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Abstract. Let FG be the group algebra of a finite p-group G over a finite field

F of characteristic p and let ∗ be the classical involution of FG. The ∗-unitary

subgroup of FG, denoted by V∗(FG), is defined to be the set of all normalized

units u satisfying the property u∗ = u−1. In this paper we give a recursive

method how to compute the order of the ∗-unitary subgroup for certain non-

commutative group algebras. A variant of the modular isomorphism question

of group algebras is also considered.
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1. Introduction and results

Let FG be the group algebra of a finite p-group G over a finite field F of positive

characteristic p. Let V (FG) denotes the group of normalized units in FG. The

description of the structure of V (FG) is a central problem in the theory of group

algebras and it has been investigated by several authors. For an excellent survey

on this topic we refer the reader to [8].

An element u ∈ V (FG) is called unitary if u∗ = u−1, with respect to the classical

∗-involution of FG (the linear extension of the involution on G which sends each

element of G to its inverse). The set of all unitary elements of V (FG) forms a

subgroup of V (FG) which is denoted by V∗(FG) and is called ∗-unitary subgroup.

The group V∗(FG) plays an important role of studying the structure of the group

of units of group algebras and has been investigated in several papers (see [4], [5],

[9], [10], [11], [12], [15], [16], [18] and [19]). Let L be a finite Galois extension of

F with Galois group G, where F is a finite field of characteristic two. Serre [21]

has showed that there is a relation between the self-dual normal basis of L over F

and the unitary subgroup of FG. This application gives a hard reason to continue

studying of the unitary subgroups.
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The order of ∗-unitary subgroup when G is a p-group and p is an odd prime is

given in [13] and [14]. To compute the order of V∗(FG) when G is a 2-group and

p = 2 is an open and is a particularly challenging problem. It is to be expected

that the order is divisible by |F | 12 (|G|+|G{2}|)−1, where G{2} is the set of elements

of order two in G with the unit element. In [14] this conjecture was confirmed when

G is an abelian 2-group and F is a finite field of characteristic 2. For dihedral and

generalized quaternion 2-groups G, where F is a finite field of characteristic 2 it

was confirmed in [13]. In our paper we present a recursive method how to compute

the order of V∗(FG) and confirm the conjecture above.

The modular isomorphism problem is an old and unanswered problem in the

theory of group representation. A stronger variant of the problem is said to be the

isomorphism problem of normalized units (UIP) is due to Berman [7]. Let F be a

finite field of characteristic p, let G and H be finite p-groups such that V (FG) and

V (FH) are isomorphic. One may ask whetherG andH are isomorphic groups? The

studies in [1] and [2] resulted in proving the conjecture for some group classes. The

∗-unitary group of a group algebra is a small subgroup in V (FG) so it is interesting

to ask whether this smaller subgroup determines the basic group G or not. This

problem is called the ∗-unitary isomorphism problem (*-UIP). Recently, the ∗-
unitary isomorphism problem was solved for some classes of non-abelian groups in

[3].

Define the following 2-groups: the dihedral D2n+1 , the generalized quaternion

Q2n+1 , the semidihedral group D−2n+1 the modular group M2n+1 and H2n , respec-

tively:

D2n+1 = 〈 a, b | a2n

= 1, b2 = 1, (a, b) = a−2 〉; (n ≥ 2)

Q2n+1 = 〈 a, b | a2n

= 1, b2 = a2n−1

, (a, b) = a−2 〉; (n ≥ 2)

D−2n+1 = 〈 a, b | a2n

= 1, b2 = 1, (a, b) = a−2+2n−1

〉; (n ≥ 3)

M2n+1 = 〈 a, b | a2n

= 1, b2 = 1, (a, b) = a2+2n−1

〉; (n ≥ 3)

H2n = 〈 a, b, c | a2n−2

= b2 = c2 = 1, (a, b) = c,

(a, c) = (b, c) = 1 〉, (n ≥ 4)

(1)

where (a, b) := a−1b−1ab.

Let G be a finite 2-group. We denote by G[2i] the subgroup of G generated by

elements of order 2i. We use the notation G2i

for the subgroup 〈 g2i | g ∈ G 〉.
Set Ω{G} = {g2 | g ∈ G}. Let ζ(G) and G′ be the center and the commutator

subgroup of G, respectively.
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Let Θ denote the class of all groups with the property that gh := h−1gh = g±1

for all g ∈ G \ G{2} and h ∈ G, which does not commute with g. It is clear that

each abelian group, the dihedral D2n+1 and generalized quaternion Q2n+1 groups

belong to the class Θ.

