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ABSTRACT. Let F'G be the group algebra of a finite p-group G over a finite field
F of characteristic p and let * be the classical involution of F'G. The *-unitary

subgroup of F'G, denoted by Vi (FG), is defined to be the set of all normalized

1

units u satisfying the property u* = w~". In this paper we give a recursive

method how to compute the order of the *-unitary subgroup for certain non-
commutative group algebras. A variant of the modular isomorphism question

of group algebras is also considered.
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1. Introduction and results

Let F'G be the group algebra of a finite p-group G over a finite field F' of positive
characteristic p. Let V(FG) denotes the group of normalized units in F'G. The
description of the structure of V(FQG) is a central problem in the theory of group
algebras and it has been investigated by several authors. For an excellent survey
on this topic we refer the reader to [8].

An element u € V(FQG) is called unitary if u* = u~!, with respect to the classical
x-involution of F'G (the linear extension of the involution on G which sends each
element of G to its inverse). The set of all unitary elements of V(FG) forms a
subgroup of V(FG) which is denoted by V. (FG) and is called *-unitary subgroup.
The group V. (FG) plays an important role of studying the structure of the group
of units of group algebras and has been investigated in several papers (see [4], [5],
[9], [10], [11], [12], [15], [16], [18] and [19]). Let L be a finite Galois extension of
F with Galois group G, where F' is a finite field of characteristic two. Serre [21]
has showed that there is a relation between the self-dual normal basis of L over F'
and the unitary subgroup of F'G. This application gives a hard reason to continue

studying of the unitary subgroups.

The research was supported by UAEU Research Start-up Grant No. G00002968.
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The order of x-unitary subgroup when G is a p-group and p is an odd prime is
given in [13] and [14]. To compute the order of Vi (F'G) when G is a 2-group and
p = 2 is an open and is a particularly challenging problem. It is to be expected
that the order is divisible by |F|z(CIHIG{ZIN=1 where G{2} is the set of elements
of order two in G with the unit element. In [14] this conjecture was confirmed when
G is an abelian 2-group and F' is a finite field of characteristic 2. For dihedral and
generalized quaternion 2-groups G, where F' is a finite field of characteristic 2 it
was confirmed in [13]. In our paper we present a recursive method how to compute
the order of V,(F'G) and confirm the conjecture above.

The modular isomorphism problem is an old and unanswered problem in the
theory of group representation. A stronger variant of the problem is said to be the
isomorphism problem of normalized units (UIP) is due to Berman [7]. Let F be a
finite field of characteristic p, let G and H be finite p-groups such that V(FG) and
V(FH) are isomorphic. One may ask whether G and H are isomorphic groups? The
studies in [1] and [2] resulted in proving the conjecture for some group classes. The
s-unitary group of a group algebra is a small subgroup in V(F'G) so it is interesting
to ask whether this smaller subgroup determines the basic group G or not. This
problem is called the x-unitary isomorphism problem (*-UIP). Recently, the *-
unitary isomorphism problem was solved for some classes of non-abelian groups in

Define the following 2-groups: the dihedral Dg.+1, the generalized quaternion
Q2n+1, the semidihedral group D,,,, the modular group Mynt1 and Han, respec-

tively:
Doni1 = { a,b | a* =1,0*=1,(a,b) =a"?); (n>2)
Qon+1 ={ a,b | a? =1, = a2"71, (a,b) =a"2); (n>2)
Dyv={( ab | a® =1,0>=1,(a,b) =a 22" " ); (n > 3)
Monir = { ab | a® =1,0° =1, (a,b) = a>2" " ); (n>3) W
Hyn = (a,b,c| === 1, (a,b) = ¢,
(@e)=e)=1),  (n=4)

where (a,b) := a~'b"1ab.

Let G be a finite 2-group. We denote by G[2] the subgroup of G generated by
clements of order 2/, We use the notation G2 for the subgroup ( g% lg € G ).
Set Q{G} = {g*® | g € G}. Let ((G) and G’ be the center and the commutator
subgroup of G, respectively.
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Let © denote the class of all groups with the property that ¢" := h=1gh = ¢g*!
for all g € G\ G{2} and h € G, which does not commute with g. It is clear that
each abelian group, the dihedral Dgn+:1 and generalized quaternion Qgn+1 groups

belong to the class ©.

