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1. Introduction

BGG category O plays a central role in representation theory, see [3]. For a

complex semisimple Lie algebra g we can consider its quantized universal enveloping

algebra Uq(g) and the category O of Uq(g) as in [1] and [7].

The large category Uq(g)-Mod has a tensor product but category O is not closed

under the tensor product. We call a module M ∈ O tensor-closed if M ⊗N ∈ O for

any N ∈ O. It is easy to show that finite dimensional modules are tensor-closed.

Actually in [6] the authors used tensor products of finite dimensional Uq(g)-modules

to construct the coordinate ring of the deformed flag variety of g. Therefore it is

interesting to ask whether we can characterize finite dimensional Uq(g)-modules in

a categorical way, to which we give an affirmative answer in this paper.

For (unquantized) complex semisimple Lie algebra g it is a folklore theorem that

any tensor-closed module in O must be finite dimensional, see [4] for an outline of

the proof.

The main result of this paper is Theorem 4.4, which claims that M ∈ O of Uq(g)

is tensor-closed if and only if M is finite dimensional. This result gives a categorical

characterization of finite dimensional modules in category O. The proof is based

on the idea in [4] together with a careful study of rational expressions of formal
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characters of modules in O. We can apply the same proof to the unquantized case

with little modification.

2. A review of the BGG category O of a quantized universal

enveloping algebra

2.1. A review of quantized universal enveloping algebras. We follow the

notations in [7]. Please also see [1] for references. Let g a semisimple Lie algebra

over C of rank N . We fix a Cartan subalgebra h ⊂ g. Let ∆ be the set of roots and

we fix Σ = {α1, . . . , αN} ⊂ ∆ the set of simple roots. We write ( , ) for the bilinear

form on h∗ obtained by rescaling the Killing form such that the shortest root α of

g satisfies (α,α) = 2. For a root β ∈ ∆ we set dβ = (β,β)/2 and let β∨ = β/dβ be

the corresponding coroot. In particular let di = (αi, αi)/2 and hence α∨i = d
−1
i αi for

i = 1, . . . ,N .

Denote by $1, . . . ,$N the fundamental weights of g, satisfying the relations

($i, α
∨
j ) = δij . We write

P =
N

⊕
j=1

Z$j , Q =
N

⊕
j=1

Zαj , Q∨
=
N

⊕
j=1

Zα∨j , (1)

for the weight, root and coroot lattices of g, respectively. It is well-known that

β∨ ∈ Q∨ for each β ∈ ∆.

Let P+ denote the set of dominant integral weights and Q+ denote the set of

non-negative integer combinations of the simple roots. Let ∆+ = Q+ ∩∆ be the set

of positive roots.

As in the standard notation, let (aij)1≤i,j≤N be the Cartan matrix for g and let

W be the Weyl group for g. See [2, Chapter III] for details.

Definition 2.1. [7, Definition 2.13] Let q = eh ∈ R× be an invertible element for

h ∈ R×. It is clear q is not a root of 1. The algebra Uq(g) over C has generators Kλ

for λ ∈ P, and Ei, Fi for i = 1, . . . ,N , and the defining relations for Uq(g) are

K0 = 1, KλKµ =Kλ+µ, KλEjK
−1
λ = q(λ,αj)Ej , KλFjK

−1
λ = q−(λ,αj)Fj ,

[Ei, Fj] = δij
Ki −K

−1
i

qi − q−1i
,

(2)

for all λ,µ ∈ P and all i, j, together with the quantum Serre relations

1−aij
∑
k=0

(−1)k
⎡
⎢
⎢
⎢
⎢
⎣

1 − aij

k

⎤
⎥
⎥
⎥
⎥
⎦qi

E
1−aij−k
i EjE

k
i = 0

1−aij
∑
k=0

(−1)k
⎡
⎢
⎢
⎢
⎢
⎣

1 − aij

k

⎤
⎥
⎥
⎥
⎥
⎦qi

F
1−aij−k
i FjF

k
i = 0.