Theorem 1.1. Let F be a field with |F | = 2m ≥ 2 and let G be a finite 2-group.

If C = 〈 c | c ∈ ζ(G)[2] \ Ω{G} 〉 such that G/C ∈ Θ, then

|V∗(FG)| = |F | 14 (|G|+|G{2}|) · |V∗(F [G/C])|.

Corollary 1.2. Let F be a field with |F | = 2m ≥ 2 and let G = H × E be a finite

2-group, in which E is a finite elementary abelian 2-group and H ∈ Θ. If

|V∗(FH)| = n · |F | 12 (|H|+|H{2}|)−1

for some n ∈ N, then |V∗(FG)| = n · |F | 12 (|G|+|G{2}|)−1. Moreover, if H ∈

{D2s , Q2s | s > 2} then n =

1 if H = D2s ;

4 if H = Q2s .

Corollary 1.3. Let G = H2n with n ≥ 4. If |F | = 2m ≥ 2, then

|V∗(FG)| = 2 · |F | 12 (|G|+|G{2}|)−1.

Let us denote by D8 Y C4 the central product of the dihedral group D8 and the

cyclic group C4.

Theorem 1.4. Let G be a finite non-abelian 2-group of order |G| = 24. If F is a

field with |F | = 2m ≥ 2, then |V∗(FG)| = n · |F | 12 (|G|+|G{2}|)−1, where

(i) n = 1 if G ∈ {D8 Y C4, D16, D8 × C2};
(ii) n = 2 if G ∈ {M16, D

−
16, H16};

(iii) n = 4 if G ∈ {Q16, C4 n C4, Q8 × C2}.

Theorem 1.5. Let G and H be non-abelian 2-groups of order at most 24. If F is a

finite field of characteristic two, then the isomorphism V∗(FG) ∼= V∗(FH) implies

the following isomorphism G ∼= H.

2. Notations and preliminaries

Let G be a finite p-group. If char(F ) = p, then (see [8, Chapters 2-3, p. 194-196])

V (FG) =
{
x =

∑
g∈G

αgg ∈ FG | χ(x) =
∑
g∈G

αg = 1
}
,

where χ(x) is the augmentation of the element x ∈ FG. Let supp(x) denote the

support of x ∈ FG and xg = g−1xg, where g ∈ G. We define Ĉ :=
∑
g∈C g, where
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C is a subset of G. Throughout this paper |S| denotes the cardinality of a finite

set S and |g| the order of g ∈ G.

The following two lemmas will be useful.

Lemma 2.1. ([17, Theorem 2]) Let |F | = 2m ≥ 2. If G is a finite abelian 2-group,

then

|V∗(FG)| = |G2[2]| · |F | 12 (|G|+|G[2]|)−1.

Lemma 2.2. ([13, Corollary 2]) If |F | = 2m ≥ 2, then

(i) |V∗(FG)| = |F | 12 (|G|+|G{2}|)−1 if G is a dihedral 2-group;

(ii) |V∗(FG)| = 4 · |F | 12 (|G|+|G{2}|)−1 if G is a generalized quaternion 2-group.

LetH be a normal subgroup ofG and I(H) := 〈 1+h | h ∈ H 〉FG be the ideal of

FG generated by the set {1+h | h ∈ H}. Moreover, for the natural homomorphism

Ψ : FG → F [G/H] we have that FG/I(H) ∼= F [G/H] and ker(Ψ) = I(H). Let

us denote by V∗(FG) the unitary subgroup of the factor algebra FG/I(H), where

G = G/H. It is easy to check that the set

N∗Ψ = {x ∈ V (FG) | Ψ(x) ∈ V∗(FG)}

forms a subgroup in V (FG). Furthermore, the set I(H)+ = {1 + x |x ∈ I(H)}
forms a normal subgroup in V (FG). It is obvious that SH := 〈 xx∗ | x ∈ N∗Ψ 〉 is a

subgroup of I(H)+, because xx∗ ∈ 1 + ker(Ψ) = I(H)+ for x ∈ N∗Ψ.

