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Abstract — In this paper, we suggest a conjugate gradient method, which belongs to 
the optimization methods for learning a fuzzy neural network model that is based on 
Takagi Sugeno. A new algorithm based on the Polak–Ribière–Polak (PRP) method is 
introduced to overcome the slow convergence of Polak–Ribière–Polak (PRP) and 
Liu-Storey (LS) methods. The numerical results indicate the efficiency of the devel-
oped method for classifying data as shown in the Table (2) where the new method 
outperforms above mentioned methods in terms of average training time, average 
training accuracy, average test accuracy, average training MSE, and average test 
MSE. 
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zation. 
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1 Introduction 
Fuzzy modeling is to create a large number of local input and output relationships. The 

purpose of this relation is to define a rule and to make clear a nonlinear manner instead of 
the classical modeling schemes which may use different equations. [1]. Therefore, by 
using the given input-output (I-O), a process identification data would become practically 
a different equivalent problem that concentrates on the description of a fuzzy model[2]. In 
general, the description of a fuzzy logic method or fuzzy neural (neuro-fuzzy) network 
method model covers chiefly two phases: construction description and parameter descrip-
tion [3]. 

Structure identification, In general, the determination of the construction of any fuzzy 
problem requires, in each law, the number of fuzzy regulations and the membership 
functions of the premise and consequent fuzzy sets. A variety of techniques is proposed 
for structure recognition. For the sake of extracting rules from the available input-output 
dataset to construct the initial rule base, one of these approaches is to use clustering 
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algorithms. Typically, multiple clustering devices such as the K-means algorithm can be 
used to obtain the initial fuzzy rule base of a fuzzy 
logic system (FLS). [4] , (FCM) fuzzy c-means[5] [6] plus mountain clustering 
technique[7]. Furthermore, there are other methods for clustering, such as the so-called 
FPCM , PCM and PFCM in[4] [8] [9]. The fundamental view of the clustering method-
based structure identification is to collect the specified samples and position them in 
various clusters linked by one cluster to a law. The number of laws is also equivalent to 
the number of clusters. The data must be obtained in advance through of clustering me-
thod-based structure recognition. Consequently, online structure recognition is not 
sufficient. In several experiments, however, scientists stress the use of fumigated neural 
networks to dynamically model the system.[10] [11]. It is also proposed that the Bayesian 
TSK fuzzy model in[12] [13], which can classify the number of fuzzy laws without 
returning to the knowledge of the previous expert. In this paper the researchers 
concentrate on the clustering of method-based structure recognition as a tool for resolving 
problems with static regression  and classification. The "Gradient based Neuro-Fuzzy 
learning algorithm" is widely used to characterize the neuro-fuzzy system's feedback, 
similar to the Neural Network training feedback. [2] [3] [14] [15]. Inspired by the GNF 
for neuro-fuzzy structures, a GNF update, MGNF, is proposed in[16]. The error function 
type is revised by considering independent variables in the reciprocal widths of Gaussian 
membership to prevent singularity. Thus, The weight sequence update formulas are easily 
modified. This adjustment will help to evaluate the MGNF algorithm converging. In[16] 
The T-norm product, but the firing strength can be very low for the product, even for a 
moderate amount of inputs. While any atomic precedent clause can very well be fulfilled. 
One approach to this issue with other T criteria such as minimum standards [17] [18] 
[19]. Unfortunately, this is not differential; we want to use gradient-based procedures for 
T-norm differentiability. As a result, this paper uses a softer variant of the minimum, 
softmin, to calculate the value of the firing capacity. Softmin's purpose is distinguishable 
and can manage the Specimen with a wide number of features. [20] [21] [19]. The latter 
performs much better in terms of both efficiency and acceleration of convergence in ge-
neral, compared to the common gradient descent technique with conjugate gradient (CG) 
techniques [22]. The first linear conjugate gradient (CG) technique is implemented 
in[23], The linear problems can be solved with positive definite coefficient matrices, 
which can be treated as an optimization algorithm. In addition to the above, the conjugate 
gradient (CG) method shown  in [24] An effective way to solve large-scale nonlinear 
optimization problems has been found to be an effective tool. Hestenes-Stiefel and for 
(HS)[23] and Fletcher-Reeves (FR)[24], Another traditional Conjugate gradient (CG) 
technique Polak–Ribière–Polak (PRP) [25] The alternative direction of the descent is then 
suggested. Successfully, Conjugate gradient approaches can be extended to the training of 
neuro-fuzzy networks. [26] [27]. Eight methods of the conjugate gradient  (CG) are 
described in[26] As they are used to equip the fuzzy logic system type-1 to solve the 
classification issue. The results of learned simulation in [26] Explain that the techniques 
of conjugate gradient (CG) converge more rapidly than the process of gradient descent  
(GD). Also, Compared to the ones generated by the optimized fuzzy logic system (FLS) 
using the gradient descent (GD) process, the classification results derived from conjugate 
gradient (CG) based fuzzy logic system (FLS) are the best. In [27], Recently, Ahmad et 
al. [21] developed a new numerical method for solutions of coupled burgers' equations. 
Also, Ahmad et al. [28] To obtain the numerical solutions of certain nonlinear PDEs such 
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as KdV, mKdV and combined KdV-mKdV equations, a new modification of the 
variational iteration algorithm-II was proposed. 