Theorem 1.1. Let F' be a field with |F| = 2™ > 2 and let G be a finite 2-group.
IfC={(c|ced(@2\QHG}) such that G/C € ©, then

V.(FG)| = [F[HICHCEI v (FlG/C))l.
Corollary 1.2. Let F be a field with |F| =2™ > 2 and let G = H x E be a finite
2-group, in which E is a finite elementary abelian 2-group and H € ©. If
\V.(FH)| = n - |F|z(HI+H{ZH)-1
for some n € N, then |V,(FG)| = n - |F|zUCIHIGZD=1 " Moreover, if H €
4 Zf H == QQS.

Corollary 1.3. Let G = Hon withn > 4. If |F| =2™ > 2, then

{D2s,Qas | s > 2} then n =

V.(FG)| =2 |F|z(GIHIGEN -1

Let us denote by Dg Y Cy the central product of the dihedral group Dg and the
cyclic group Cj.

Theorem 1.4. Let G be a finite non-abelian 2-group of order |G| =2*. If F is a
field with |F| = 2™ > 2, then |V.(FG)| = n - |F|2(CIHIG2ID=1  yhere
(i) n=1 i Ge{DgY Cy Dig,Dg x Ca};
(i) n=2 if Ge{Mg,Dig, Hi};
(iii) n=4 if Ge€{Q6,Csx Cy,Qg x Co}.

Theorem 1.5. Let G and H be non-abelian 2-groups of order at most 2*. If F is a
finite field of characteristic two, then the isomorphism V,(FG) = V.(FH) implies
the following isomorphism G = H.

2. Notations and preliminaries

Let G be a finite p-group. If char(F) = p, then (see [8, Chapters 2-3, p. 194-196))

V(FG):{zzz:aggeFG | x(z)zZagzl},

9eG geG

where x(x) is the augmentation of the element z € FG. Let supp(z) denote the

1

support of x € FG and z9 = g~ "zg, where g € G. We define C:= EQEC g, where
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C is a subset of G. Throughout this paper |S| denotes the cardinality of a finite
set S and |g| the order of g € G.

The following two lemmas will be useful.

Lemma 2.1. ([17, Theorem 2]) Let |F| = 2™ > 2. If G is a finite abelian 2-group,
then
Vi (FG)| = |G?2]| - |F|zGIHIGRID-1,

Lemma 2.2. ([13, Corollary 2]) If |F| = 2™ > 2, then

(i) Va(FG)| = |F|%(\G\+|G{2}|)*1 z'fG is a dihedral 2-group;
(ii) |V.(FG)| = 4 - |F|2(CHIGEID-1 4r G is a generalized quaternion 2-group.

Let H be a normal subgroup of G and I(H) := ( 14+h | h € H )pg be the ideal of
FG generated by the set {1+h | h € H}. Moreover, for the natural homomorphism
¥ : FG — F[G/H] we have that FG/I(H) = F|G/H| and ker(¥) = I(H). Let
us denote by Vi(FG) the unitary subgroup of the factor algebra FG/I(H), where
G = G/H. Tt is easy to check that the set

N} = {z € V(FG) | U(z) € V.(FG)}

forms a subgroup in V(FG). Furthermore, the set I(H)* = {1+ x|z € I(H)}
forms a normal subgroup in V(F'G). It is obvious that Sy := (zz* |z € N} ) is a
subgroup of I(H)*, because xz* € 1 + ker(¥) = I(H)* for z € Nj,.

Lemma 2.3. Let H be a normal subgroup of order two in a finite 2-group G and
let |F| =2™ > 2. If Sy is central in N, then

V(FG)| = |F|H9 [oEDL @

Proof. Let ®(z) = za* for each x € V(FG). The map @ : V(FG) — V(FG) is

not necessary a group homomorphism on V(F'G). However, Sy being central in NJ,

implies that the restriction ®|y; is a homomorphism. Since Ny /ker(®|y;) = Sg,

Ny I(H)F|-|V.(FG
| ker(®| )| = [Va(FG)| = [y = LUDTLRLEG)

Evidently, I(H) can be considered as a vector space over F' with the following basis
{u(l4+h) | ue T(G/H), h € H}, where T(G/H) is a complete set of left coset
representatives of H in G. Thus we have that [I(H)T| = |F|2/¢ and (2) holds. O