Lemma 2.3. Let H be a normal subgroup of order two in a finite 2-group G and

let |F | = 2m ≥ 2. If SH is central in N∗Ψ, then

|V∗(FG)| = |F | 12 |G| · |V∗(FG)|
|SH | . (2)

Proof. Let Φ(x) = xx∗ for each x ∈ V (FG). The map Φ : V (FG) → V (FG) is

not necessary a group homomorphism on V (FG). However, SH being central in N∗Ψ

implies that the restriction Φ|N∗Ψ is a homomorphism. Since N∗Ψ/ ker(Φ|N∗Ψ) ∼= SH ,

| ker(Φ|N∗Ψ)| = |V∗(FG)| = |N∗Ψ|
|SH | = |I(H)+|·|V∗(FG)|

|SH | .

Evidently, I(H) can be considered as a vector space over F with the following basis

{u(1 + h) | u ∈ T (G/H), h ∈ H}, where T (G/H) is a complete set of left coset

representatives of H in G. Thus we have that |I(H)+| = |F | 12 |G| and (2) holds. �

Let |F | = 2m ≥ 2. Let C be a central subgroup of a 2-group G. We denote by

Vg1,...,gn the vector space in FG over F spanned by elements α1g1Ĉ, . . . , αngnĈ,

where g1, . . . , gn ∈ G and α1, . . . , αn ∈ F . Set the following subgroup of G:

Gg1,...,gn := 〈 1 + α1g1Ĉ, . . . , 1 + αngnĈ | αi ∈ F 〉.
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Lemma 2.4. The set 1 + Vg1,...,gn coincides with Gg1,...,gn .

Proof. If x1, x2 ∈ FG, then the proof follows from the fact that

1 + (x1 + x2)Ĉ = 1 + x1Ĉ + x2Ĉ = (1 + x1Ĉ)(1 + x2Ĉ). �

Lemma 2.5. Let |F | = 2m ≥ 2. If G is a finite 2-group, then

supp(xx∗) ∩G{2} = {1} (x ∈ V (FG)).

Proof. If x =
∑|G|
i=1 αigi ∈ V (FG), then

xx∗ = 1 +
∑

1≤i<j≤|G|

αiαj
(
gig
−1
j + (gig

−1
j )−1

)
.

Obviously, gig
−1
j + (gig

−1
j )−1 = 0 for gig

−1
j ∈ G{2}. �

Lemma 2.6. Let |F | = 2m ≥ 2. Let H = 〈 c | c2 = 1 〉 be a central subgroup of a

finite 2-group G. If 1 + gĤ ∈ SH for some g ∈ G, then g2 = c.

Proof. Assume that 1 + gĤ ∈ SH for some g ∈ G. Since SH contains only ∗-
symmetric elements, 1 + gĤ = 1 + g−1Ĥ, so

(g + g−1)Ĥ = g + gc+ g−1 + g−1c = 0.

The case |g| = 2 is impossible by Lemma 2.5. Thus, g = g−1c and g2 = c. �

Lemma 2.7. Let |F | = 2m ≥ 2 and let G be a finite 2-group. For each subgroup

H = 〈 c ∈ ζ(G) | c2 = 1 〉 of G we define the set Hc := {g ∈ G | g2 = c}. Then

SH = 〈 1 + αggĤ, 1 + βh(h+ h−1)Ĥ | g ∈ Hc, h 6∈ Hc, αg, βh ∈ F 〉.

Proof. Obviously, gh+(gh)−1 = gh(1+(gh)−2), so SH ⊆ I(H)+ and SH contains

only ∗-symmetric elements. Thus each x ∈ SH can be expressed (see Lemma 2.5

and Lemma 2.6) in the following form

x = 1 +
∑
g∈Hc

αggĤ +
∑
h6∈Hc

βh(h+ h−1)Ĥ.

Since (1 + x1Ĥ)(1 + x2Ĥ) = 1 + (x1 + x2)Ĥ for each x1, x2 ∈ FG, the proof is

done. �

Lemma 2.8. Let |F | = 2m ≥ 2 and let G be a finite 2-group. If H ≤ ζ(G) has

order 2, then 1 + α(g + g−1)Ĥ ∈ SH for all g ∈ G such that g2 6∈ H.