The goal of this paper is to develop a new Polak–Ribière–Polak (PRP) based algorithm 
for learning a fuzzy-neural network model to obtain the lowest average training error. 

This paper is organized as follows: In Section 2 inference method for Zero-order 
Takagi-Sugeno is introduced. In Section 3 we present new conjugate gradient (CG) tech-
niques and show that our algorithm satisfies descent and global convergence conditions. 
Section 4 presents numerical experiments and comparisons. 

2 Inference Method for Zero-Order Takagi-Sugeno (TS) 
A fuzzy inference scheme that is used as an adaptive network is the neuro-fuzzy model. 

The neuro-fuzzy model adopted in this article is the zero-order Takagi-Sugeno inference 
method. Its topological structure can be seen in Fig.1. It is a four-layer network with 𝑚𝑚-
input nodes 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚) ∈ ℝ𝑚𝑚  and one output node 𝑦𝑦. 

Let us first describe the inference method of the zero-order Takagi-Sugeno.  
The basis of the fuzzy rule is defined as follows [29] [30] [31] [14] [32] [33]. 
 
Rule 𝑖𝑖: IF 𝑥𝑥1  is 𝐴𝐴1𝑖𝑖  and 𝑥𝑥2  is 𝐴𝐴2𝑖𝑖  and … and 𝑥𝑥𝑚𝑚  is 𝐴𝐴𝑚𝑚𝑖𝑖THEN 𝑦𝑦 is 𝑦𝑦𝑖𝑖 , (1) 

 
where 𝑖𝑖 (𝑖𝑖 =  1,2, . . . ,𝑛𝑛) Matches with the 𝑖𝑖𝑖𝑖ℎ fuzzy rule, 𝑛𝑛 is the number of the fuzzy 
rules, 𝑦𝑦𝑖𝑖 is a real number, 𝐴𝐴𝑙𝑙𝑖𝑖 is a fuzzy subset of 𝑥𝑥𝑙𝑙, and 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙) It means the role of 
Gaussian membership of the fuzzy judgment ‘‘𝑥𝑥𝑙𝑙 𝑖𝑖𝑖𝑖 𝐴𝐴𝑙𝑙𝑖𝑖” defined by  

𝐴𝐴𝑙𝑙𝑖𝑖 =
exp(−(𝑥𝑥𝑙𝑙 − 𝑎𝑎𝑙𝑙𝑖𝑖)2

𝜎𝜎𝑙𝑙𝑖𝑖2
 (2) 

where 𝑎𝑎𝑙𝑙𝑖𝑖 is the center of 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙), and 𝑟𝑟𝑙𝑙𝑖𝑖 is the width of 𝐴𝐴𝑙𝑙𝑖𝑖(𝑥𝑥𝑙𝑙). 