Let |F| = 2™ > 2. Let C be a central subgroup of a 2-group G. We denote by
Vir,....gn, the vector space in F'G over F' spanned by elements a1916’ angnC

where ¢g1,...,9, € G and aq,...,qa, € F. Set the following subgroup of G:

Gar,....gn =1 +a1g16, ol +angna | a; € F).
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Lemma 2.4. The set 1 +V,, . 4. coincides with Gy, .. ..

n

Proof. If 21,29 € FG, then the proof follows from the fact that
1+ (21 4+ 22)C =1+ 21C + 2C = (1 + 2:C)(1 + 22C). 0
Lemma 2.5. Let |F|=2™ > 2. If G is a finite 2-group, then
supp(zz*) N G{2} = {1} (x € V(FG)).

lill a;g; € V(FG), then

Proof. If z =5
zxt =1+ Z oot (gigj_l + (gigj_l)_l).
1<i<j<|G]
Obviously, gigfl + (gz‘gfl)_l =0 for gig;1 e G{2}. O
Lemma 2.6. Let |F| =2 >2. Let H=(c|c*=1) be a central subgroup of a
finite 2-group G. If 1 + gﬁ € Sy for some g € G, then ¢g° = c.

Proof. Assume that 1+ gfI € Sy for some g € G. Since Sy contains only *-
symmetric elements, 1 + gH = 1+ ¢~ 'H, so
(9g+9g DWH=g+gc+g ' +g tc=0.

1

The case |g| = 2 is impossible by Lemma 2.5. Thus, g = g~ !c and g2 = c. O

Lemma 2.7. Let |F| =2"™ > 2 and let G be a finite 2-group. For each subgroup
H={ce((G)]|c*=1) of G we define the set H. := {g € G | g°> = c¢}. Then

Sy ={(1+a,9H, 14B(h+hYH | geH,h¢&H, appbcF).
Proof. Obviously, gh+ (gh)~! = gh(1+ (gh)=2),s0 Sy C I(H)" and Sy contains

only *-symmetric elements. Thus each € Sy can be expressed (see Lemma 2.5

and Lemma 2.6) in the following form

r=1+ Z aggH + Z Bu(h+h~Y)H.
g€EH, hgH.

Since (1+ =1 H)(1 + wgﬁ) =14 (21 + mg)ﬁ for each x1,z2 € F'G, the proof is
done. 0

Lemma 2.8. Let |F| = 2™ > 2 and let G be a finite 2-group. If H < ((G) has
order 2, then 1+ a(g + gil)ﬁ € Sy for all g € G such that g*> ¢ H.

Proof. Let g € G such that g ¢ H. Since g # g~ ! and 1 + agf] € ker(¥),
(1+agf])(1+agﬁ)*:1+a(g+gfl)ﬁ, (€ F)

which proves the lemma. O
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3. Proofs of Theorems

Proof of Theorem 1.1. If ¢ € ((G)[2] \ Q{G}, then (see Lemmas 2.4, 2.5 and
2.8)

Se=(1+alg+g )C|acF geG\G{2}).
Furthermore, h=1(g + g~ )Ch = (g + ¢g~1)C for all h € G, because G € ©. Now

using Lemma 2.3 we have that

V.(FG)| = |F|zI6l. % = |F|1IGHIGE) |V, (FG)). 0

Proof of Corollary 1.2. Let G = H x E, where H € ©, E is an elementary
abelian 2-group and |E| = 2™ > 1. Now, we proceed by induction on the order of
E.

For the base case (m = 0) we have that |V,(FH)| = n - |[F|2(HIFIH{2ID-1 for
some n.

