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Abstract 

In this study, the representation formulas of non-null curves are primarily expressed in four dimensional semi-Euclidean 
space 𝐸2

4 and the non-null normal curves in 𝐸2
4 are examined and some certain results of describing the nun-null normal 

curve are presented in detail in 𝐸2
4. In addition, some mathematical conditions are expressed for a curve  given in four 

dimensional semi-Euclidean space 𝐸2  
4   to be a nun-null normal curve  as theorems. 
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𝑬𝟐  
𝟒 YARI ÖKLİD UZAYINDA NON-NULL NORMAL EĞRİLER 

Özet 

Bu çalışmada, öncelikle non-null eğrilerin temsil formülleri dört boyutlu 𝐸2  
4  yarı Öklid uzayında ifade edildi ve  𝐸2  

4 'teki 
nun-null normal eğriler incelenmiş ve normal eğriyi tanımlayıp bazı kesin sonuçlar ayrıntılı olarak 𝐸2  

4 'de ifade edilmiştir. 
Ayrıca, 𝐸2  

4  dört boyutlu yarı Öklid uzayında verilen bir eğrinin normal bir eğri olabilmesi için bazı matematiksel koşullar  
teorem olarak ifade edildi. 
Anahtar Kelimeler: 𝐄𝟐

𝟒 yarı Öklid uzayı, Frenet çatısı, normal eğri 
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1. Introduction 

Since ancient times, curves have been studied. The 
importance of curves began long before they were the 
subject of mathematical study. They can be considered in 
countless examples of their decorative use in art and in 
many objects from prehistoric times to the present. The 
mathematicians of ancient times were curious about 
curved lines. They first called them the "lines" but then 
soon they replaced the word "line" with the term "curve" 
and started using a phrase "straight line" for the line that 
is not curved or bent. A line which is not straight with no 
sharp edges is called a curve. It is a smoothly flowing line. 
In mathematics a curve is an object similar to a line which 
does not have to be straight. Also, the curve theory has 
been a fascinating subject for differential geometers. 

In [1], the authors defined special curves in semi 
Euclidean 4-space. In [2], the authors examined the 
notion of the ivolute-evolute curves for the curves lying 
the surfaces in Minkowski 3-space by using the Darboux 
frame of the curves. In [3], the helix and slant helices 
were investigated using non-degenerate curves in term 
of Sabban frame in de Sitter 3-space or Anti de Sitter 3-
space M3 (δ0).  In [4], the author defined 
characterizations of semi-real quaternionic Bertrand 

curves in the four dimensional space  𝐸2
4 and he studied 

the Serret- Frenet formulae of the curve in 𝐸2
4 and 

investigated these formulas for the quaternionic 
Bertrand curves. In [5], the explicit parameter equations 
of spacelike rectifying curves in 𝐸1

3 whose projection 
onto spacelike, timelike were given. In [6], they gave 
some conditions for non-null osculating curves in 𝐸2

4. In 
[7], the author gave some characterizations of spacelike 
normal curves with spacelike, timelike or null principal 
normal in the Minkowski-space 𝐸1

3.  The curves for which 
the position vector always lie in their normal plane, are 
for simplicity called normal curves. By definition for a 
normal curve, the position vector 𝛽 satisfies following 
equation  

 𝛽(𝑠) = 𝜆𝑁(𝑠) + 𝜇𝐵(𝑠), 𝑠 ∈ 𝐼 ⊂ ℝ,  

for some differentiable functions 𝜆, 𝜇 [7]. In [8], the 
authors defined normal curves in Minkowski space-time 
𝐸1
4 and they characterized the spacelike normal curves in 
𝐸1
4. The rectifying and the osculating curves in null cone 

were examined by authors, [10, 11]. By using some 
differential geometry concepts in references [9] and [12],  
the normal curves in 𝐸2

4 are expressed. 
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2. Preliminaries 
Let 𝐸2

4 denote the 4 −dimensional pseudo-Euclidean 
space with signature (2,4), that is, the real vector space 
ℝ4 endowed with the metric ⟨, ⟩ which is defined by 

⟨, ⟩ = 𝑔 = −𝑑𝑥1
2 − 𝑑𝑥2

2 + 𝑑𝑥3
2 + 𝑑𝑥4

2, 
where (𝑥1, 𝑥2, 𝑥3, 𝑥4) is a rectangular coordinate system 
of 𝐸2

4. A vector 𝑣 of 𝐸2
4 is said to be 

𝒊) spacelike, if 𝑣 = 0 or ⟨𝑣, 𝑣⟩ > 0, 
𝒊𝒊) timelike, if 𝑣 ≠ 0 and ⟨𝑣, 𝑣⟩ < 0, 
𝒊𝒊𝒊) null (or lightlike), if 𝑣 ≠ 0 and ⟨𝑣, 𝑣⟩ = 0. 

