ON UNITARY SUBGROUPS OF GROUP ALGEBRAS

Zsolt Adam Balogh
Received: 10 April 2020; Revised: 7 June 2020; Accepted: 9 June 2020
Communicated by Burcu Üngör

Abstract

Let $F G$ be the group algebra of a finite p-group G over a finite field F of characteristic p and let $*$ be the classical involution of $F G$. The $*$-unitary subgroup of $F G$, denoted by $V_{*}(F G)$, is defined to be the set of all normalized units u satisfying the property $u^{*}=u^{-1}$. In this paper we give a recursive method how to compute the order of the *-unitary subgroup for certain noncommutative group algebras. A variant of the modular isomorphism question of group algebras is also considered.

Mathematics Subject Classification (2020): 16S34, 16U60
Keywords: Group ring, group of units, unitary subgroup

1. Introduction and results

Let $F G$ be the group algebra of a finite p-group G over a finite field F of positive characteristic p. Let $V(F G)$ denotes the group of normalized units in $F G$. The description of the structure of $V(F G)$ is a central problem in the theory of group algebras and it has been investigated by several authors. For an excellent survey on this topic we refer the reader to [8].

An element $u \in V(F G)$ is called unitary if $u^{*}=u^{-1}$, with respect to the classical *-involution of $F G$ (the linear extension of the involution on G which sends each element of G to its inverse). The set of all unitary elements of $V(F G)$ forms a subgroup of $V(F G)$ which is denoted by $V_{*}(F G)$ and is called *-unitary subgroup. The group $V_{*}(F G)$ plays an important role of studying the structure of the group of units of group algebras and has been investigated in several papers (see [4], [5], [9], [10], [11], [12], [15], [16], [18] and [19]). Let L be a finite Galois extension of F with Galois group G, where F is a finite field of characteristic two. Serre [21] has showed that there is a relation between the self-dual normal basis of L over F and the unitary subgroup of $F G$. This application gives a hard reason to continue studying of the unitary subgroups.

The order of $*$-unitary subgroup when G is a p-group and p is an odd prime is given in [13] and [14]. To compute the order of $V_{*}(F G)$ when G is a 2-group and $p=2$ is an open and is a particularly challenging problem. It is to be expected that the order is divisible by $|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$, where $G\{2\}$ is the set of elements of order two in G with the unit element. In [14] this conjecture was confirmed when G is an abelian 2-group and F is a finite field of characteristic 2. For dihedral and generalized quaternion 2 -groups G, where F is a finite field of characteristic 2 it was confirmed in [13]. In our paper we present a recursive method how to compute the order of $V_{*}(F G)$ and confirm the conjecture above.

The modular isomorphism problem is an old and unanswered problem in the theory of group representation. A stronger variant of the problem is said to be the isomorphism problem of normalized units (UIP) is due to Berman [7]. Let F be a finite field of characteristic p, let G and H be finite p-groups such that $V(F G)$ and $V(F H)$ are isomorphic. One may ask whether G and H are isomorphic groups? The studies in [1] and [2] resulted in proving the conjecture for some group classes. The *-unitary group of a group algebra is a small subgroup in $V(F G)$ so it is interesting to ask whether this smaller subgroup determines the basic group G or not. This problem is called the $*$-unitary isomorphism problem (*-UIP). Recently, the *unitary isomorphism problem was solved for some classes of non-abelian groups in [3].

Define the following 2-groups: the dihedral $D_{2^{n+1}}$, the generalized quaternion $Q_{2^{n+1}}$, the semidihedral group $D_{2^{n+1}}^{-}$the modular group $M_{2^{n+1}}$ and $H_{2^{n}}$, respectively:

$$
\begin{array}{rlrl}
D_{2^{n+1}} & =\left\langle a, b \mid a^{2^{n}}=1, b^{2}=1,(a, b)=a^{-2}\right\rangle ; & & (n \geq 2) \\
Q_{2^{n+1}} & =\left\langle a, b \mid a^{2^{n}}=1, b^{2}=a^{2^{n-1}},(a, b)=a^{-2}\right\rangle ; & & (n \geq 2) \\
D_{2^{n+1}}^{-} & =\left\langle a, b \mid a^{2^{n}}=1, b^{2}=1,(a, b)=a^{-2+2^{n-1}}\right\rangle ; & & (n \geq 3) \\
M_{2^{n+1}} & =\left\langle a, b \mid a^{2^{n}}=1, b^{2}=1,(a, b)=a^{2+2^{n-1}}\right\rangle ; & & (n \geq 3) \tag{1}\\
H_{2^{n}} & =\langle a, b, c| a^{2^{n-2}}=b^{2}=c^{2}=1,(a, b)=c, & \\
& (a, c)=(b, c)=1\rangle, & & (n \geq 4)
\end{array}
$$

where $(a, b):=a^{-1} b^{-1} a b$.
Let G be a finite 2-group. We denote by $G\left[2^{i}\right]$ the subgroup of G generated by elements of order 2^{i}. We use the notation $G^{2^{i}}$ for the subgroup $\left\langle g^{2^{i}} \mid g \in G\right\rangle$. Set $\Omega\{G\}=\left\{g^{2} \mid g \in G\right\}$. Let $\zeta(G)$ and G^{\prime} be the center and the commutator subgroup of G, respectively.

Let Θ denote the class of all groups with the property that $g^{h}:=h^{-1} g h=g^{ \pm 1}$ for all $g \in G \backslash G\{2\}$ and $h \in G$, which does not commute with g. It is clear that each abelian group, the dihedral $D_{2^{n+1}}$ and generalized quaternion $Q_{2^{n+1}}$ groups belong to the class Θ.