Proof. Let g ∈ G such that g2 6∈ H. Since g 6= g−1 and 1 + αgĤ ∈ ker(Ψ),

(1 + αgĤ)(1 + αgĤ)∗ = 1 + α(g + g−1)Ĥ, (α ∈ F )

which proves the lemma. �
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3. Proofs of Theorems

Proof of Theorem 1.1. If c ∈ ζ(G)[2] \ Ω{G}, then (see Lemmas 2.4, 2.5 and

2.8)

SC = 〈 1 + α(g + g−1)Ĉ | α ∈ F, g ∈ G \G{2} 〉.

Furthermore, h−1(g + g−1)Ĉh = (g + g−1)Ĉ for all h ∈ G, because G ∈ Θ. Now

using Lemma 2.3 we have that

|V∗(FG)| = |F | 12 |G| · |V∗(FG)|
|F |

1
4

(|G|−|G{2}|) = |F | 14 (|G|+|G{2}|) · |V∗(FG)|. �

Proof of Corollary 1.2. Let G = H × E, where H ∈ Θ, E is an elementary

abelian 2-group and |E| = 2m ≥ 1. Now, we proceed by induction on the order of

E.

For the base case (m = 0) we have that |V∗(FH)| = n · |F | 12 (|H|+|H{2}|)−1 for

some n.

Let m ≥ 1. If C = 〈 c | 1 6= c ∈ E 〉, then N := G/C ∼= H × E1 in which

|E1| = 2m−1. Obviously, N ∈ Θ and using Theorem 1.1 we conclude that

|V∗(FG)| = |F | 14 (|G|+|G{2}|)|V∗(FN)|,

where |V∗(FN)| = n · |F | 12 (|N |+|N{2}|)−1. Since |G|+ |G{2}| = 2(|N |+ |N{2}|),

|V∗(FG)| = |F | 14 (|G|+|G{2}|) · n · |F | 12 (|N |+|N [2]|)−1 = n · |F | 12 (|G|+|G{2}|)−1.

The second sentence follows immediately from the fact that D2s and Q2s belong to

Θ for every s > 2. �

Proof of Corollary 1.3. Let G′ = 〈 c 〉 (see (1)). Clearly,

c ∈ ζ(G)[2] \ Ω(G) and G = G/G′ ∼= C2n−2 × C2 ∈ Θ.

Therefore |V∗(FG)| = |F | 14 (|G|+|G{2}|)
∣∣V∗(FG)

∣∣ by Theorem 1.1 and

|V∗(FG)| = |F | 14 (|G|+|G{2}|) · 2 · |F | 14 (|G|+|G{2}|) = 2 · |F | 12 (|G|+|G{2}|)−1

by Lemma 2.1 and the fact that |G{2}| = 2|G[2]|. �

Lemma 3.1. Let G = (C4 o C4) × E, where E is a finite elementary abelian

2-group. If |F | = 2m ≥ 2, then |V∗(FG)| = 4 · |F | 12 (|G|+|G{2}|)−1.

Proof. Let G = 〈 a, b 〉 ∼= C4 o C4. If C = 〈 a2b2 〉, then a2b2 ∈ ζ(G)[2] \ Ω{G}
and G = G/C ∼= Q8 ∈ Θ. Now using Theorem 1.1, we obtain that

|V∗(FG)| = |F | 14 (|G|+|G{2}|)|V∗(FQ8)|.
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According to Lemma 2.2 (ii) and the fact that |G{2}| = 4, we have that

|V∗(FG)| = |F | 14 (|G|+|G{2}|) · 4 · |F | 14 (|G|+|G{2}|)−1 = 4 · |F | 12 (|G|+|G{2}|)−1.

Since (C4 o C4) ∈ Θ, the proof follows from Corollary 1.2. �

Lemma 3.2. If |F | = 2m ≥ 2, then the map τ : F → F , such that τ(x) = x2 + x

is a homomorphism on the additive group of F , in which ker(τ) = {0, 1}.

Proof. Obviously,

τ(x+ y) = (x+ y)2 + (x+ y) = x2 + y2 + x+ y = τ(x) + τ(y) (x, y ∈ F )

and x2 + x = x(x+ 1) = 0 if and only if x ∈ {0, 1}. �

Consider the following system of equations over F with variables w1, w2, w3, w4:
w1 + w2 + w3 + w4 = 1;

w1w4 + w2w3 = A;

w1w2 + w3w4 = 0, (A ∈ F ).