The norm of a vector 𝑣 is givenby ∥ 𝑣 ∥= √ ),( vvg   and 

two vectors 𝑣 and 𝑤 are said to be ortogonal if 𝑔(𝑣, 𝑤) =
0 . An arbitrary curve 𝑥(𝑠) in 𝐸2

4 can locally be spacelike, 
timelike or null. A spacelike or timelike curve 𝑥(𝑠) has 
unit speed, if 𝑔(𝑥′, 𝑥′) = ±1.  
It is well known that pseudosphere, the 
pseudohyperbolic space and lightlike cone are 
hyperquadrics in 𝐸2

4, respectively as follows 
a) The pseudo-Riemannian sphere 𝑆2

3(𝑥0, 𝑟) centered at 
𝑥0 ∈ 𝐸2

4, with radius 𝑟 > 0 of 𝐸2
4 is defined by  

𝑆2
3(𝑥0, 𝑟) = {𝑥 ∈ 𝐸2

4: ⟨𝑥 − 𝑥0, 𝑥 − 𝑥0⟩ = 𝑟
2}. 

b) The pseudo-hyperbolic space 𝐻1
3(𝑥0, 𝑟) centered at 

𝑥0 ∈ 𝐸2
4, with radius 𝑟 > 0 of 𝐸2

4 is defined by 
𝐻1
3(𝑥0, 𝑟) = {𝑥 ∈ 𝐸2

4: ⟨𝑥 − 𝑥0, 𝑥 − 𝑥0⟩ = −𝑟
2}. 

The pseudo-Riemannian sphere 𝑆2
3(𝑥0, 𝑟) is diffeomorfic 

to ℝ2 × 𝑆 and the pseudo-hyperbolic space 𝐻1
3(𝑥0, 𝑟) is 

diffeomorfic to 𝑆1 × ℝ2. 
c) The hyperbolic space 𝐻3(𝑥0, 𝑟) is defined by 
𝐻3(𝑥0, 𝑟) = {𝑥 ∈ 𝐸2

4: ⟨𝑥 − 𝑥0, 𝑥 − 𝑥0⟩ = −𝑟
2, 𝑥1 > 0}. 

where the radius is 𝑟 > 0 and the centre of hyperquadric 
is 𝑥0 , [12]. 
Let {𝑇, 𝑁, 𝐵1, 𝐵2} be the non-null Frenet frame moving 
along a unit speed non-null curve 𝛽 in 𝐸2

4, where the 
frame is consisted of the tangent, the principal normal, 
the first binormal, the second binormal vector field, 
respectively. Then, the Frenet equations are given as  

𝑇′ = 𝑘1𝑁;𝑁
′ = −𝜖0𝜖1𝑘1𝑇 + 𝑘2𝐵1; (2.1a) 

𝐵1
′ = −𝜖1𝜖2𝑘2𝑁 + 𝑘3𝐵2; 𝐵2

′ = −𝜖2𝜖3𝑘3𝐵1, (2.1b) 
where the following conditions are satisfied:  

𝑔(𝑇, 𝑁) = 𝑔(𝑇, 𝐵1) = 𝑔(𝑇, 𝐵2) = 𝑔(𝑁, 𝐵2) =
𝑔(𝑁, 𝐵1) = 𝑔(𝐵1, 𝐵2) = 0; 

𝑔(𝑇, 𝑇) = 𝜖0, 𝑔(𝑁, 𝑁) = 𝜖1, 𝑔(𝐵1, 𝐵1) = 𝜖2,𝑔(𝐵2, 𝐵2) = 𝜖3 

 𝜖𝑖 ∈ {−1,1}, 𝑖 ∈ 𝐼 = {0,1,2,3}, 
[9,12]. 
Let 𝛽 be a non-null curve in 𝐸2

4. It is defined that 𝛽 is the 
normal curve in 𝐸2

4, if its position vector according to 
selected origin lies on the orthogonal complement 𝑇⊥. 
The orthogonal complement 𝑇⊥ is non-degenerate 
hyperplanes of 𝐸2

