 𝑙2

2 + 𝑙3
2)𝜎4 + (𝑙2

2𝑙3
2 + 𝑙1

2𝑙3
2 + 𝑙1

2𝑙2
2 −

𝐾1
2𝐾3

2𝐹3
2𝐹4

2 − 2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4 −

𝐾1
2𝐾2

2𝐹1
2𝐹2

2)𝜎2 + 𝑙1
2𝑙2

2𝑙3
2 − 𝐾1

2𝐾3
2𝐹3

2𝐹4
2𝑙1

2 −

2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4𝑙1𝑙3 − 𝐾1

2𝐾2
2𝐹1

2𝐹2
2𝑙3

2 = 0     (11) 

 

Now following the Routh-Hurwitz criterion, we 

replace 𝜇 by 𝜎2. Hence we have the following third-order 

polynomial equation to carry the stability analysis for the 

model.  

 

𝜇3 + (𝑙1
2 + 𝑙2

2 + 𝑙3
2)𝜇2 + (𝑙2

2𝑙3
2 + 𝑙1

2𝑙3
2 +

𝑙1
2𝑙2

2 − 𝐾1
2𝐾3

2𝐹3
2𝐹4

2 − 2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4 −

𝐾1
2𝐾2

2𝐹1
2𝐹2

2)𝜇 + 𝑙1
2𝑙2

2𝑙3
2 − 𝐾1

2𝐾3
2𝐹3

2𝐹4
2𝑙1

2 −

2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4𝑙1𝑙3 − 𝐾1

2𝐾2
2𝐹1

2𝐹2
2𝑙3

2 = 0     (12) 

 

For simplicity, we call the coefficients  

 

𝐴 = 𝑙1
2 + 𝑙2

2 + 𝑙3
2  

𝐵 = 𝑙2
2𝑙3

2 + 𝑙1
2𝑙3

2 + 𝑙1
2𝑙2

2 − 𝐾1
2𝐾3

2𝐹3
2𝐹4

2 −

2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4 − 𝐾1

2𝐾2
2𝐹1

2𝐹2
2  

𝐶 = 𝑙1
2𝑙2

2𝑙3
2 − 𝐾1

2𝐾3
2𝐹3

2𝐹4
2𝑙1

2 −

2𝐾1
2𝐾2𝐾3𝐹1𝐹2𝐹3𝐹4𝑙1𝑙3 − 𝐾1

2𝐾2
2𝐹1

2𝐹2
2𝑙3

2       (13) 
 

Since the leading coefficient is positive, a positive 

real root may occur in two cases. 

i) If 𝐶 < 0 then the positive real root occurs. 

ii) If 𝐶 > 0 then a negative real root is guaranteed. To 

analyze the possibility to have two positive real roots, we 

use the Sturm sequence of the polynomial in Eq. (12).  

The details of the method of Sturm sequence are 

constructed by determining whether a positive real root 

exists. After finding the functions in the Sturm sequence, 

the sign changes in endpoints of the considered interval 

must be determined. The number gives us the number of 
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real roots. After this step, the conditions must be analyzed 

to see the positive real root.  

We will follow the procedure given in [16]. Let us 

start with the polynomials  

 

𝑓0 = 𝜇3 + 𝐴𝜇2 + 𝐵𝜇 + 𝐶  

 

and  

 

𝑓1 = 3𝜇2 + 2𝐴𝜇 + 𝐵  

 

where 𝑓1 = 𝑓0
′
. Applying the division algorithm 

 

𝑓0 = 𝑞0𝑓1 + 𝑓2  

𝑓1 = 𝑞1𝑓2 + 𝑓3  

 

we have 

 

𝑓2 = (
2

9
𝐴2 −

2

3
𝐵) 𝜇 + 𝐶 −

1

9
𝐴𝐵  

 

𝑓3 = −
9

4
 

4𝐵3−𝐴2𝐵2−18𝐴𝐵𝐶+4𝐶𝐴3+27𝐶2

(𝐴2−3𝐵)2   

 

By considering the sign changes at each endpoint of 

the interval (−∞, ∞), we may construct the following table 

given in [16] to have three sign changes, hence three real 

roots for the case (ii).  

 

Table 1. The sign changes for the Sturm sequence. 

     −∞         ∞ 

𝑓0 - + 

𝑓1 + + 

𝑓2 - + 

𝑓3 + + 

 

In order to get this table we need the following 

conditions, 

 

𝐴2 − 3𝐵 > 0  

 

and  

 

4(𝐵2 − 3𝐴𝐶)(𝐴2 − 3𝐵) − (9𝐶 − 𝐴𝐵)2 > 0  

 

where the constants 𝐴, 𝐵, 𝐶 are determined as in (13). 

And for the case (ii), there exists one positive real 

root if 𝐴 < 0 or 𝐴 > 0 and 𝐵 < 0 [16]. 

We will conclude this part by the following theorem 

based on the theorem in [16] in case of a delay term exists. 

 

Theorem: Consider the characteristic equation (5) for 

the system (2) with a delay term. The system is unstable 

near (0,0,0) if and only if 𝐴, 𝐵 and 𝐶 are not all positive 

and either 𝐶 < 0, or 𝐶 > 0, 𝐴2 − 3𝐵 > 0 and 4(𝐵2 −

3𝐴𝐶)(𝐴2 − 3𝐵) − (9𝐶 − 𝐴𝐵)2 > 0 is satisfied where 𝐴, 𝐵 

and 𝐶 are given in (13). 

 

Proof: In the existence of the conditions given above, 

we have three real characteristic roots and one of them is 

positive. Hence the system becomes unstable. 

 

4. Conclusion 

 

In this study, the stability properties of a neural field 

model are constructed in a special case. The linearized 

model for three neuron populations is considered and is 

investigated for the stability in an algebraic way. The main 

idea here is to determine the roots of the characteristic 

equation. Since the characteristic equation is third-order, 

the Routh-Hurwitz criterion and the Sturm sequence are 

used. These two methods give the chance to make the 

analysis in an efficient way. As shown in this study, the 

stability properties in terms of the coefficients on the 

system are determined in a quick way by two theorems.  
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