(3)
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In the above formulas we abbreviate Ki =Kαi for all simple roots, and we use the

notation qi = q
di .

Uq(g) is a Hopf algebra with comultiplication ∆̂ ∶ Uq(g) → Uq(g) ⊗ Uq(g) given

by

∆̂(Kλ) =Kλ ⊗Kλ,

∆̂(Ei) = Ei ⊗Ki + 1⊗Ei

∆̂(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

(4)

counit ε̂ ∶ Uq(g) → C given by ε̂(Kλ) = 1, ε̂(Ej) = 0, ε̂(Fj) = 0, and antipode Ŝ ∶

Uq(g)→ Uq(g) given by Ŝ(Kλ) =K−λ, Ŝ(Ej) = −EjK−1
j , Ŝ(Fj) = −KjFj .

Let Uq(n+) be the subalgebra of Uq(g) generated by the elements E1, . . . ,EN ,

and Uq(b+) be the subalgebra of Uq(g) generated by E1, . . . ,EN and all Kλ for

λ ∈ P. We define Uq(n−) and Uq(b−) in the same way. Moreover we let Uq(h)

be the subalgebra generated by the elements Kλ for λ ∈ P. These algebras are

Hopf subalgebras of Uq(g). By [7, Proposition 2.14] we know that there is a linear

isomorphism

Uq(n−)⊗Uq(h)⊗Uq(n+) ≅ Uq(g). (5)

2.2. A review of the BGG category O. Recall that 1 ≠ q = eh for an h ∈ R×.

We shall also use the notation h̵ = h
2π

hence q = e2πh̵.

As in [7, Section 2.3.1] we let h∗ = HomC(h,C) and h∗q = h∗/ih̵−1Q∨ be the

parameter space for weights. Here i =
√
−1. It is clear that there is an embedding

SpanR∆ ⊂ h∗q . In particular Q ⊂ P ⊂ h∗q .

One says that a vector v in a left Uq(g)-module is a weight vector of weight

λ ∈ h∗q if it is a common eigenvector for the action of Uq(h) with

Kµ ⋅ v = q
(λ,µ)v, for all µ ∈ P.

It is well defined: if λ ∈ ih̵−1Q∨ then for any µ ∈ P we have q(λ,µ) = e2πh̵(λ,µ) = 1.

Definition 2.2. ([1, Definition 3.1], [7, Definition 4.1]) A left module M over Uq(g)

is said to belong to the BGG category O if

a) M is finitely generated as a Uq(g)-module.

b) M is a weight module, that is, a direct sum of its weight spaces Mλ for λ ∈ h∗q .

c) The action of Uq(n+) on M is locally nilpotent, that is, for each v ∈ M , the

subspace Uq(n+) ⋅ v of M is finite dimensional.

Morphisms in category O are all Uq(g)-linear maps.

We list some basic properties of category O.
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Proposition 2.3. (1) O is closed under submodules, quotient modules, and finite

direct sums.

(2) All weight spaces of M in O are finite dimensional.

(3) All finite dimensional weight modules of Uq(g) are in O.

Definition 2.4. [7, Definition 2.31] The Verma module M(λ) associated to λ ∈ h∗q
is the induced Uq(g)-module

M(λ) = Uq(g)⊗Uq(b+) Cλ (6)

where Cλ denotes the one-dimensional Uq(b+)-module C with the action induced

from the character χλ determined by

χλ(Kµ) = q
(λ,µ) for all µ ∈ P, and χλ(Ei) = 0, i = 1, . . . ,N. (7)

It is clear that M(λ) belongs to category O.

M(λ) contains a unique maximal proper submodule I(λ), namely the linear

span of all submodules not containing the highest weight vector vλ = 1⊗ 1 ∈M(λ).

The resulting simple quotient module M(λ)/I(λ) will be denoted by V (λ). It is

again a module in O.

Remark 2.5. In [1], M(λ) and V (λ) are denoted by ∆q(λ) and Lq(λ) respectively.