Theorem 1.1. Let F be a field with $|F|=2^{m} \geq 2$ and let G be a finite 2-group. If $C=\langle c \mid c \in \zeta(G)[2] \backslash \Omega\{G\}\rangle$ such that $G / C \in \Theta$, then

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)} \cdot\left|V_{*}(F[G / C])\right| .
$$

Corollary 1.2. Let F be a field with $|F|=2^{m} \geq 2$ and let $G=H \times E$ be a finite 2 -group, in which E is a finite elementary abelian 2-group and $H \in \Theta$. If

$$
\left|V_{*}(F H)\right|=n \cdot|F|^{\frac{1}{2}(|H|+|H\{2\}|)-1}
$$

for some $n \in \mathbb{N}$, then $\left|V_{*}(F G)\right|=n \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$. Moreover, if $H \in$ $\left\{D_{2^{s}}, Q_{2^{s}} \mid s>2\right\}$ then $n=\left\{\begin{array}{lll}1 & \text { if } & H=D_{2^{s}} ; \\ 4 & \text { if } & H=Q_{2^{s}} .\end{array}\right.$

Corollary 1.3. Let $G=H_{2^{n}}$ with $n \geq 4$. If $|F|=2^{m} \geq 2$, then

$$
\left|V_{*}(F G)\right|=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}
$$

Let us denote by $D_{8} \mathrm{Y} C_{4}$ the central product of the dihedral group D_{8} and the cyclic group C_{4}.

Theorem 1.4. Let G be a finite non-abelian 2-group of order $|G|=2^{4}$. If F is a field with $|F|=2^{m} \geq 2$, then $\left|V_{*}(F G)\right|=n \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$, where
(i) $n=1 \quad$ if $\quad G \in\left\{D_{8} \mathrm{Y} C_{4}, D_{16}, D_{8} \times C_{2}\right\}$;
(ii) $n=2 \quad$ if $\quad G \in\left\{M_{16}, D_{16}^{-}, H_{16}\right\}$;
(iii) $n=4 \quad$ if $\quad G \in\left\{Q_{16}, C_{4} \ltimes C_{4}, Q_{8} \times C_{2}\right\}$.

Theorem 1.5. Let G and H be non-abelian 2 -groups of order at most 2^{4}. If F is a finite field of characteristic two, then the isomorphism $V_{*}(F G) \cong V_{*}(F H)$ implies the following isomorphism $G \cong H$.

2. Notations and preliminaries

Let G be a finite p-group. If $\operatorname{char}(F)=p$, then (see [8, Chapters 2-3, p. 194-196])

$$
V(F G)=\left\{x=\sum_{g \in G} \alpha_{g} g \in F G \mid \chi(x)=\sum_{g \in G} \alpha_{g}=1\right\}
$$

where $\chi(x)$ is the augmentation of the element $x \in F G$. Let $\operatorname{supp}(x)$ denote the support of $x \in F G$ and $x^{g}=g^{-1} x g$, where $g \in G$. We define $\widehat{C}:=\sum_{g \in C} g$, where
C is a subset of G. Throughout this paper $|S|$ denotes the cardinality of a finite set S and $|g|$ the order of $g \in G$.

The following two lemmas will be useful.
Lemma 2.1. ([17, Theorem 2]) Let $|F|=2^{m} \geq 2$. If G is a finite abelian 2-group, then

$$
\left|V_{*}(F G)\right|=\left|G^{2}[2]\right| \cdot|F|^{\frac{1}{2}(|G|+|G[2]|)-1}
$$

Lemma 2.2. ([13, Corollary 2]) If $|F|=2^{m} \geq 2$, then
(i) $\left|V_{*}(F G)\right|=|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$ if G is a dihedral 2-group;
(ii) $\left|V_{*}(F G)\right|=4 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$ if G is a generalized quaternion 2-group.

Let H be a normal subgroup of G and $I(H):=\langle 1+h \mid h \in H\rangle_{F G}$ be the ideal of $F G$ generated by the set $\{1+h \mid h \in H\}$. Moreover, for the natural homomorphism $\Psi: F G \rightarrow F[G / H]$ we have that $F G / I(H) \cong F[G / H]$ and $\operatorname{ker}(\Psi)=I(H)$. Let us denote by $V_{*}(F \bar{G})$ the unitary subgroup of the factor algebra $F G / I(H)$, where $\bar{G}=G / H$. It is easy to check that the set

$$
N_{\Psi}^{*}=\left\{x \in V(F G) \mid \Psi(x) \in V_{*}(F \bar{G})\right\}
$$

forms a subgroup in $V(F G)$. Furthermore, the set $I(H)^{+}=\{1+x \mid x \in I(H)\}$ forms a normal subgroup in $V(F G)$. It is obvious that $S_{H}:=\left\langle x x^{*} \mid x \in N_{\Psi}^{*}\right\rangle$ is a subgroup of $I(H)^{+}$, because $x x^{*} \in 1+\operatorname{ker}(\Psi)=I(H)^{+}$for $x \in N_{\Psi}^{*}$.

Lemma 2.3. Let H be a normal subgroup of order two in a finite 2-group G and let $|F|=2^{m} \geq 2$. If S_{H} is central in N_{Ψ}^{*}, then

$$
\begin{equation*}
\left|V_{*}(F G)\right|=|F|^{\frac{1}{2}|G|} \cdot \frac{\left|V_{*}(F \bar{G})\right|}{\left|S_{H}\right|} . \tag{2}
\end{equation*}
$$

Proof. Let $\Phi(x)=x x^{*}$ for each $x \in V(F G)$. The map $\Phi: V(F G) \rightarrow V(F G)$ is not necessary a group homomorphism on $V(F G)$. However, S_{H} being central in N_{Ψ}^{*} implies that the restriction $\left.\Phi\right|_{N_{\Psi}^{*}}$ is a homomorphism. Since $N_{\Psi}^{*} / \operatorname{ker}\left(\left.\Phi\right|_{N_{\Psi}^{*}}\right) \cong S_{H}$,

$$
\left|\operatorname{ker}\left(\left.\Phi\right|_{N_{\Psi}^{*}}\right)\right|=\left|V_{*}(F G)\right|=\frac{\left|N_{\Psi}^{*}\right|}{\left|S_{H}\right|}=\frac{\left|I(H)^{+}\right| \cdot\left|V_{*}(F \bar{G})\right|}{\left|S_{H}\right|} .
$$

Evidently, $I(H)$ can be considered as a vector space over F with the following basis $\{u(1+h) \mid u \in T(G / H), h \in H\}$, where $T(G / H)$ is a complete set of left coset representatives of H in G. Thus we have that $\left|I(H)^{+}\right|=|F|^{\frac{1}{2}|G|}$ and (2) holds.