Let m>1. fC =(c|1#ce€FE) then N := G/C = H x E; in which
|E1| = 2™m~L. Obviously, N € © and using Theorem 1.1 we conclude that

Vi (FG)| = |F|FUCHIE2ID Y, (FN)),
where |Vi(FN)| = n - |[F|2INHINEZID-1 Gince |G|+ |G{2}| = 2(|N| + [N{2}]),
IVi(FG)| = |F|RUCIHIGEID .y | 3 INHINEID=T — 5 | p|3(GIHIG{2}D -1,

The second sentence follows immediately from the fact that Dos and Q2 belong to

O for every s > 2. (]
Proof of Corollary 1.3. Let G’ = (¢ ) (see (1)). Clearly,
ceC(@2I\QUG) and G =G/G =2 Con-2x Cqy € O.
Therefore |V.(FG)| = |F|%(‘G|+‘G{2}|)’V*(Fé)| by Theorem 1.1 and
V.(FG)| = |F|7(GIHIGEI g | p|(GIHIGE2Y) = o ||z (IGIHIG{21) -1
by Lemma 2.1 and the fact that |G{2}| = 2|G[2]|. O

Lemma 3.1. Let G = (Cy x C4) X E, where E is a finite elementary abelian
2-group. If |F| = 2™ > 2, then |V,(FG)| = 4 - |F|2(GHIG{2}D-1,

Proof. Let G = (a,b) = Cy x Cy. If C = ( a®b? ), then a?b? € ¢(G)[2] \ U{G}
and G = G/C = Qg € ©. Now using Theorem 1.1, we obtain that

Vi(FG)| = |F|FUCHIERID Y, (FQs)).
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According to Lemma 2.2 (ii) and the fact that |G{2}| = 4, we have that
VL(FG)| = [F| 3G . 4. | p3(GIHIGI-1 _ 4| p|51CIHIG2ID-1,

Since (Cy x C4) € O, the proof follows from Corollary 1.2. O

Lemma 3.2. If |F| = 2™ > 2, then the map 7 : F — F, such that 7(2) = 2> + x
is a homomorphism on the additive group of F, in which ker(7) = {0,1}.

Proof. Obviously,
Tety)=(@+y’+@+y =+’ +r+y=7(@)+7(@y) (z,yeF)
and 2 + 2 = x(x + 1) = 0 if and only if z € {0,1}. O
Consider the following system of equations over F' with variables w1, ws, w3, wy:

wy +wz +ws +wg =13
wiwy + wows = A; (3)
wiwy + wawy = 0, (AeF).

Lemma 3.3. Let |F|=2™ > 2. IfS is a subset of F consisting of all such A € F
for which (3) has a solution in F, then |S| = £|F]|.

Proof. First, we prove that S C im(7) (see Lemma 3.2). Suppose that A € S and
w1y, we, w3, wy € F satisfy the system (3). Then
T(wy 4+ w3) = (wy + ws)? + (w1 + ws)
= (w1 +w3)(1 + w1 + w3) = (w1 + w3)(wa +wy) = A.
Thus for w = wy + w3 we have 7(w) = A so S C im(7).

Assume that 7(w) = A for some w € F. If w = 0, then 7(w) = A = 0 and
w; = 0,wy = l,ws = 0,wy = 0 is a solution of the equation system 3. Let
wy; + w3z = w # 0 for some wy,wz € F. Set wy = (A + w; + wwy)w™! and
wyg = we +w~+ 1. It is clear that wy + w3 +we + w4 = w+w+1 = 1. Furthermore,

wiwg + wawy = wiws + (w1 + w)(we +w+ 1) = w1 (1 4+ w) + A + ww,,
because 7(w) = w? +w = A. Since wy = (A +w; +ww;i)w™!

wi(w+1)+wws + A =w (14+w)+ (A+w; +wwy) + A = 0. Thus we have proved

we can compute that

that wywy + wzwys = 0. Finally,
A=ww+1) = (w; +w3)(ws + wy)
= W1W2 + W1W4 + WaW3 + WaWyg = W1W4 + WawW3,

which shows that im(7) = S. The proof is complete. O
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Lemma 3.4. Let G = (a,b) = Dig (see (1)). If |[F| = 2™ > 2, then
\V.(FDig)| = 2 |F|z(GIHIGEH -1,