 
Figure 1: Topological structure of the zero-order takagi–sugeno inference system 
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For a stated observation 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚 ) the functions of the nodes in this model are 
as follows, according to the zero-order Takagi-Sugeno inference method:  
Layer1: (input layer): In this layer, each neuron represents one input variable and the 
input variables are directly passed to the next layer. 
Layer2: (membership layer): Each node in this layer represents the membership function 
of a linguistic variable and serves as a memory unit. Here, the Gaussian functions(2) are 
adopted as membership functions for the nodes. The weights connecting Layer1 and 
Layer2 can be interpreted as the Gaussian membership function's centers and widths, 
respectively. 
Layer3: (rule layer): Nodes are referred to as rule nodes in this layer, and each of them 
denotes a term with a rule. For 𝑖𝑖 = 1,2, . . . ,𝑛𝑛, Agreement on the  𝑖𝑖𝑖𝑖ℎ Previous section is 
estimated by 

ℎ𝑖𝑖 = ℎ𝑖𝑖(𝑥𝑥) = 𝐴𝐴1𝑖𝑖(𝑥𝑥1)𝐴𝐴2𝑖𝑖(𝑥𝑥2) …𝐴𝐴𝑚𝑚𝑖𝑖 (𝑥𝑥𝑚𝑚) = �𝐴𝐴𝑖𝑖𝑖𝑖(𝑥𝑥𝑙𝑙)
𝑚𝑚

𝑙𝑙=1

 (3) 

The connecting weights of layers 2 and 3 are set as constant 1. 
Layer4: (output layer): This layer performs the summed-weight defuzzification process. 
The final product of this layer is 𝑦𝑦, which is a linear combination of the implications of 
Layer3: 

𝑦𝑦 = �ℎ𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (4) 

The 𝑦𝑦𝑖𝑖 relation weights of the output layer are often referred to as conclusion parameters. 
Remark 1. In original neuro-fuzzy models [29] [34] [32] [35], the final consequence y is 
calculated by using the gravity method as follows: 

𝑦𝑦 =
∑ ℎ𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ ℎ𝑖𝑖𝑛𝑛
𝑖𝑖=1

 (5) 

A popular method is to achieve the fuzzy effect without measuring the center of gravity 
for ease of learning. Hence, the denominator in (5) is omitted [30] [31] [14] [33]. A fur-
ther advantage of this operation is the rapid deployment of hardware. [36]. We therefore 
take the form of (4) in our discussions. 

We then take the form of (4) in our debates. 
The error function is defined as  

𝐸𝐸(𝐖𝐖) =
1
2
�(𝑦𝑦𝑗𝑗 − 𝑂𝑂𝑗𝑗 )2

𝐽𝐽

𝑗𝑗=1

 

where 𝑂𝑂𝑗𝑗  is the desired output for the 𝑗𝑗𝑖𝑖ℎ training pattern 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗   is the corresponding 
fuzzy reasoning result, 𝐽𝐽 is the number of training patterns. 
The purpose of network learning is to find 𝑊𝑊∗ such that 𝐸𝐸(𝐖𝐖∗) = 𝑚𝑚𝑖𝑖𝑛𝑛𝐸𝐸(𝐖𝐖) 
To solve this optimization problem, the gradient descent approach is sometimes used [37] 
[38] [39]. 