Let $|F|=2^{m} \geq 2$. Let C be a central subgroup of a 2 -group G. We denote by $V_{g_{1}, \ldots, g_{n}}$ the vector space in $F G$ over F spanned by elements $\alpha_{1} g_{1} \widehat{C}, \ldots, \alpha_{n} g_{n} \widehat{C}$, where $g_{1}, \ldots, g_{n} \in G$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$. Set the following subgroup of G :

$$
G_{g_{1}, \ldots, g_{n}}:=\left\langle 1+\alpha_{1} g_{1} \widehat{C}, \ldots, 1+\alpha_{n} g_{n} \widehat{C} \mid \alpha_{i} \in F\right\rangle
$$

Lemma 2.4. The set $1+V_{g_{1}, \ldots, g_{n}}$ coincides with $G_{g_{1}, \ldots, g_{n}}$.
Proof. If $x_{1}, x_{2} \in F G$, then the proof follows from the fact that

$$
1+\left(x_{1}+x_{2}\right) \widehat{C}=1+x_{1} \widehat{C}+x_{2} \widehat{C}=\left(1+x_{1} \widehat{C}\right)\left(1+x_{2} \widehat{C}\right)
$$

Lemma 2.5. Let $|F|=2^{m} \geq 2$. If G is a finite 2 -group, then

$$
\operatorname{supp}\left(x x^{*}\right) \cap G\{2\}=\{1\} \quad(x \in V(F G))
$$

Proof. If $x=\sum_{i=1}^{|G|} \alpha_{i} g_{i} \in V(F G)$, then

$$
x x^{*}=1+\sum_{1 \leq i<j \leq|G|} \alpha_{i} \alpha_{j}\left(g_{i} g_{j}^{-1}+\left(g_{i} g_{j}^{-1}\right)^{-1}\right)
$$

Obviously, $g_{i} g_{j}^{-1}+\left(g_{i} g_{j}^{-1}\right)^{-1}=0$ for $g_{i} g_{j}^{-1} \in G\{2\}$.
Lemma 2.6. Let $|F|=2^{m} \geq 2$. Let $H=\left\langle c \mid c^{2}=1\right\rangle$ be a central subgroup of a finite 2 -group G. If $1+g \widehat{H} \in S_{H}$ for some $g \in G$, then $g^{2}=c$.

Proof. Assume that $1+g \widehat{H} \in S_{H}$ for some $g \in G$. Since S_{H} contains only $*-$ symmetric elements, $1+g \widehat{H}=1+g^{-1} \widehat{H}$, so

$$
\left(g+g^{-1}\right) \widehat{H}=g+g c+g^{-1}+g^{-1} c=0
$$

The case $|g|=2$ is impossible by Lemma 2.5. Thus, $g=g^{-1} c$ and $g^{2}=c$.
Lemma 2.7. Let $|F|=2^{m} \geq 2$ and let G be a finite 2-group. For each subgroup $H=\left\langle c \in \zeta(G) \mid c^{2}=1\right\rangle$ of G we define the set $H_{c}:=\left\{g \in G \mid g^{2}=c\right\}$. Then

$$
S_{H}=\left\langle 1+\alpha_{g} g \widehat{H}, \quad 1+\beta_{h}\left(h+h^{-1}\right) \widehat{H} \quad \mid \quad g \in H_{c}, h \notin H_{c}, \quad \alpha_{g}, \beta_{h} \in F\right\rangle
$$

Proof. Obviously, $g h+(g h)^{-1}=g h\left(1+(g h)^{-2}\right)$, so $S_{H} \subseteq I(H)^{+}$and S_{H} contains only $*$-symmetric elements. Thus each $x \in S_{H}$ can be expressed (see Lemma 2.5 and Lemma 2.6) in the following form

$$
x=1+\sum_{g \in H_{c}} \alpha_{g} g \widehat{H}+\sum_{h \notin H_{c}} \beta_{h}\left(h+h^{-1}\right) \widehat{H}
$$

Since $\left(1+x_{1} \widehat{H}\right)\left(1+x_{2} \widehat{H}\right)=1+\left(x_{1}+x_{2}\right) \widehat{H}$ for each $x_{1}, x_{2} \in F G$, the proof is done.

Lemma 2.8. Let $|F|=2^{m} \geq 2$ and let G be a finite 2-group. If $H \leq \zeta(G)$ has order 2, then $1+\alpha\left(g+g^{-1}\right) \widehat{H} \in S_{H}$ for all $g \in G$ such that $g^{2} \notin H$.

Proof. Let $g \in G$ such that $g^{2} \notin H$. Since $g \neq g^{-1}$ and $1+\alpha g \widehat{H} \in \operatorname{ker}(\Psi)$,

$$
(1+\alpha g \widehat{H})(1+\alpha g \widehat{H})^{*}=1+\alpha\left(g+g^{-1}\right) \widehat{H}, \quad(\alpha \in F)
$$

which proves the lemma.