It is clear that every highest weight module of highest weight λ is isomorphic to

a quotient of M(λ) and every simple highest weight module of highest weight λ is

isomorphic to V (λ).

The following result characterizes finite dimensional weight modules of Uq(g)

Proposition 2.6. [7, Corollary 2.100] We write Xq for the set of weights ω ∈ h∗q
satisfying q(ω,α) = ±1 for all α ∈ Q. We define

P+
q = P+

+Xq ⊂ h∗q .

Then every finite dimensional weight module over Uq(g) decomposes into a direct

sum of irreducible highest weight modules V (λ) for weights λ ∈ P+
q .

Simple modules V (λ) are the building blocks of modules in O.

Proposition 2.7. [7, Theorem 4.3] Every module M ∈ O is both Artinian and

Noetherian. Hence every module M ∈ O has a Jordan-Hölder decomposition series

0 =M0 ⊂M1 ⊂ ⋯ ⊂Mn =M such that all subquotients Mj+1/Mj are simple highest

weight modules. Moreover, the number of subquotients isomorphic to V (λ) for

λ ∈ h∗q is independent of the decomposition series and will be denoted by [M ∶ V (λ)].
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To further study [M(µ) ∶ V (λ)] for a Verma module M(µ) we need the following

concept.

Definition 2.8. ([5, Section 8.3.2], [7, Definition 2.125]) We define

Yq = {ζ ∈ h∗q ∣ 2ζ = 0} ≅
1

2
ih̵−1Q∨

/ih̵−1Q∨. (8)

It is clear that W acts on Yq. The extended Weyl group Ŵ is defined as the

semidirect product

Ŵ = Yq ⋊W (9)

with respect to the action of W on Yq. Ŵ is a finite group.

Explicitly, the product in Ŵ is (iζ, v)(iη,w) = (iζ + ivη, vw). We define two

actions of Ŵ on h∗q by (iζ,w)λ = wλ + iζ and

(iζ,w) ⋅ λ = w ⋅ λ + iζ = w(λ + ρ) − ρ + iζ, (10)

for λ ∈ h∗q , where ρ is the half sum of all positive roots. The latter is called the

shifted action of Ŵ on h∗q .

Remark 2.9. See Theorem 2.128 of [7] for the relation between the
1
2
ih̵−1Q∨-translation and the Harish-Chandra map, which plays an important role

in the representation theory of Uq(g).

Definition 2.10. We say that µ,λ ∈ h∗q are Ŵ -linked if ŵ ⋅ λ = µ for some ŵ ∈ Ŵ .

Definition 2.11. We define a partial order ≥ on h∗q by saying that λ ≥ µ if λ−µ ∈ Q+.

Here we are identifying Q+ with its image in h∗q .

Lemma 2.12. [7, Section 4.1.1] For any µ ∈ h∗q we have [M(µ) ∶ V (µ)] = 1, and

moreover [M(µ) ∶ V (λ)] = 0 unless λ ≤ µ and λ is Ŵ -linked to µ. Since Ŵ is

a finite group, for each µ ∈ h∗q there exists only finitely many λ ∈ h∗q such that

[M(µ) ∶ V (λ)] ≠ 0.

3. Formal characters of modules in category O

3.1. Basic properties of formal characters.

Definition 3.1. We define the formal character of M in O as the formal sum

ch(M) = ∑
λ∈h∗q

dim(Mλ)e
λ. (11)

By Proposition 2.3 any module M in category O satisfies dimMλ < ∞ for all

λ ∈ h∗q . So ch(M) is well-defined. We also have the following more general definition:



180 ZHAOTING WEI

Definition 3.2. Let X be the ring of formal sums of the form ∑λ∈h∗q f(λ)e
λ where

f ∶ h∗q → Z is any integer valued function whose support lies in a finite union of sets

of the form ν −Q+ with ν ∈ h∗q . The product in X is the convolution product given

by

⎛

⎝
∑
λ∈h∗q

f(λ)eλ
⎞

⎠

⎛

⎝
∑
µ∈h∗q

g(µ)eµ
⎞

⎠
= ∑
λ,µ∈h∗q

f(λ)g(µ)eλ+µ.