(3)

Lemma 3.3. Let |F | = 2m ≥ 2. If S is a subset of F consisting of all such A ∈ F
for which (3) has a solution in F , then |S| = 1

2 |F |.

Proof. First, we prove that S ⊆ im(τ) (see Lemma 3.2). Suppose that A ∈ S and

w1, w2, w3, w4 ∈ F satisfy the system (3). Then

τ(w1 + w3) = (w1 + w3)2 + (w1 + w3)

= (w1 + w3)(1 + w1 + w3) = (w1 + w3)(w2 + w4) = A.

Thus for w = w1 + w3 we have τ(w) = A so S ⊆ im(τ).

Assume that τ(w) = A for some w ∈ F . If w = 0, then τ(w) = A = 0 and

w1 = 0, w2 = 1, w3 = 0, w4 = 0 is a solution of the equation system 3. Let

w1 + w3 = w 6= 0 for some w1, w3 ∈ F . Set w2 = (A + w1 + ww1)w−1 and

w4 = w2 +w+ 1. It is clear that w1 +w3 +w2 +w4 = w+w+ 1 = 1. Furthermore,

w1w2 + w3w4 = w1w2 + (w1 + w)(w2 + w + 1) = w1(1 + w) +A+ ww2,

because τ(w) = w2 +w = A. Since w2 = (A+w1 +ww1)w−1 we can compute that

w1(w+ 1) +ww2 +A = w1(1 +w) + (A+w1 +ww1) +A = 0. Thus we have proved

that w1w2 + w3w4 = 0. Finally,

A = w(w + 1) = (w1 + w3)(w2 + w4)

= w1w2 + w1w4 + w2w3 + w3w4 = w1w4 + w2w3,

which shows that im(τ) = S. The proof is complete. �
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Lemma 3.4. Let G = 〈 a, b 〉 ∼= D−16 (see (1)). If |F | = 2m ≥ 2, then

|V∗(FD−16)| = 2 · |F | 12 (|G|+|G{2}|)−1.

Proof. Clearly, ζ(G) = 〈 a4 〉 and N = 〈 a2 〉 is normal in G. Furthermore, each

x ∈ FG can be written as x = x1 + x2a+ x3b+ x4ab with xi ∈ FN and

xx∗ =
(
x1x
∗
1 + x2x

∗
2 + x3x

∗
3 + x4x

∗
4) + (x2x

∗
1 + x4x

∗
3)a

+ (x1x
∗
2 + x3x

∗
4)a7 + (x1x

∗
4 + x2x

∗
3)(a+ a5)b.

Set wi = χ(xi). If xx∗ ∈ Sζ(G), then w1+w2+w3+w4 = 1 and w1w2+w3w4 = 0 by

the previous formula. Therefore if xx∗ ∈ Sζ(G), then there exist w1, w2, w3, w4 ∈ F
satisfying the system (3), for some A ∈ S.

Let C := ζ(G) and M = {g ∈ G | g2 = a4} = {a2, a6, ab, a3b, a5b, a7b}. Each

∗-symmetric element of I(C)+ (see Lemma 2.7) can be written as

1 + α1(a+ a−1)Ĉ + α2a
2Ĉ + α3abĈ

+ α4a
3bĈ + α5b+ α6a

2b+ α7a
4b+ α8a

6b,
(αi ∈ F ).

According to Lemma 2.8, 1 + α(a + a−1)Ĉ ∈ SC for any α ∈ F . It follows that

1 + αg 6∈ SC if g ∈ G{2} by Lemma 2.5.

Since δ + δa2 + a ∈ V (FG) for every δ ∈ F , an easy computation shows that(
δ + δa2 + a

)(
δ + δa2 + a)∗ = 1 + δ2(a2 + a−2) = 1 + δ2a2Ĉ,

which confirm that δ + δa2 + a ∈ N∗Ψ. Obviously, η(α) = α2 is an automorphism

of U(F ), so we can pick δ such that α2 = δ2. Therefore 1 + α2a
2Ĉ ∈ SC for every

α2 ∈ F .

A straightforward computation shows that(
α(a+ a7) + b

)(
α(a+ a7) + b

)∗
= 1 + α2a2Ĉ + α(ab+ a3b)Ĉ

for every α ∈ F so α(a + a7) + b ∈ N∗Ψ. Using Lemma 2.4 and the fact that

1 + α2a
2Ĉ ∈ SC , we have that 1 + α(ab+ a3b)Ĉ ∈ SC for every α ∈ F .