3. Proofs of Theorems

Proof of Theorem 1.1. If $c \in \zeta(G)[2] \backslash \Omega\{G\}$, then (see Lemmas 2.4, 2.5 and 2.8)

$$
S_{C}=\left\langle 1+\alpha\left(g+g^{-1}\right) \widehat{C} \mid \alpha \in F, g \in G \backslash G\{2\}\right\rangle
$$

Furthermore, $h^{-1}\left(g+g^{-1}\right) \widehat{C} h=\left(g+g^{-1}\right) \widehat{C}$ for all $h \in G$, because $\bar{G} \in \Theta$. Now using Lemma 2.3 we have that

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{2}|G|} \cdot \frac{\left|V_{*}(F \bar{G})\right|}{|F|^{\frac{1}{4}(|G|-|G\{2\}|)}}=|F|^{\frac{1}{4}(|G|+|G\{2\}|)} \cdot\left|V_{*}(F \bar{G})\right|
$$

Proof of Corollary 1.2. Let $G=H \times E$, where $H \in \Theta, E$ is an elementary abelian 2-group and $|E|=2^{m} \geq 1$. Now, we proceed by induction on the order of E.

For the base case $(m=0)$ we have that $\left|V_{*}(F H)\right|=n \cdot|F|^{\frac{1}{2}(|H|+|H\{2\}|)-1}$ for some n.

Let $m \geq 1$. If $C=\langle c \mid 1 \neq c \in E\rangle$, then $N:=G / C \cong H \times E_{1}$ in which $\left|E_{1}\right|=2^{m-1}$. Obviously, $N \in \Theta$ and using Theorem 1.1 we conclude that

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)}\left|V_{*}(F N)\right|,
$$

where $\left|V_{*}(F N)\right|=n \cdot|F|^{\frac{1}{2}(|N|+|N\{2\}|)-1}$. Since $|G|+|G\{2\}|=2(|N|+|N\{2\}|)$,

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)} \cdot n \cdot|F|^{\frac{1}{2}(|N|+|N[2]|)-1}=n \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}
$$

The second sentence follows immediately from the fact that $D_{2^{s}}$ and $Q_{2^{s}}$ belong to Θ for every $s>2$.

Proof of Corollary 1.3. Let $G^{\prime}=\langle c\rangle$ (see (1)). Clearly,

$$
c \in \zeta(G)[2] \backslash \Omega(G) \quad \text { and } \quad \bar{G}=G / G^{\prime} \cong C_{2^{n-2}} \times C_{2} \in \Theta
$$

Therefore $\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)}\left|V_{*}(F \bar{G})\right|$ by Theorem 1.1 and

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)} \cdot 2 \cdot|F|^{\frac{1}{4}(|G|+|G\{2\}|)}=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}
$$

by Lemma 2.1 and the fact that $|G\{2\}|=2|\bar{G}[2]|$.
Lemma 3.1. Let $G=\left(C_{4} \rtimes C_{4}\right) \times E$, where E is a finite elementary abelian 2 -group. If $|F|=2^{m} \geq 2$, then $\left|V_{*}(F G)\right|=4 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}$.

Proof. Let $G=\langle a, b\rangle \cong C_{4} \rtimes C_{4}$. If $C=\left\langle a^{2} b^{2}\right\rangle$, then $a^{2} b^{2} \in \zeta(G)[2] \backslash \Omega\{G\}$ and $\bar{G}=G / C \cong Q_{8} \in \Theta$. Now using Theorem 1.1, we obtain that

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)}\left|V_{*}\left(F Q_{8}\right)\right|
$$

According to Lemma 2.2 (ii) and the fact that $|G\{2\}|=4$, we have that

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{4}(|G|+|G\{2\}|)} \cdot 4 \cdot|F|^{\frac{1}{4}(|G|+|G\{2\}|)-1}=4 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1} .
$$

Since $\left(C_{4} \rtimes C_{4}\right) \in \Theta$, the proof follows from Corollary 1.2.
Lemma 3.2. If $|F|=2^{m} \geq 2$, then the map $\tau: F \rightarrow F$, such that $\tau(x)=x^{2}+x$ is a homomorphism on the additive group of F, in which $\operatorname{ker}(\tau)=\{0,1\}$.

Proof. Obviously,

$$
\tau(x+y)=(x+y)^{2}+(x+y)=x^{2}+y^{2}+x+y=\tau(x)+\tau(y) \quad(x, y \in F)
$$

and $x^{2}+x=x(x+1)=0$ if and only if $x \in\{0,1\}$.
Consider the following system of equations over F with variables $w_{1}, w_{2}, w_{3}, w_{4}$:

$$
\left\{\begin{array}{l}
w_{1}+w_{2}+w_{3}+w_{4}=1 ; \tag{3}\\
w_{1} w_{4}+w_{2} w_{3}=A \\
w_{1} w_{2}+w_{3} w_{4}=0,
\end{array} \quad(A \in F)\right.
$$

Lemma 3.3. Let $|F|=2^{m} \geq 2$. If \mathbb{S} is a subset of F consisting of all such $A \in F$ for which (3) has a solution in F, then $|\mathbb{S}|=\frac{1}{2}|F|$.