It is clear that the right hand side is still in X .

Definition 3.3. We introduce an element p ∈ X as

p = ∏
β∈∆+

(
∞
∑
m=0

e−mβ) . (12)

Lemma 3.4. [7, Proposition 2.68] For each µ ∈ h∗q , the formal character of the

Verma module M(µ) is the convolution product of eµ and p:

ch(M(µ)) = eµp. (13)

By Lemma 2.12 we have

ch(M(µ)) = ∑
λ∈h∗q

[M(µ) ∶ V (λ)]ch(V (λ)). (14)

where [M(µ) ∶ V (µ)] = 1 and [M(µ) ∶ V (λ)] = 0 unless λ ≤ µ and λ is Ŵ -linked to

µ.

We can obtain the following well-known result on ch(V (µ)) by inverting the

matrix [M(µ) ∶ V (λ)]:

Lemma 3.5. For each µ ∈ h∗q , the formal character of the simple highest weight

module V (µ) can be expressed as

ch(V (µ)) = ∑
λ∈h∗q

mλ,µch(M(λ)) = ∑
λ∈h∗q

mµ,λe
λp (15)

where mµ,λ are integers such that mµ,µ = 1 and mµ,λ = 0 unless λ ≤ µ and λ is

Ŵ -linked to µ.

Remark 3.6. If µ ∈ P+ the set of dominant integral weights, then [7, Proposition

4.4] gives a more precise formula than (15).

Corollary 3.7. For each M ∈ O, there exists a finite set {µ1, . . . , µm} ⊂ h∗q such

that

ch(M) =
m

∑
i=1

∑
λ∈h∗q

[M ∶ V (µi)]mµi,λe
λp. (16)

where mµi,λ are integers such that mµi,µi = 1 and mµi,λ = 0 unless λ ≤ µi and λ is

Ŵ -linked to µi.
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Remark 3.8. Since Ŵ is a finite group, the sums on the right hand side of (15)

and (16) are both finite.

3.2. Reduced rational expressions of formal characters of modules in O.

Notice that we can write the formal character p =∏β∈∆+ (∑
∞
m=0 e

−mβ) as

p =
1

∏β∈∆+(1 − e−β)
(17)

so by Corollary 3.7 for each M ∈ O, we can write its formal character as

ch(M) =
∑
m
i=1∑λ∈h∗q [M ∶ V (µi)]mµi,λe

λ

∏β∈∆+(1 − e−β)
(18)

We want to simplify ch(M) to obtain a reduced fraction, which needs some work

because the ring X is not a UFD.

Let S be the ring of Z-coefficient polynomials generated by e−αi , i = 1, . . . ,N ,

where {α1, . . . , αN} is the set of simple roots. It is clear that ∏β∈∆+(1 − e−β) ∈ S

but
m

∑
i=1

∑
λ∈h∗q

[M ∶ V (µi)]mµi,λe
λ

is not necessarily contained in S.

We have the following definition.

Definition 3.9. Let X be as in Definition 3.2. We say that a ∈ X can be written

in reduced rational form if there exists a subset Ta ⊂ ∆+ and a finite collection

{µ1, . . . , µm} ⊂ h∗q such that

a =
∑
m
i=1 e

µifi

∏β∈Ta(1 − e−β)
nβ

(19)

where

(1) µi − µj is not in the root lattice Q for each i ≠ j;

(2) fi is a polynomial in S with nonzero constant term for each i;

(3) nβ is a positive integer for each β ∈ Ta;

(4) The numerator and denominator of (19) are coprime. More precisely, for

each β ∈ Ta, there exists an fi in the numerator such that 1 − e−β is not a

factor of fi.

We call the set Ta the denominator roots of a.

Lemma 3.10. For any a ∈ X , the reduced rational form of a is unique if exists.