We have proved that the group N1 generated by the set

{1 + α1(a+ a−1)Ĉ} ∪ {1 + α2a
2Ĉ} ∪ {1 + α3(ab+ a3b)Ĉ}, (αi ∈ F )

is a subgroup of SC by Lemma 2.4 and |N1| = |F |3.

Let u = w1 + w2a + w3b + w4ab ∈ FD−16, such that w1, w2, w3, w4 ∈ F satisfy

the system (3). It is easy to check that

uu∗ = 1 + (w1w4 + w2w3)abĈ
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and N2 = 〈 1 + αabĈ | α ∈ S 〉 is a subgroup of SC with order |N2| = 1
2 |F | by

Lemma 3.3. Using a similar argument, 1 + αa3bĈ ∈ SC if α ∈ S. It follows that

SC = N1 ×N2 and |SC | = 1
2 |F |

4.

Since G = G/ζ(G) ∼= D8, the order |V∗(FG)| = |F | 38 |G| by Lemma 2.2 (i). It is

clear that 3
8 |G| − 3 = 1

2 |G{2}|. According to Lemma 2.3

|V∗(FG)| = 2 · |F | 12 |G||F |( 3
8 |G|−3)−1 = 2 · |F | 12 (|G|+|G{2}|)−1. �

Lemma 3.5. Let G = 〈 a, b 〉 ∼= M16 (see (1)). If |F | = 2m ≥ 2, then

|V∗(FG)| = 2 · |F | 12 (|G|+|G{2}|)−1.

Proof. If y ∈ SG′ , then

y = 1 + β1(a+ a3)Ĝ′ + β2a
2Ĝ′ + β3Ĝ′ + β4bĜ′ + β5(a+ a3)bĜ′ + β6a

2bĜ′,

in which β1, . . . , β6 ∈ F . Moreover,

1 + β3Ĝ′, 1 + β4bĜ′ 6∈ SG′ and β1(a+ a3)Ĝ′, β5(a+ a3)bĜ′ ∈ SG′

by Lemma 2.5 and Lemma 2.8, respectively. Since η(α) = α2 is an automorphism

of U(F ) we can pick α such that β2 = α2. Then u = α2 + a+ α2a2 ∈ V (FG) and

uu∗ = 1 + β2a
2Ĝ′,

which proves that u ∈ N∗Ψ and 1 + β2a
2Ĝ′ ∈ SG′ for every β2 ∈ F . The identity(

αa2 + (1 + αa2)b
)(
αa2 + (1 + αa2)b

)∗
= 1 + αa2Ĝ′ + αa2Ĝ′b

shows that αa2 + (1 + αa2)b ∈ N∗Ψ. Therefore 1 + αa2Ĝ′ + αa2bĜ′ ∈ SG′ for every

α ∈ F . From 1 + αa2Ĝ′ ∈ SG′ we get 1 + αa2bĜ′ ∈ SG′ by Lemma 2.4.

We have proved that

SG′ = 〈1 + α1(a+ a3)Ĝ′, 1 + α2a
2Ĝ′, 1 + α3(a+ a3)bĜ′,

1 + α4a
2bĜ′ | αi ∈ F 〉 ⊆ ζ(V (FG)).

Consequently, |SG′ | = |F |4 and |V∗(FG)| = 2 · |F |5, by Lemma 2.1 and the fact

that G = G/G′ ∼= C4 × C2.

Finally, using that |G{2}| = 4 Lemma 2.3 shows that

|V∗(FG)| = 2 · |F | 12 |G|+1 = 2 · |F | 12 (|G|+|G{2}|)−1. �

Lemma 3.6. Let G = 〈 a, b 〉 Y 〈 c 〉 ∼= D8 Y C4 (see (1)). If |F | = 2m ≥ 2, then

|V∗(FG)| = |F | 12 (|G|+|G{2}|)−1.
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Proof. Clearly, G′ = 〈 a2 〉 and {g ∈ G | g2 = a2} = {a, a3, c, a2c, bc, abc, a2bc, a3bc}.
Let us prove that SG′ = 〈 1 + αgĜ′ | g ∈ G \G{2}, α ∈ F 〉. Indeed, each x ∈ SG′
can be written as x = 1 + α1aĜ′ + α2bcĜ′ + α3cĜ′ + α4abcĜ′ by Lemma 2.7 and