Proof. First, we prove that $\mathbb{S} \subseteq \operatorname{im}(\tau)$ (see Lemma 3.2). Suppose that $A \in \mathbb{S}$ and $w_{1}, w_{2}, w_{3}, w_{4} \in F$ satisfy the system (3). Then

$$
\begin{aligned}
\tau\left(w_{1}+w_{3}\right) & =\left(w_{1}+w_{3}\right)^{2}+\left(w_{1}+w_{3}\right) \\
& =\left(w_{1}+w_{3}\right)\left(1+w_{1}+w_{3}\right)=\left(w_{1}+w_{3}\right)\left(w_{2}+w_{4}\right)=A
\end{aligned}
$$

Thus for $w=w_{1}+w_{3}$ we have $\tau(w)=A$ so $\mathbb{S} \subseteq \operatorname{im}(\tau)$.
Assume that $\tau(w)=A$ for some $w \in F$. If $w=0$, then $\tau(w)=A=0$ and $w_{1}=0, w_{2}=1, w_{3}=0, w_{4}=0$ is a solution of the equation system 3. Let $w_{1}+w_{3}=w \neq 0$ for some $w_{1}, w_{3} \in F$. Set $w_{2}=\left(A+w_{1}+w w_{1}\right) w^{-1}$ and $w_{4}=w_{2}+w+1$. It is clear that $w_{1}+w_{3}+w_{2}+w_{4}=w+w+1=1$. Furthermore,

$$
w_{1} w_{2}+w_{3} w_{4}=w_{1} w_{2}+\left(w_{1}+w\right)\left(w_{2}+w+1\right)=w_{1}(1+w)+A+w w_{2}
$$

because $\tau(w)=w^{2}+w=A$. Since $w_{2}=\left(A+w_{1}+w w_{1}\right) w^{-1}$ we can compute that $w_{1}(w+1)+w w_{2}+A=w_{1}(1+w)+\left(A+w_{1}+w w_{1}\right)+A=0$. Thus we have proved that $w_{1} w_{2}+w_{3} w_{4}=0$. Finally,

$$
\begin{aligned}
A=w(w+1) & =\left(w_{1}+w_{3}\right)\left(w_{2}+w_{4}\right) \\
& =w_{1} w_{2}+w_{1} w_{4}+w_{2} w_{3}+w_{3} w_{4}=w_{1} w_{4}+w_{2} w_{3}
\end{aligned}
$$

which shows that $\operatorname{im}(\tau)=\mathbb{S}$. The proof is complete.

Lemma 3.4. Let $G=\langle a, b\rangle \cong D_{16}^{-}$(see (1)). If $|F|=2^{m} \geq 2$, then

$$
\left|V_{*}\left(F D_{16}^{-}\right)\right|=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}
$$

Proof. Clearly, $\zeta(G)=\left\langle a^{4}\right\rangle$ and $N=\left\langle a^{2}\right\rangle$ is normal in G. Furthermore, each $x \in F G$ can be written as $x=x_{1}+x_{2} a+x_{3} b+x_{4} a b$ with $x_{i} \in F N$ and

$$
\begin{aligned}
x x^{*}=\left(x_{1} x_{1}^{*}+x_{2} x_{2}^{*}\right. & \left.+x_{3} x_{3}^{*}+x_{4} x_{4}^{*}\right)+\left(x_{2} x_{1}^{*}+x_{4} x_{3}^{*}\right) a \\
& +\left(x_{1} x_{2}^{*}+x_{3} x_{4}^{*}\right) a^{7}+\left(x_{1} x_{4}^{*}+x_{2} x_{3}^{*}\right)\left(a+a^{5}\right) b .
\end{aligned}
$$

Set $w_{i}=\chi\left(x_{i}\right)$. If $x x^{*} \in S_{\zeta(G)}$, then $w_{1}+w_{2}+w_{3}+w_{4}=1$ and $w_{1} w_{2}+w_{3} w_{4}=0$ by the previous formula. Therefore if $x x^{*} \in S_{\zeta(G)}$, then there exist $w_{1}, w_{2}, w_{3}, w_{4} \in F$ satisfying the system (3), for some $A \in \mathbb{S}$.

Let $C:=\zeta(G)$ and $M=\left\{g \in G \mid g^{2}=a^{4}\right\}=\left\{a^{2}, a^{6}, a b, a^{3} b, a^{5} b, a^{7} b\right\}$. Each *-symmetric element of $I(C)^{+}$(see Lemma 2.7) can be written as

$$
\begin{aligned}
1+\alpha_{1}\left(a+a^{-1}\right) \widehat{C} & +\alpha_{2} a^{2} \widehat{C}+\alpha_{3} a b \widehat{C} \\
& +\alpha_{4} a^{3} b \widehat{C}+\alpha_{5} b+\alpha_{6} a^{2} b+\alpha_{7} a^{4} b+\alpha_{8} a^{6} b
\end{aligned} \quad\left(\alpha_{i} \in F\right) .
$$

According to Lemma 2.8, $1+\alpha\left(a+a^{-1}\right) \widehat{C} \in S_{C}$ for any $\alpha \in F$. It follows that $1+\alpha g \notin S_{C}$ if $g \in G\{2\}$ by Lemma 2.5.

Since $\delta+\delta a^{2}+a \in V(F G)$ for every $\delta \in F$, an easy computation shows that

$$
\left(\delta+\delta a^{2}+a\right)\left(\delta+\delta a^{2}+a\right)^{*}=1+\delta^{2}\left(a^{2}+a^{-2}\right)=1+\delta^{2} a^{2} \widehat{C}
$$

which confirm that $\delta+\delta a^{2}+a \in N_{\Psi}^{*}$. Obviously, $\eta(\alpha)=\alpha^{2}$ is an automorphism of $U(F)$, so we can pick δ such that $\alpha_{2}=\delta^{2}$. Therefore $1+\alpha_{2} a^{2} \widehat{C} \in S_{C}$ for every $\alpha_{2} \in F$.

A straightforward computation shows that

$$
\left(\alpha\left(a+a^{7}\right)+b\right)\left(\alpha\left(a+a^{7}\right)+b\right)^{*}=1+\alpha^{2} a^{2} \widehat{C}+\alpha\left(a b+a^{3} b\right) \widehat{C}
$$

for every $\alpha \in F$ so $\alpha\left(a+a^{7}\right)+b \in N_{\Psi}^{*}$. Using Lemma 2.4 and the fact that $1+\alpha_{2} a^{2} \widehat{C} \in S_{C}$, we have that $1+\alpha\left(a b+a^{3} b\right) \widehat{C} \in S_{C}$ for every $\alpha \in F$.