3 New Conjugate Gradient (CG) Techniques 
Development of new optimization algorithm Based on algorithm Polak–Ribière–Polak 

(PRP) for learning fuzzy neural networks in the field of data classification and 
comparison with other optimization algorithms 
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𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 ,   𝑘𝑘 ≥ 1, (6) 
where 𝛼𝛼𝑘𝑘  is step-size obtained by a line search and 𝑑𝑑𝑘𝑘  is the direction of search specified 
by  

𝑑𝑑𝑘𝑘+1 = �−𝑔𝑔1,                             𝑘𝑘 = 1
−𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 ,          𝑘𝑘 ≥ 1

�, (7) 

where 𝛽𝛽𝑘𝑘  is a parameter. 𝛽𝛽𝐿𝐿𝐿𝐿 = −𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
𝑔𝑔𝑘𝑘
𝑇𝑇𝑑𝑑𝑘𝑘

,  see [40] and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑦𝑦𝑘𝑘
∥𝑔𝑔𝑘𝑘∥2 , see [25] where 

𝑔𝑔𝑘𝑘 = ∇𝐸𝐸(𝑤𝑤𝑘𝑘), denotes the gradient of the function of error 𝐸𝐸(𝑤𝑤) in 
regard to 𝑤𝑤, 𝑘𝑘 the number of iterations denotes the, and let 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘+1 − 𝑔𝑔𝑘𝑘 . 
Now we suggest a new conjugate gradient algorithm for classifying data depend basically 
on  Polak–Ribière–Polak (PRP) algorithm so we get a new formula: 

−𝜃𝜃𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑑𝑑𝑘𝑘 = −𝛾𝛾𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑘𝑘  
−𝜃𝜃𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = −𝛾𝛾𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

where 𝜃𝜃 < 𝛾𝛾 and 𝜃𝜃, 𝛾𝛾 ∈ [0,1]. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑑𝑑𝑘𝑘  (8) 

3.1 The Descent Property of a Conjugate Gradient (CG) Technique 
 

Below we have to demonstrate the descending property for our proposed new conjugate 
gradient scheme, denoted by 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 . In the following part 

 
Theorem 1. The search direction 𝑑𝑑𝑘𝑘+1 and 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊  given in equation 
𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + ((𝜃𝜃−𝛾𝛾)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

)𝑑𝑑𝑘𝑘  ,                                            

where 𝜃𝜃 < 𝛾𝛾 and 𝜃𝜃, 𝛾𝛾 ∈ [0,1]. It will hold for all 𝑘𝑘 ≥ 1. 
  
Proof. The proof is by using inducement mathematical  
1- If 𝑘𝑘 = 1 then 𝑔𝑔1

𝑇𝑇𝑑𝑑1 < 0, 𝑑𝑑1 = −𝑔𝑔1 →< 0. 
2- Let the relation 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑𝑘𝑘 < 0 for all 𝑘𝑘. 
3- We are going to prove that the relationship is true when 𝑘𝑘 = 𝑘𝑘 + 1  by multiplying the 
equation (8) in 𝑔𝑔𝑘𝑘+1 we obtain 

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑑𝑑𝑘𝑘  

Let 𝜏𝜏 = (𝜃𝜃−𝛾𝛾)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

, 𝑣𝑣 = 𝑦𝑦𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘+1
𝑔𝑔𝑘𝑘
𝑇𝑇𝑔𝑔𝑘𝑘

 

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1 + (𝜏𝜏 + 𝑣𝑣)𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘  

Let  𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘+1 > 0 and 𝜏𝜏 > 𝑣𝑣 the 𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≥ 0. 
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3.2. Global Convergence  

 
We will display that conjugate gradient (CG) method with 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊  convergences 

globally. For the convergence of the proposed new algorithm, we need a certain 
assumption. 

 
Assumption 1. [41][42] 

1- Assume 𝐸𝐸  in the level set is bound below 𝐿𝐿 = {𝑤𝑤 ∈ 𝑃𝑃𝑛𝑛 :𝐸𝐸(𝑤𝑤) ≤ 𝐸𝐸(𝑤𝑤0)};  In 
some  Initial point.  