2.8. Using the following computation

(1 + αb+ αa)(1 + αb+ αa)∗ = 1 + αaĜ′,

(1 + αc+ αa)(1 + αc+ αa)∗ = 1 + αcĜ′ + αaĜ′,

(1 + αc+ αb)(1 + αa2c+ αb)∗ = 1 + αcĜ′ + α2bcĜ′,

(a2c+ αab+ αac)(a2c+ αab+ αac)∗ = 1 + (αabc+ αa+ α2bc)Ĝ′,

it is easy to check that SG′ = 〈 1+α1aĜ′, 1+α2cĜ′, 1+α3bcĜ′, 1+α4abcĜ′ | αi ∈ F 〉
by Lemma 2.4 so |SG′ | = |F |4.

Since G = G/G′ ∼= C2 × C2 × C2, Lemma 2.1 shows that |V∗(FG)| = |F |7. It is

obvious that |G{2}| = 4, so |V∗(FG)|
|SG′ |

= |F | 12 |G{2}|−1. According to Lemma 2.3 we

get

|V∗(FG)| = |F | 12 |G||F | 12 |G{2}|−1 = |F | 12 (|G|+|G{2}|)−1. �

Proof of Theorem 1.4. It follows immediately from Corollaries 1.2, 1.3 and Lem-

mas 3.1, 3.4 – 3.6. �

Proof of Theorem 1.5. Our statement holds if G is a non-abelian group of order

|G| = 23 by [18] and [19]. Moreover, it is also true if |G| = 24 and |F | = 2 by [3]

and [9].

Let |F | > 2 and |G| = 24. Theorem 1.4 yields that |V∗(FG)| = |V∗(FH)| if and

only if G ∈ {C4 n C4, Q8 × C2}. Without loss of generality we can assume that

G ∼= Q8 × C2 = 〈 a, b 〉 × 〈 c 〉 and H ∼= C4 n C4. If M = 〈 a, c 〉 < G, then

each x ∈ V (FG) can be written as x = x1 + x2b, where x1, x2 ∈ FM . Obviously,

xx∗ = x1x
∗
1 + x2x

∗
2 + (x1x2 + x1x2a

2)b and

x2 = x2
1 + x2x

∗
2a

2 + (x1x2 + x∗1x2)b. (4)

Furthermore, x ∈ V∗(FG) if and only if x1x
∗
1 = x2x

∗
2 + 1 and x1x2 = x1x2a

2. Since

x is a unit, χ(x1) + χ(x2) = 1, so consider the following cases.

Case 1. Let χ(x1) = 1 and χ(x2) = 0. From the equality x1x2 = x1x2a
2 we

conclude that x2(1 + a2) = 0 and (see [20, Theorem 11]) we can write

x2 = α0(1 + a2) + α1(1 + a2)a+ α2(1 + a2)c+ α3(1 + a2)ac, (αi ∈ F ).

By (4) and the fact that

x1 + x∗1 = β0(1 + a2) + β1(1 + a2)a+ β2(1 + a2)c+ β3(1 + a2)ac, (βi ∈ F )
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we conclude that x2 = x2
1 and x−1

1 = x∗1. According to [14, Theorem 2(ii)]

V∗(FM) ∼= M × N in which N is an elementary abelian group. Consequently,

x2 ∈ {1, a2}.
Case 2. Let χ(x1) = 0 and χ(x2) = 1. From the equation x1x2 = x1x2a

2 we

conclude that x1(1 + a2) = 0, so (see [20, Theorem 11])

x1 = α0(1 + a2) + α1(1 + a2)a+ α2(1 + a2)c+ α3(1 + a2)ac, (αi ∈ F ).

Equations (4), x2x
∗
2 = x1x

∗
1 + 1 = 1 and x1 + x∗1 = 0 imply that x2 = x2

1 + 1 = 1.

Consequently, if x ∈ V∗(FG), then x2 ∈ {1, a2}, so |V 2
∗ (FG)| = |〈 a2 〉| = 2.

Let H ∼= C4 n C4. Clearly, |V∗(FH)| > 2 because H2 ⊆ V 2
∗ (FH). This proofs

that V∗(FG) and V∗(FH) are not isomorphic groups. �

Note that Theorem 1.4 was verified by GAP package RAMEGA [6].
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