We have proved that the group N_{1} generated by the set

$$
\left\{1+\alpha_{1}\left(a+a^{-1}\right) \widehat{C}\right\} \cup\left\{1+\alpha_{2} a^{2} \widehat{C}\right\} \cup\left\{1+\alpha_{3}\left(a b+a^{3} b\right) \widehat{C}\right\}, \quad\left(\alpha_{i} \in F\right)
$$

is a subgroup of S_{C} by Lemma 2.4 and $\left|N_{1}\right|=|F|^{3}$.
Let $u=w_{1}+w_{2} a+w_{3} b+w_{4} a b \in F D_{16}^{-}$, such that $w_{1}, w_{2}, w_{3}, w_{4} \in F$ satisfy the system (3). It is easy to check that

$$
u u^{*}=1+\left(w_{1} w_{4}+w_{2} w_{3}\right) a b \widehat{C}
$$

and $N_{2}=\langle 1+\alpha a b \widehat{C} \mid \alpha \in \mathbb{S}\rangle$ is a subgroup of S_{C} with order $\left|N_{2}\right|=\frac{1}{2}|F|$ by Lemma 3.3. Using a similar argument, $1+\alpha a^{3} b \widehat{C} \in S_{C}$ if $\alpha \in \mathbb{S}$. It follows that $S_{C}=N_{1} \times N_{2}$ and $\left|S_{C}\right|=\frac{1}{2}|F|^{4}$.

Since $\bar{G}=G / \zeta(G) \cong D_{8}$, the order $\left|V_{*}(F \bar{G})\right|=|F|^{\frac{3}{8}}|G|$ by Lemma 2.2 (i). It is clear that $\frac{3}{8}|G|-3=\frac{1}{2}|G\{2\}|$. According to Lemma 2.3

$$
\left|V_{*}(F G)\right|=2 \cdot|F|^{\frac{1}{2}|G|}|F|^{\left(\frac{3}{8}|G|-3\right)-1}=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1} .
$$

Lemma 3.5. Let $G=\langle a, b\rangle \cong M_{16}$ (see (1)). If $|F|=2^{m} \geq 2$, then

$$
\left|V_{*}(F G)\right|=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1} .
$$

Proof. If $y \in S_{G^{\prime}}$, then

$$
y=1+\beta_{1}\left(a+a^{3}\right) \widehat{G^{\prime}}+\beta_{2} a^{2} \widehat{G^{\prime}}+\beta_{3} \widehat{G^{\prime}}+\beta_{4} b \widehat{G^{\prime}}+\beta_{5}\left(a+a^{3}\right) b \widehat{G^{\prime}}+\beta_{6} a^{2} b \widehat{G^{\prime}},
$$

in which $\beta_{1}, \ldots, \beta_{6} \in F$. Moreover,

$$
1+\beta_{3} \widehat{G^{\prime}}, \quad 1+\beta_{4} b \widehat{G^{\prime}} \notin S_{G^{\prime}} \quad \text { and } \quad \beta_{1}\left(a+a^{3}\right) \widehat{G^{\prime}}, \beta_{5}\left(a+a^{3}\right) b \widehat{G^{\prime}} \in S_{G^{\prime}}
$$

by Lemma 2.5 and Lemma 2.8, respectively. Since $\eta(\alpha)=\alpha^{2}$ is an automorphism of $U(F)$ we can pick α such that $\beta_{2}=\alpha^{2}$. Then $u=\alpha^{2}+a+\alpha^{2} a^{2} \in V(F G)$ and

$$
u u^{*}=1+\beta_{2} a^{2} \widehat{G^{\prime}},
$$

which proves that $u \in N_{\Psi}^{*}$ and $1+\beta_{2} a^{2} \widehat{G^{\prime}} \in S_{G^{\prime}}$ for every $\beta_{2} \in F$. The identity

$$
\left(\alpha a^{2}+\left(1+\alpha a^{2}\right) b\right)\left(\alpha a^{2}+\left(1+\alpha a^{2}\right) b\right)^{*}=1+\alpha a^{2} \widehat{G^{\prime}}+\alpha a^{2} \widehat{G^{\prime}} b
$$

shows that $\alpha a^{2}+\left(1+\alpha a^{2}\right) b \in N_{\Psi}^{*}$. Therefore $1+\alpha a^{2} \widehat{G^{\prime}}+\alpha a^{2} b \widehat{G^{\prime}} \in S_{G^{\prime}}$ for every $\alpha \in F$. From $1+\alpha a^{2} \widehat{G^{\prime}} \in S_{G^{\prime}}$ we get $1+\alpha a^{2} b \widehat{G^{\prime}} \in S_{G^{\prime}}$ by Lemma 2.4.

We have proved that

$$
\begin{aligned}
S_{G^{\prime}}=\left\langle 1+\alpha_{1}\left(a+a^{3}\right) \widehat{G^{\prime}}, \quad 1+\alpha_{2} a^{2} \widehat{G^{\prime}}, \quad\right. & 1+\alpha_{3}\left(a+a^{3}\right) b \widehat{G^{\prime}}, \\
& 1+\alpha_{4} a^{2} b \widehat{G^{\prime}}\left|\alpha_{i} \in F\right\rangle \subseteq \zeta(V(F G)) .
\end{aligned}
$$

Consequently, $\left|S_{G^{\prime}}\right|=|F|^{4}$ and $\left|V_{*}(F \bar{G})\right|=2 \cdot|F|^{5}$, by Lemma 2.1 and the fact that $\bar{G}=G / G^{\prime} \cong C_{4} \times C_{2}$.