Proof. It is clear from the definition and the fact that the polynomial ring S is a

UFD. �
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Not all elements in X can be written in reduced rational form. Nevertheless for

formal characters of modules in O we have the following result.

Lemma 3.11. Let M ∈ O be a nonzero module. Then the set Tch(M) of denom-

inator roots exists and ch(M) can be written uniquely in reduced rational form.

Moreover we have

ch(M) =
∑
m
i=1 e

µifi

∏β∈Tch(M)(1 − e
−β)

(20)

and Property 1, 2, 3, 4 in Definition 3.9 are satisfied with all nβ = 1. In the sequel

we will denote Tch(M) by TM and we will call TM the set of denominator roots of

M .

Proof. It is a direct consequence of Corollary 3.7, Lemma 3.10, and (18). �

Example 3.12. By Lemma 3.11, for any α ∈ ∆+ the formal power series

1

(1 − e−α)2

cannot be the formal character of any module in O although 1
(1−e−α)2 ∈ X . Intu-

itively this is because the multiplicity of e−nα grows too fast as n grows and here

we have a precise criterion of this fact.

Corollary 3.13. A nonzero module M ∈ O is finite dimensional if and only if its

reduced rational form has denominator = 1, i.e. TM = ∅.

Proof. It is implied by the uniqueness of reduced rational form. �

Example 3.14. For a Verma module M(µ), the reduced rational form of its formal

character is

ch(M(µ)) =
eµ

∏β∈∆+(1 − e−β)
hence TM(µ) = ∆+.

Example 3.15. For a simple highest weight module V (µ) we have the reduced

rational form

ch(V (µ)) =
eµfV (µ)

∏β∈TV (µ)(1 − e
−β)

for some fV (µ) ∈ S. In particular if µ ∈ P+
q then TV (µ) = ∅ and ch(V (µ)) is given

explicitly by the Weyl character formula. Actually [7, Proposition 4.4] only covers

the µ ∈ P+ case but the general case can be easily obtained by [7, Lemma 2.41].

Remark 3.16. For any M ∈ O it is clear that the denominator roots TM ⊂ ⋃TV (µ)
where the union is for all V (µ) such that [M ∶ V (µ)] ≠ 0. The author does not know

whether we have TM = ⋃TV (µ) for all V (µ) such that [M ∶ V (µ)] ≠ 0. Nevertheless

we do not need this result in this paper.
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4. Tensor closed objects in category O

The category Uq(g)-Mod has a tensor product since Uq(g) is a Hopf algebra.

Moreover we have the following lemma.

Lemma 4.1. Uq(g)-Mod is a braided category. In particular for any left Uq(g)-

modules V and W we have a Uq(g)-module isomorphism V ⊗W ≅W ⊗ V .

Proof. It is clear since Uq(g) is quasitriangular in the sense of [7, Theorem 2.108].

�

However category O is not closed under tensor product.

Definition 4.2. We call a module M ∈ O tensor-closed if for any N ∈ O, the tensor

product M ⊗N ≅ N ⊗M is still in O.

The following result is well-known.

Lemma 4.3. Any finite dimensional module V ∈ O is tensor-closed.

Proof. The proof is the same as that of [3, Theorem 1.1 (d)]. �

In this section we prove the following result.

Theorem 4.4. A module V ∈ O is tensor-closed if and only if it is finite dimen-

sional.

To give the proof more rigorously we introduce the following auxiliary category.

Definition 4.5. A left module M over Uq(g) is said to belong to the category Õ if

a) M is a weight module and all weight spaces of M are finite dimensional.

b) There exist finitely many weights ν1, . . . , νl ∈ h
∗
q such that

suppM ⊂
l

⋃
i=1

(νi −Q+
),

where suppM = {λ ∈ h∗q ∣Mλ ≠ 0}.

Morphisms in category Õ are all Uq(g)-linear maps.