Proof. Clearly, ((G) = (a*) and N = { a? ) is normal in G. Furthermore, each
x € F'G can be written as x = x1 + x2a + x3b + z4ab with z; € FN and

rr* = (:clx"l‘ + zoxy + T35 + xaxy) + (x22] + a2y )a
+ (w125 + x32})a” + (z12) + 225)(a + a®)b.
Set w; = x(x;). If 22* € S¢ (@), then wi+wy +w3+wy = 1 and wiws +wzwy = 0 by
the previous formula. Therefore if zz* € S¢ (), then there exist wy, wa, w3, wy € F'
satisfying the system (3), for some A € S.
Let C := ((G) and M = {g € G | g* = a*} = {a?,a" ab,ab,a®b,a"b}. Each

x-symmetric element of I(C)T (see Lemma 2.7) can be written as

1+ aj(a+ a_l)é + a2a26' + agaba
~ (ai S F)
+ a4a®bC + asb + aga’b + ara*b + agalb,
According to Lemma 2.8, 1 + a(a + a’l)é € S¢ for any a € F. It follows that
1+ ag & Sc if g € G{2} by Lemma 2.5.
Since § + da® + a € V(FQG) for every § € F, an easy computation shows that

(6+da®+a)(+0a*+a)* =1+6%(a®*+a ?) =1+ §%a>C,

which confirm that § + da? + a € Nj,. Obviously, n(a) = a? is an automorphism
of U(F), so we can pick & such that ay = §2. Therefore 1 + a2a25 € S¢ for every
ag € F.

A straightforward computation shows that
(a(a+a")+b)(a(a+a") + b)* =1+ a?a®C + a(ab+ a®b)C

for every a € F so a(a+ a”) +b € Nj. Using Lemma 2.4 and the fact that
14+ a2a26 € S¢, we have that 14+ a(ab+ a3b)6 € S¢ for every a € F.
We have proved that the group N; generated by the set

{1+ai(a+a"C}U {1+ aa®C}U{1 + as(ab + a®b)C}, (a; € F)

is a subgroup of S¢ by Lemma 2.4 and |Ny| = |F|3.
Let v = wy + waa + w3b + waab € FDig, such that wy,ws, ws, ws € F satisfy
the system (3). It is easy to check that

uu* =14 (wywy + wgwg)abé
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and Ny = ( 1+ aabC | @ € S) is a subgroup of S¢ with order |[Ny| = 3|F| by
Lemma 3.3. Using a similar argument, 1 + aa®bC € Sc if a € S. It follows that
Sc = Ny x Ny and |Sc| = $|F|*.

Since G = G/¢(G) = Dg, the order |V, (FG)| = |F|8I€ by Lemma 2.2 (i). It is
clear that 3|G| — 3 = |G{2}|. According to Lemma 2.3

V.(FG)| = 2 - |F|3IC F|GIGI=9-1 = 9. | p|2(IGIHIG{2})-1, 0

Lemma 3.5. Let G = (a,b) = Mg (see (1)). If |[F| =2™ > 2, then
Vi(FG)| = 2 - |F|z(G1+IG{2HD -1,
Proof. If y € Sgs, then
y=1+pi(a+ a3)a\’ + 52(12@\’ + ﬁg@\’ + B4bf¥\’ + Bs(a+ a3)ba\/ + &;cﬁb@7
in which B,..., 8¢ € F. Moreover,
1+ B3G, 1+ BbG ¢ Ser and  By(a+a®)G, Bs(a+ a®)bG € Ser

by Lemma 2.5 and Lemma 2.8, respectively. Since n(a) = o?

of U(F) we can pick a such that B2 = a?. Then u = a? + a + o?a? € V(FG) and

is an automorphism

wut =1+ 52@2@\/,
which proves that v € Ny, and 1 + 62a26¥\’ € Sgr for every By € F. The identity
(aa® + (1 + aa®)b) (ea® + (1 + aa2)b)* =1+ ad®G’ + aa®G'b

shows that aa? + (1 + aa?)b € N§,. Therefore 1 + 0a?G’ + aa®bG’ € Sq for every
o € F. From 1+ aa?G’ € Sgr we get 1+ aa?bG' € Ser by Lemma 2.4.
We have proved that

Ser =1+ ar(a+ a3)a\’, 1+ ad®G’, 1+ as(a+ a3)bé\’7
14 04a®bG' | a; € F) C ((V(FQ)).