Finally, using that $|G\{2\}|=4$ Lemma 2.3 shows that

$$
\left|V_{*}(F G)\right|=2 \cdot|F|^{\frac{1}{2}|G|+1}=2 \cdot|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1} .
$$

Lemma 3.6. Let $G=\langle a, b\rangle Y\langle c\rangle \cong D_{8} Y C_{4}$ (see (1)). If $|F|=2^{m} \geq 2$, then

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1} .
$$

Proof. Clearly, $G^{\prime}=\left\langle a^{2}\right\rangle$ and $\left\{g \in G \mid g^{2}=a^{2}\right\}=\left\{a, a^{3}, c, a^{2} c, b c, a b c, a^{2} b c, a^{3} b c\right\}$. Let us prove that $S_{G^{\prime}}=\left\langle 1+\alpha g \widehat{G^{\prime}} \mid g \in G \backslash G\{2\}, \alpha \in F\right\rangle$. Indeed, each $x \in S_{G^{\prime}}$ can be written as $x=1+\alpha_{1} a \widehat{G^{\prime}}+\alpha_{2} b c \widehat{G^{\prime}}+\alpha_{3} c \widehat{G^{\prime}}+\alpha_{4} a b c \widehat{G^{\prime}}$ by Lemma 2.7 and 2.8. Using the following computation

$$
\begin{aligned}
(1+\alpha b+\alpha a)(1+\alpha b+\alpha a)^{*} & =1+\alpha a \widehat{G^{\prime}} \\
(1+\alpha c+\alpha a)(1+\alpha c+\alpha a)^{*} & =1+\alpha c \widehat{G^{\prime}}+\alpha a \widehat{G^{\prime}} \\
(1+\alpha c+\alpha b)\left(1+\alpha a^{2} c+\alpha b\right)^{*} & =1+\alpha c \widehat{G^{\prime}}+\alpha^{2} b c \widehat{G^{\prime}} \\
\left(a^{2} c+\alpha a b+\alpha a c\right)\left(a^{2} c+\alpha a b+\alpha a c\right)^{*} & =1+\left(\alpha a b c+\alpha a+\alpha^{2} b c\right) \widehat{G^{\prime}}
\end{aligned}
$$

it is easy to check that $S_{G^{\prime}}=\left\langle 1+\alpha_{1} a \widehat{G^{\prime}}, 1+\alpha_{2} c \widehat{G^{\prime}}, 1+\alpha_{3} b c \widehat{G^{\prime}}, 1+\alpha_{4} a b c \widehat{G^{\prime}} \mid \alpha_{i} \in F\right\rangle$ by Lemma 2.4 so $\left|S_{G^{\prime}}\right|=|F|^{4}$.

Since $\bar{G}=G / G^{\prime} \cong C_{2} \times C_{2} \times C_{2}$, Lemma 2.1 shows that $\left|V_{*}(F \bar{G})\right|=|F|^{7}$. It is obvious that $|G\{2\}|=4$, so $\frac{\left|V_{*}(F \bar{G})\right|}{\left|S_{G^{\prime}}\right|}=|F|^{\frac{1}{2}|G\{2\}|-1}$. According to Lemma 2.3 we get

$$
\left|V_{*}(F G)\right|=|F|^{\frac{1}{2}|G|}|F|^{\frac{1}{2}|G\{2\}|-1}=|F|^{\frac{1}{2}(|G|+|G\{2\}|)-1}
$$

Proof of Theorem 1.4. It follows immediately from Corollaries 1.2, 1.3 and Lemmas 3.1, 3.4-3.6.

Proof of Theorem 1.5. Our statement holds if G is a non-abelian group of order $|G|=2^{3}$ by [18] and [19]. Moreover, it is also true if $|G|=2^{4}$ and $|F|=2$ by [3] and [9].

Let $|F|>2$ and $|G|=2^{4}$. Theorem 1.4 yields that $\left|V_{*}(F G)\right|=\left|V_{*}(F H)\right|$ if and only if $G \in\left\{C_{4} \ltimes C_{4}, Q_{8} \times C_{2}\right\}$. Without loss of generality we can assume that $G \cong Q_{8} \times C_{2}=\langle a, b\rangle \times\langle c\rangle$ and $H \cong C_{4} \ltimes C_{4}$. If $M=\langle a, c\rangle<G$, then each $x \in V(F G)$ can be written as $x=x_{1}+x_{2} b$, where $x_{1}, x_{2} \in F M$. Obviously, $x x^{*}=x_{1} x_{1}^{*}+x_{2} x_{2}^{*}+\left(x_{1} x_{2}+x_{1} x_{2} a^{2}\right) b$ and

$$
\begin{equation*}
x^{2}=x_{1}^{2}+x_{2} x_{2}^{*} a^{2}+\left(x_{1} x_{2}+x_{1}^{*} x_{2}\right) b \tag{4}
\end{equation*}
$$

Furthermore, $x \in V_{*}(F G)$ if and only if $x_{1} x_{1}^{*}=x_{2} x_{2}^{*}+1$ and $x_{1} x_{2}=x_{1} x_{2} a^{2}$. Since x is a unit, $\chi\left(x_{1}\right)+\chi\left(x_{2}\right)=1$, so consider the following cases.
Case 1. Let $\chi\left(x_{1}\right)=1$ and $\chi\left(x_{2}\right)=0$. From the equality $x_{1} x_{2}=x_{1} x_{2} a^{2}$ we conclude that $x_{2}\left(1+a^{2}\right)=0$ and (see [20, Theorem 11]) we can write

$$
x_{2}=\alpha_{0}\left(1+a^{2}\right)+\alpha_{1}\left(1+a^{2}\right) a+\alpha_{2}\left(1+a^{2}\right) c+\alpha_{3}\left(1+a^{2}\right) a c, \quad\left(\alpha_{i} \in F\right)
$$