2- 𝐸𝐸 is continuously differentiable and its gradient is Lipchitz continuous, there exist  
𝐿𝐿 > 0 such that[43]: 

∥ 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑦𝑦) ∥≤ 𝐿𝐿𝑥𝑥 − 𝑦𝑦 ∥ ∀𝑥𝑥,𝑦𝑦 ∈ 𝑁𝑁 (9) 
On the other hand, under Assumption(1), it is clear that there exist positive constants B 
such  

‖𝑤𝑤‖ ≤ 𝐵𝐵,∀𝑤𝑤 ∈ 𝐿𝐿 (10) 
∥ 𝛻𝛻𝐸𝐸(𝑤𝑤) ∥≤ 𝛾𝛾,∀𝑥𝑥 ∈ 𝐿𝐿 (11) 

Lemma 1. Assume that Assumption (1) and equation (10) hold. take into consideration 
any conjugate gradient method in from (6) and (7), where 𝑑𝑑𝑘𝑘  is a decent direction and 𝛼𝛼𝑘𝑘   
is obtained by the S.W.L.S. If 

�
1

∥ 𝑑𝑑𝑘𝑘+1 ∥2
𝑘𝑘>1

= ∞ 

then we have 
𝑙𝑙𝑖𝑖𝑚𝑚
𝑘𝑘→∞

𝑖𝑖𝑛𝑛𝑖𝑖 ∥ 𝑔𝑔𝑘𝑘 ∥= 0 
more details can be found in [44][45][46].  

 
Theorem 2. Assume that Assumption (1) and equation (6) and the descent condition hold. 
Consider a conjugate gradient scheme in the form 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊𝑑𝑑𝑘𝑘 , 
 where 𝛼𝛼𝑘𝑘  is computed from strong Wolfe line search condition for more details see [47] 
[48] [49] [50] , If the objective function is uniformly on set 𝐿𝐿, then 

𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛→∞(𝑖𝑖𝑛𝑛𝑖𝑖 ∥ 𝑔𝑔𝑘𝑘 ∥) = 0 . 
Proof. 

𝑑𝑑𝑘𝑘+1 = −𝑔𝑔𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊1𝑑𝑑𝑘𝑘  

𝛽𝛽𝑘𝑘𝑁𝑁𝐸𝐸𝑊𝑊 = �
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+ 𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,     𝑖𝑖𝑖𝑖    𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 ≠ 0

𝛽𝛽𝑘𝑘𝑃𝑃𝑃𝑃𝑃𝑃 ,                                          𝑖𝑖𝑖𝑖   𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘 = 0 

� 

∥ 𝑑𝑑𝑘𝑘+1 ∥=∥ −𝑔𝑔𝑘𝑘+1 + (
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
)𝑑𝑑𝑘𝑘 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤∥ 𝑔𝑔𝑘𝑘+1 ∥ +∥
(𝜃𝜃 − 𝛾𝛾)𝑔𝑔𝑘𝑘+1

𝑇𝑇 𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘+1
𝑇𝑇 𝑑𝑑𝑘𝑘

+
𝑦𝑦𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘+1

𝑔𝑔𝑘𝑘𝑇𝑇𝑔𝑔𝑘𝑘
) ∥ 𝑑𝑑𝑘𝑘 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤∥ 𝑔𝑔𝑘𝑘+1 ∥ +∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑔𝑔𝑘𝑘+1 ∥2

∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑔𝑔𝑘𝑘+1 ∥
+
∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥∥ 𝑔𝑔𝑘𝑘+1 ∥

∥ 𝑔𝑔𝑘𝑘 ∥2 ∥∥ 𝑑𝑑𝑘𝑘 ∥ 
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∥ 𝑑𝑑𝑘𝑘+1 ∥≤ (1+∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑑𝑑𝑘𝑘 ∥