4, spanned by {𝑁, 𝐵1, 𝐵2}. From 
definition, the position vector of a normal curve 𝛽 in 𝐸2

4 
satisfies  

𝛽(𝑠) = 𝜇(𝑠)𝑁(𝑠) + 𝛾(𝑠)𝐵1(𝑠) + 𝜃(𝑠)𝐵2(𝑠) or  
                                         𝑔(𝛽, 𝑇) = 0, (2.2) 
for some differentiable functions 𝜇, 𝛾, 𝜃 for 𝑠 ∈ 𝐼 ⊂ ℝ. 

3. Representation formulae of non-null    
curves in 𝐄𝟐

𝟒 
Let 𝛽: 𝐼 → 𝐸2

4 be a non-null curve in 𝐸2
4 with arc length 

parameter 𝑠. Then, for 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4), one gets 
𝑙 = −𝛽1

2 − 𝛽2
2 + 𝛽3

2 + 𝛽4
2, 

then, if the previous equation is written as 𝛽1
2 + (𝑙 −

𝛽3
2) = 𝛽4

2 − 𝛽2
2, one can write 

𝛽1+𝑖√𝑙−𝛽3
2

𝛽4+𝛽2
= −

𝛽2−𝛽4

𝛽1−𝑖√𝑙−𝛽3
2
= 𝑥 + 𝑖𝑦, (3.1) 

𝛽1+𝑖√𝑙−𝛽3
2

𝛽2−𝛽4
= −

𝛽2+𝛽4

𝛽1−𝑖√𝑙−𝛽3
2
= −

1

𝑥−𝑖𝑦
 (3.2) 

and  
𝛽2 + 𝛽4 = ℎ. (3.3) 

Then, from (3.1), (3.2), (3.3), the following equations can 
be written.  

𝛽1 + 𝑖√𝑙 − 𝛽3
2 = ℎ(𝑥 + 𝑖𝑦); 𝛽2 + 𝛽4 = ℎ (3.4a) 

𝛽1 − 𝑖√𝑙 − 𝛽3
2 = ℎ(𝑥 − 𝑖𝑦); 𝛽2 − 𝛽4 = −ℎ(𝑥

2 + 𝑦2),
 (3.4b) 
and from (3.4), one obtains  

𝛽1 = ℎ𝑥; 𝛽2 =
ℎ

2
(1 − 𝑥2 − 𝑦2); 

   𝛽3 = ±√𝑙
2 − ℎ2𝑦2;  𝛽4 =

ℎ

2
(1 + 𝑥2 + 𝑦2). 

Hence, the curve 𝛽 can be written as follows  

𝛽(𝑠) = (ℎ𝑥,
ℎ

2
(1 − 𝑥2 − 𝑦2), ±√𝑙2 − ℎ2𝑦2, 

                               
ℎ

2
(1 + 𝑥2 + 𝑦2)), (3.5) 

and since 𝛽: 𝐼 → 𝐸2
4 is a non-null curve in 𝐸2

4 with arc 
lenght parameter 𝑠, one writes  

𝛽′(𝑠) = (ℎ𝑥′,
ℎ

2
(−2𝑥𝑥′ − 2𝑦𝑦′),

−2𝑦𝑦′ℎ2

√𝑙2 − ℎ2𝑦2
, 

                                                
ℎ

2
(2𝑥𝑥′ + 2𝑦𝑦′)); 

1 = −(ℎ𝑥′)2 − ℎ2(𝑥𝑥′ + 𝑦𝑦′)2 +
(𝑦𝑦′ℎ2)2

𝑙2 − ℎ2𝑦2
 

                                               +ℎ2(𝑥𝑥′ + 𝑦𝑦′)2; 
𝑙2 − ℎ2𝑦2 = −(ℎ𝑥′)2(𝑙2 − ℎ2𝑦2) + (𝑦𝑦′ℎ2)2; 

0 = ℎ4(𝑦2𝑦′2 − 𝑦2𝑥′2) + ℎ2(𝑦2 − 𝑙2𝑥′2) − 𝑙2. 
Therefore, by making the necessary calculations for ℎ(𝑠), 
one gets the following expressions  

𝐴 = 𝑦2𝑦′2 + 𝑦2𝑥′2; 𝐵 = 𝑦2 − 𝑙2𝑥′2. 