Consequently, |Sg/| = |F|* and |V,(FG)| = 2-|F|°, by Lemma 2.1 and the fact
that é = G/G/ = 04 X CQ.
Finally, using that |G{2}| = 4 Lemma 2.3 shows that

V.(FG)| =2 |F|z1C1+1 = 2. |p|z(IGI+IG{23D -1, 0
Lemma 3.6. Let G=(a,b)Y (c)= DgY Cy (see (1)). If |F| = 2™ > 2, then

V.(FG)| = |F|z(6I+IG{23D -1,
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Proof. Clearly, G’ = (a? ) and {g € G | g*> = a*} = {a, a?, ¢, a’c, bc, abe, a*be, a3be}.
Let us prove that Sgr = (1 + agG’ | g € G\ G{2},a € F'). Indeed, each = € S¢
can be written as x = 1 + alaa’\’ + agbca\’ + C¥3€/G\/ + a4abca\’ by Lemma 2.7 and

2.8. Using the following computation
I+ab+aa)l+ab+aa)" =1+ aal’,
(1+ ac+ aa)(1+ ac+ aa)* =1+ acG + aa,
(1+ ac+ ab)(1+ aa’c+ab)* =1+ acG’ + a2beG,
)

—

(a®c + aab + aac)(a’c + aab + aac)* = 1+ (aabe + aa + obe) G,

it is easy to check that Sgr = ( 1+a1aa\’, 1—|—agca\/, 1+a3bcé\’, 1+a4abcé\’ |, € F)
by Lemma 2.4 so |Sq/| = |F|*.

Since G = G/G’ = Oy x Cy x Cy, Lemma 2.1 shows that |V, (FG)| = |F|". It is
obvious that |G{2}| = 4, so % = |F|219{2-1 According to Lemma 2.3 we
get

[V.(FG)| = |F|zICl|F|216{2-1 = | pz(GIHG{2}) -1, 0

Proof of Theorem 1.4. It follows immediately from Corollaries 1.2, 1.3 and Lem-
mas 3.1, 3.4 — 3.6. (]

Proof of Theorem 1.5. Our statement holds if G is a non-abelian group of order
|G| = 23 by [18] and [19]. Moreover, it is also true if |G| = 2% and |F| = 2 by [3]
and [9].

Let |F| > 2 and |G| = 2*. Theorem 1.4 yields that |V, (FG)| = |V.(FH)| if and
only if G € {Cy x Cy4,Qg x Cy}. Without loss of generality we can assume that
G2QsxCy=(ab)x{(c)and HE Cyx Cy. f M = { a,c) < G, then
each x € V(FG) can be written as x = x1 + x2b, where x1,x9 € FM. Obviously,
xx* = 1107 + 2225 + (172 + T1220%)b and

2?2 = 23 4 zoxia® + (z172 + 220)b. (4)

Furthermore, z € V,(FG) if and only if x12} = xea3 +1 and 2129 = x1z9a>. Since

x is a unit, x(x1) + x(z2) = 1, so consider the following cases.

Case 1. Let x(x1) = 1 and x(w2) = 0. From the equality 7172 = z1790% we

conclude that (1 + a?) = 0 and (see [20, Theorem 11]) we can write
z9 = ap(1+ a?) + ai(1 + a®)a + az(1 + a®)e + az(1 + a?)ac, (o; € F).
By (4) and the fact that

x1 + 27 = Bo(1 +a?) + B1(1 + a®)a + fa(1 + a®)c + B3(1 + a?)ac, (B € F)



ON UNITARY SUBGROUPS OF GROUP ALGEBRAS 197

we conclude that 2 = z? and 27! = z}. According to [14, Theorem 2(ii)]

Vi(FM) 2 M x N in which N is an elementary abelian group. Consequently,
z? € {1,a%}.

Case 2. Let x(z1) = 0 and x(22) = 1. From the equation z;79 = z120a% we
conclude that z1(1 + a?) = 0, so (see [20, Theorem 11])

1 = ap(l +a?) + a1(1+a®)a + az(1 4 a®)e + asz(1 + a?)ac, (o; € F).

Equations (4), xozy = 7127 +1 =1 and 21 + 7 = 0 imply that 22 =23 + 1 = 1.
Consequently, if z € Vi.(FG), then 2% € {1,a%}, so |[V2(FG)| = |{ a? )| = 2.
Let H = Cy x Cy. Clearly, |Vi(FH)| > 2 because H?> C V2(FH). This proofs
that V,.(FG) and V,(FH) are not isomorphic groups. O

Note that Theorem 1.4 was verified by GAP package RAMEGA [6].
Acknowledgement. The author would like to thank the anonymous reviewers for
their careful reading of the manuscript and their many insightful comments and

suggestions.
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