By (4) and the fact that

$$
x_{1}+x_{1}^{*}=\beta_{0}\left(1+a^{2}\right)+\beta_{1}\left(1+a^{2}\right) a+\beta_{2}\left(1+a^{2}\right) c+\beta_{3}\left(1+a^{2}\right) a c, \quad\left(\beta_{i} \in F\right)
$$

we conclude that $x^{2}=x_{1}^{2}$ and $x_{1}^{-1}=x_{1}^{*}$. According to [14, Theorem 2(ii)] $V_{*}(F M) \cong M \times N$ in which N is an elementary abelian group. Consequently, $x^{2} \in\left\{1, a^{2}\right\}$.
Case 2. Let $\chi\left(x_{1}\right)=0$ and $\chi\left(x_{2}\right)=1$. From the equation $x_{1} x_{2}=x_{1} x_{2} a^{2}$ we conclude that $x_{1}\left(1+a^{2}\right)=0$, so (see [20, Theorem 11])

$$
x_{1}=\alpha_{0}\left(1+a^{2}\right)+\alpha_{1}\left(1+a^{2}\right) a+\alpha_{2}\left(1+a^{2}\right) c+\alpha_{3}\left(1+a^{2}\right) a c, \quad\left(\alpha_{i} \in F\right)
$$

Equations (4), $x_{2} x_{2}^{*}=x_{1} x_{1}^{*}+1=1$ and $x_{1}+x_{1}^{*}=0$ imply that $x^{2}=x_{1}^{2}+1=1$.
Consequently, if $x \in V_{*}(F G)$, then $x^{2} \in\left\{1, a^{2}\right\}$, so $\left|V_{*}^{2}(F G)\right|=\left|\left\langle a^{2}\right\rangle\right|=2$.
Let $H \cong C_{4} \ltimes C_{4}$. Clearly, $\left|V_{*}(F H)\right|>2$ because $H^{2} \subseteq V_{*}^{2}(F H)$. This proofs that $V_{*}(F G)$ and $V_{*}(F H)$ are not isomorphic groups.

Note that Theorem 1.4 was verified by GAP package RAMEGA [6].
Acknowledgement. The author would like to thank the anonymous reviewers for their careful reading of the manuscript and their many insightful comments and suggestions.

References

[1] Z. Balogh and A. Bovdi, Group algebras with unit group of class p, Publ. Math. Debrecen, 65(3-4) (2004), 261-268.
[2] Z. Balogh and A. Bovdi, On units of group algebras of 2-groups of maximal class, Comm. Algebra, 32(8) (2004), 3227-3245.
[3] Z. Balogh and V. Bovdi, The isomorphism problem of unitary subgroups of modular group algebras, Publ. Math. Debrecen, 97(1-2) (2020), 27-39, see also arXiv:1908.03877v2 [math.RA].
[4] Z. Balogh, L. Creedon and J. Gildea, Involutions and unitary subgroups in group algebras, Acta Sci. Math. (Szeged), 79(3-4) (2013), 391-400.
[5] Z. Balogh and V. Laver, Isomorphism problem of unitary subgroups of group algebras, Ukrainian Math. J., 72(6) (2020), 871-879.
[6] Z. Balogh and V. Laver, RAMEGA - RAndom MEthods in Group Algebras, Version 1.0.0, (2020).
[7] S. D. Berman, Group algebras of countable abelian p-groups, Publ. Math. Debrecen, 14 (1967), 365-405.
[8] A. Bovdi, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen, 52(1-2) (1998), 193-244.
[9] A. Bovdi and L. Erdei, Unitary units in modular group algebras of groups of order 16, Technical Reports, Universitas Debrecen, Dept. of Math., L. Kossuth Univ., 4(157) (1996), 1-16.
[10] A. Bovdi and L. Erdei, Unitary units in modular group algebras of 2-groups, Comm. Algebra, 28(2) (2000), 625-630.
[11] V. A. Bovdi and A. N. Grishkov, Unitary and symmetric units of a commutative group algebra, Proc. Edinb. Math. Soc. (2), 62(3) (2019), 641-654.
[12] V. Bovdi and L. G. Kovács, Unitary units in modular group algebras, Manuscripta Math., 84(1) (1994), 57-72.
[13] V. Bovdi and A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra, 28(4) (2000), 1897-1905.
[14] A. A. Bovdi and A. A. Sakach, Unitary subgroup of the multiplicative group of a modular group algebra of a finite abelian p-group, Mat. Zametki, 45(6) (1989), 23-29.
[15] V. Bovdi and M. Salim, On the unit group of a commutative group ring, Acta Sci. Math. (Szeged), 80(3-4) (2014), 433-445.
[16] A. A. Bovdi and A. Szakács, A basis for the unitary subgroup of the group of units in a finite commutative group algebra, Publ. Math. Debrecen, 46(1-2) (1995), 97-120.
[17] A. Bovdi and A. Szakács, Units of commutative group algebra with involution, Publ. Math. Debrecen, 69(3) (2006), 291-296.
[18] L. Creedon and J. Gildea, Unitary units of the group algebra $\mathbb{F}_{2^{k}} Q_{8}$, Internat. J. Algebra Comput., 19(2) (2009), 283-286.
[19] L. Creedon and J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} D_{8}$, Canad. Math. Bull., 54(2) (2011), 237-243.
[20] E. T. Hill, The annihilator of radical powers in the modular group ring of a p-group, Proc. Amer. Math. Soc., 25 (1970), 811-815.
[21] J.-P. Serre, Bases normales autoduales et groupes unitaires en caractéristique 2, Transform. Groups, 19(2) (2014), 643-698.

Zsolt Adam Balogh

Department of Mathematical Sciences
United Arab Emirates University (UAEU)
United Arab Emirates
e-mail: baloghzsa@gmail.com