Here, ℎ(𝑠) satisfies ℎ = ±√
−𝐵±√𝐵2+4𝐴𝑙

2𝐴
=constant. Hence, 

we can give the following theorem. 
Theorem 1. Let 𝛽: 𝐼 → 𝐸2

4 be a non-null curve in 𝐸2
4 with 

arc lenght parameter 𝑠. Then, the curve 𝛽 can be written 
as  

𝛽(𝑠) =

(

 
 
 
 

ℎ𝑥,
ℎ

2
(1 − 𝑥2 − 𝑦2),

±√𝑙2 − ℎ2𝑦2,

ℎ

2
(1 + 𝑥2 + 𝑦2))

 
 
 
 

, 

for some functions 𝑥, 𝑦, ℎ, where  
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ℎ = ±√
−𝐵±√𝐵2+4𝐴𝑙

2𝐴
=constant. 

4. The non-null normal curves in 𝐄𝟐
𝟒 

In this section, some theorems for non-null normal 
curves are given in 𝐸2

4. 
Theorem 2. Let 𝛽 be a unit speed non-null normal curve 
in 𝐸2

4 with 𝑘1, 𝑘2, 𝑘3 ≠ 0 for each 𝑠 ∈ 𝐼 ⊂ ℝ. Then, the 
following statements hold: 
a) The principal normal, the first binormal and the second 
binormal components of the position vector of the curve 
are given respectively by  

𝑔(𝛽, 𝑁) =
−1

𝜖0𝜖1
(
1

𝑘1
) ; (4.1a) 

𝑔(𝛽, 𝐵1) =
1

𝜖0𝜖2
(
𝑘1
′

𝑘1
2𝑘2
) ; (4.1b) 

𝑔(𝛽, 𝐵2) =
−1

𝜖0𝜖2
(∫

𝑘1
′𝑘3

𝑘1
2𝑘2
𝑑𝑠). (4.1c) 

 In this case, the vector equation is given as 

𝛽(𝑠) =
−1

𝜖0𝜖1
(
1

𝑘1
)𝑁(𝑠) +

1

𝜖0𝜖2
(
𝑘1
′

𝑘1
2𝑘2
)𝐵1(𝑠)

−
1

𝜖0𝜖2
(∫

𝑘1
′𝑘3

𝑘1
2𝑘2

𝑑𝑠) 𝐵2(𝑠). 

b) The distance function 𝑙 =∥ 𝛽 ∥ is constant. 
c) The curvatures 𝑘1, 𝑘2, 𝑘3 satisfy the following equality 

−𝜖2
𝑘2

𝑘1
+ 𝜖1 (

𝑘1
′

𝑘1
2𝑘2
)
′

+ 𝜖3𝜖2𝜖1 (𝑘3 ∫
𝑘1
′𝑘3

𝑘1
2𝑘2
𝑑𝑠) = 0. (4.2) 

Proof. (a) Let 𝛽 be a unit speed non-null normal curve in 
𝐸2
4, with non zero 𝑘1, 𝑘2, 𝑘3. From definition, for the 

position vector of the curve 𝛽 using the Frenet equations 
(2.1) and the equation (2.2), one gets  

𝑇 = (−𝜖0𝜖1𝑘1𝜇)𝑇 + (
𝜇′

−𝛾𝜖1𝜖2𝑘2
)𝑁 + (

𝑘2𝜇

+𝛾′

−𝜖3𝜖2𝑘3𝜃
)𝐵1 +

                                                                  (𝑘3𝛾 + 𝜃
′)𝐵2. (4.3) 

By using equation (4.3), one can write  
−𝜖0𝜖1𝑘1𝜇 = 1; 

(𝜇′ − 𝛾𝜖1𝜖2𝑘2)𝜖1 = 0; 
(𝑘2𝜇 + 𝛾

′ − 𝜖3𝜖2𝑘3𝜃)𝜖2 = 0;                (4.4) 
(𝑘3𝛾 + 𝜃

′)𝜖3 = 0  
and therefore, one has  

𝜇 =
−1

𝜖0𝜖1𝑘1
, 𝛾 =

𝑘1
′

𝜖0𝜖2𝑘1
2𝑘2
, 𝜃 =

−1

𝜖0𝜖2
∫
𝑘1
′𝑘3

𝑘1
2𝑘2
𝑑𝑠.  (4.5) 