It is clear that O is a full subcategory of Õ. Õ is closed under tensor product

and modules in Õ have formal characters in the ring X in Definition 3.2. Moreover

for M , N ∈ Õ we have

ch(M ⊗N) = ch(M)ch(N). (21)
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Lemma 4.6. For two simple highest weight modules V (µ) and V (λ), if V (µ) ⊗

V (λ) ∈ O, then

TV (µ) ∩ TV (λ) = ∅.

In particular for any infinite dimensional simple highest weight module V (µ) we

have V (µ)⊗ V (µ) ∉ O.

Proof. For each simple highest weight module V (µ) we have the reduced rational

form

ch(V (µ)) =
eµfV (µ)

∏β∈TV (µ)(1 − e
−β)

where fV (µ) is in the polynomial ring S such that 1 − e−β is not a factor of fV (µ)
for each β ∈ TV (µ). Therefore

ch(V (µ)⊗ V (λ)) = ch(V (µ))ch(V (λ)) =
eµ+λfV (µ)fV (λ)

∏β∈TV (µ)(1 − e
−β)∏γ∈TV (λ)(1 − e

−γ)
.

Assume TV (µ) ∩TV (λ) ≠ ∅ and let β ∈ TV (µ) ∩TV (λ), then (1− e−β)2 appears in the

denominator and 1 − e−β is not a factor of fV (µ) nor fV (λ). Therefore (1 − e−β)2

appears in the denominator of the reduced rational form of ch(V (µ)⊗V (λ)). On the

other hand by Lemma 3.11, if V (µ)⊗V (λ) is in O then the reduced rational form of

ch(V (µ)⊗V (λ)) cannot have squares in the denominator. Hence V (µ)⊗V (λ) ∈ O

implies TV (µ) ∩ TV (λ) = ∅.

For infinite dimensional V (µ), we know TV (µ) ≠ ∅ by Corollary 3.13, so V (µ)⊗

V (µ) ∉ O. �

Lemma 4.7. For any infinite dimensional simple highest weight module V (µ) and

any Verma module M(λ) we have V (µ)⊗M(λ) ≅M(λ)⊗ V (µ) ∉ O.

Proof. Similar to the proof of Lemma 4.6, we can show that ch(V (µ)⊗M(λ)) has

squares in the denominator of its reduced rational form. �

Remark 4.8. In general the product of two reduced rational forms needs not to

be a reduced rational form since X is not a UFD. For example for any α ∈ ∆+ let

a =
1 + e−α/2

1 − e−α
, b =

1 − e−α/2

1 − e−α
.

It is clear that both a and b are reduced rational forms but

ab =
1 − e−α

(1 − e−α)2

is not reduced. The author does not know if we restrict to formal characters of

modules in O, whether or not the product of reduced rational forms must be a

reduced rational form. Nevertheless we do not need this result in this paper.
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Proof of Theorem 4.4. Let M ∈ O be infinite dimensional and we want to show

that M is not tensor-closed. Actually by Proposition 2.7 there exists an infinite

dimensional V (µ) in the Jordan-Hölder series of M . By Lemma 4.6, V (µ)⊗V (µ) ∉

O. Since O is closed under subquotients, M ⊗ V (µ) ∉ O too. So M is not tensor-

closed. �

Remark 4.9. There exist two infinite dimensional modules with tensor product

still in O. Victor Ostrik gave the following example: Let g = sl(2) ⊕ sl(2). Let

V be a Verma module for Uq(sl(2)) (with arbitrary highest weight). Using two

projections g → sl(2) we can consider V as a Uq(g)-module in two different ways.

Let us call the resulting Uq(g)-modules V1 and V2. Then both V1 and V2 are in the

category O for Uq(g), and V1 ⊗ V2 is a Verma module of Uq(g).

It is an interesting question if g is simple and M , N ∈ O are both infinite

dimensional, is it always true that M ⊗N ∉ O. See [8] for a discussion in the cases

that g is simple of type ADE.

Remark 4.10. All arguments and proofs in this paper work for the unquantized

case as well. In particular we can proof Theorem 4.4 for the unquantized case using

the method in this paper.
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