Finally, using (2.2) and (4.5) we easily obtain (4.1). 
Conversely, assume that the statement (a) holds, by 
derivative of the equations (4.1) with respect to 𝑠 and 
using (2.2), respectively. One obtains 𝑔(𝛽(𝑠), 𝑇) = 0. 
(b) From (4.4), one can write  
𝜇′ = 𝛾𝜖1𝜖2𝑘2; 𝛾

′ = 𝜖3𝜖2𝑘3𝜃 − 𝑘2𝜇; 𝜃
′ = −𝑘3𝛾        (4.6) 

and multiplying the first equation with 𝜇, the second 
equation with 𝛾, the last equation with 𝜃 in (4.6), 
respectively, and adding, one obtains  

𝜖1𝜇𝜇
′ + 𝜖2𝛾𝛾

′ + 𝜖3𝜃𝜃
′

= 𝛾𝜖2𝑘2𝜇 − 𝛾𝜖2𝑘2𝜇 + 𝛾𝜖3𝑘3𝜃
− 𝛾𝜖3𝑘3𝜃, 

where 𝛽 is non-null normal curve. Hence, one get  
        𝜖1𝜇𝜇

′ + 𝜖2𝛾𝛾
′ + 𝜖3𝜃𝜃

′ = 0 (4.7) 
and consequently, one writes  

𝜖1𝜇
2 + 𝜖2𝛾

2 + 𝜖3𝜃
2 = 𝑑2; 𝑑 ∈ ℝ0

+. (4.8) 
From (4.5) and (2.2), one can write  

  𝑙2 =∥ 𝛽 ∥2= 𝜇2𝜖1 + 𝛾
2𝜖2 + 𝜃

2𝜖3, (4.9) 
and using together with (4.8) and (4.9), one can say 
𝑙 =constant. Conversely, the proof is obvious. 
(c) Using the third equation in (4.4) and the expressions 
in (4.5), one can find equation (4.2). 
Conversely, assume that the statement (a) holds (4.2) 
and let 𝐶 ∈ 𝐸2

4 be a vector field, one writes    

𝐶 = 𝛽 + (
1

𝜖0𝜖1𝑘1
)𝑁 − (

𝑘1
′

𝜖0𝜖2𝑘1
2𝑘2
)𝐵1

+ (∫
𝑘1
′𝑘3

𝜖0𝜖1𝑘1
2𝑘2

𝑑𝑠)𝐵2 

and by taking the previous equation and using (2.2) and 
(4.2), one obtains 𝐶′ = 0, which means that 𝛽 is non-null 
normal curve.  
Theorem 3.  Let 𝛽: 𝐼 → 𝐸2

4 be a non-null normal curve in 
𝐸2
4 given by 𝛽(𝑡) = 𝛺(𝑡)𝜔(𝑡), where 𝛺(𝑡) is an arbitrary 

positive function and 𝜔(𝑡) a unit speed curve in 𝐸2
4. Then, 

the following expressions hold: 
a) 𝜔 is a non-null normal curve. 
b) The pair {𝛽, 𝜔} is an evolute-involute pair. 

c) Ω(𝑡) = ±√
𝐷

𝜉
=constant. 

Proof. Let 𝛽: 𝐼 → 𝐸2
4 be a non-null normal curve in 𝐸2

4 
given by 

𝛽(𝑡) = Ω(𝑡)𝜔(𝑡). (4.10) 
By derivative of the equation (4.10) with respect to 𝑠, one 
writes  

𝛽′ = Ω′𝜔 + Ω𝜔′. (4.11) 
Furthermore, the unit tangent vector of 𝛽 is given as 
follow 

𝑇𝛽 =
Ω′

𝜉
𝜔 +

Ω

𝜉
𝜔′, (4.12) 

where 𝜉 is the speed of 𝛽. Differentiating (4.12), one 
obtains  

𝑇𝛽
′ = (

Ω′

𝜉
)
′

𝜔 + ((
Ω

𝜉
)
′

+
Ω′

𝜉
)𝜔′ +

Ω

𝜉
𝜔′′. (4.13) 

Furthermore, let {𝑇𝜔, 𝑁𝜔, 𝐵1𝜔 , 𝐵2𝜔} be an orthonormal 

frame in 𝐸2
4 satisfying as follows 

⟨𝜔′′, 𝑇𝜔⟩ = ⟨𝑇𝜔
′ , 𝑇𝜔⟩ = ⟨𝑘1

𝜔𝑁𝜔, 𝑇𝜔⟩ = 0; 
⟨𝜔′′, 𝑁𝜔⟩ = ⟨𝑇𝜔

′ , 𝑁𝜔⟩ = 𝑘1
𝜔𝜖1; 

⟨𝜔′′, 𝐵1𝜔⟩ = ⟨𝑇𝜔
′ , 𝐵1𝜔⟩ = ⟨𝑘1

𝜔𝑁𝜔, 𝐵1𝜔⟩ = 0; (4.14) 

⟨𝜔′′, 𝐵2𝜔⟩ = ⟨𝑇𝜔
′ , 𝐵2𝜔⟩ = ⟨𝑘1

𝜔𝑁𝜔, 𝐵2𝜔⟩ = 0. 

Hence, decomposition of 𝜔′′ with respect to 
{𝑇𝜔 , 𝑁𝜔, 𝐵1𝜔 , 𝐵2𝜔}, one gets  

𝜔′′ = ⟨𝜔′′, 𝑇𝜔⟩𝑇𝜔 + ⟨𝜔
′′, 𝑁𝜔⟩𝑁𝜔 + ⟨𝜔

′′, 𝐵1𝜔⟩𝐵1𝜔      

+ ⟨𝜔′′, 𝐵2𝜔⟩𝐵2𝜔 , 

by using (4.14) into previous equation, one gets  
                      𝜔′′ = 𝑘1

𝜔𝑁𝜔, (4.15) 
by using (4.15) into (4.13), the following equation is 
found  

𝑘1
𝛽
𝑁𝛽 = 𝑇𝛽

′ = (
Ω′

𝜉
)
′

𝜔 + ((
Ω

𝜉
)
′

+
Ω′

𝜉
)𝑇𝜔 +

Ω

𝜉
𝑘1
𝜔𝑁𝜔. (4.16) 

By definition, 𝛽 is a non-null normal curve in 𝐸2
4. one 

writes ⟨𝑇𝛽 , 𝛽⟩ = 0. Furthermore, taking the scalar 

product of (4.16) with 𝑇𝜔 and 𝜔 is non-null normal curve, 
one writes ⟨𝑇𝜔, 𝜔⟩ = 0. Therefore, the following equation 
is written  
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       𝑘1
𝛽
⟨𝑁𝛽 , 𝑇𝑧⟩ = ((

Ω

𝜉
)
′

+
Ω′

𝜉
) 𝜖0. (4.17) 

If the pair {𝛽, 𝜔} is an evolute-involute pair, one writes 

⟨𝑁𝛽 , 𝑇𝑧⟩ = 0. Hence, one gets  

Ω′

𝜉
+
Ω′𝜉 + Ω𝜉′

𝜉2
= 0 ⟹ Ω = ±√

𝐷

𝜉
; 𝐷 ∈ ℝ+. 

Example 1. We consider a non-null normal curve 𝛽  with 
arc length given by 

𝛽(𝑠) =  (0,
1

√sinh𝑠2(sinh2 𝑠+cosh2𝑠)
4 cosh𝑠, 

√1 −
1

√(sinh2𝑠+cosh2𝑠)
sinh𝑠, 

1

sinh𝑠√(sinh2𝑠+cosh2𝑠)
cosh2𝑠), 

where s∈ (−
5𝜋

2
,
7𝜋

2
). 

Hence, the graphics of this non-null normal curve and 
rotational surfaces generated by using non-null normal 
curve are given as follows 
 

 
Figure  1: The non-null  normal curve in 𝐸2

4 
 

  
Figure  2: Rotational surfaces generated by the  non-null 
normal curves according to parameters s∈

(−
5𝜋

2
,
7𝜋

2
)  𝑎𝑛𝑑 s ∈ (−𝜋, 𝜋). 

5. Conclusion 
In this paper, the non-null normal curves in 𝐸2

4 are 
examined and some certain results of describing the non-
null normal curve are presented in detail. As a first 
instance, it is explored that the conditions of being nun-
null normal curve in pseudo Euclidean space and some 
characterizations are given . Also, for the non-null normal 

curve and the surface of rotation formed by using this 
curve the graphics are given as example. 
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