∥ 𝑑𝑑𝑘𝑘 ∥
+
∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥
∥ 𝑔𝑔𝑘𝑘 ∥2 ) ∥ 𝑔𝑔𝑘𝑘+1 ∥ 

𝜓𝜓 =∥
(𝜃𝜃 − 𝛾𝛾) ∥ 𝑑𝑑𝑘𝑘 ∥

∥ 𝑑𝑑𝑘𝑘 ∥
+
∥ 𝑑𝑑𝑘𝑘 ∥∥ 𝑦𝑦𝑘𝑘𝑇𝑇 ∥
∥ 𝑔𝑔𝑘𝑘 ∥2 ∥ 

∥ 𝑑𝑑𝑘𝑘+1 ∥≤ (1 + 𝜓𝜓) ∥ 𝑔𝑔𝑘𝑘+1 ∥ 

�
1

∥ 𝑑𝑑𝑘𝑘+1 ∥2

𝑘𝑘≥1

≥ (
1

(1 + 𝜓𝜓)2)
1
𝛾𝛾2 ∑1 = ∞. 

 

3 Numerical Examples 
The conjugate gradient algorithm developed to teach the fuzzy neural networks 

described in Part Two is evaluated by comparing it with related algorithms such as LS 
and PRP to classify the data given by the following classification problems (Iris, Thyroid, 
Glass, Wine, Breast Cancer and Sonar) [51],  The developed algorithm NEW showed 
high efficiency in data classification compared to LS and PRP algorithms as shown in the 
following table and graphs, The simulation was carried out using Matlab 2018b, running 
on a Windows 8 HP machine with an Intel Core i5 processor, 4 GB of RAM and 500 GB 
of hard disk drive. 

 
Table 1: Problems in Real-World Classification [51] 

 Classification dataset Data size No. of training samples No. of testing samples 
1 Iris 150 90 60 
2 Thyroid 215 129 86 
3 Glass 214 107 107 
4 Wine 178 89 89 
5 Breast Cancer 253 127 126 
6 Sonar 208 104 104 
 

 

 
Figure 2: The average training accuracy for 

Iris 

 
Figure 3: The average training error results 

for Iris 
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Table 2: Average Performance Comparison for Classification Problems for NEW 

Datasets Algorithms 
No. of 
training 
iteration 

Average 
training 
time 

Average 
training 
accuracy 

Average 
test 
accuracy 

Average 
training 
MSE 

Average 
test 
MSE 

Iris 
LS 
PRP 
NEW 

100 
100 
100 

0.2883 
0.4328 
0.6028 

0.9600 
0.9600 
0.9644 

0.9367 
0.9367 
0.9500 

0.1392 
0.1391 
0.0932 

0.1541 
0.1541 
0.1110 

Thyroid 
LS 
PRP 
NEW 

100 
100 
100 

0.1702 
0.1703 
0.1686 

0.6930 
0.8961 
0.9271 

0.7070 
0.9000 
0.9163 

0.3899 
0.1627 
0.1356 

0.3874 
0.1632 
0.1370 

Glass 
LS 
PRP 
NEW 

100 
100 
100 

0.6123 
0.6059 
0.6565 

0.3121 
0.3121 
0.5664 

0.2617 
0.2673 
0.4636 

0.7841 
0.7807 
0.5828 

0.7944 
0.7990 
0.6414 

Wine 
LS 
PRP 
NEW 

100 
100 
100 

0.4195 
0.4147 
0.4230 

0.4854 
0.9528 
0.9730 

0.4427 
0.9258 
0.9348 

0.6324 
0.1340 
0.1131 

0.6568 
0.1827 
0.1597 

Breast 
Cancer 

LS 
PRP 
NEW 

100 
100 
100 

1.7727 
1.7482 
1.8412 

0.4677 
0.4646 
0.6630 

0.4619 
0.4619 
0.6349 

0.9235 
0.9142 
0.6235 

0.9347 
0.9257 
0.6727 

Sonar 
LS 
PRP 
NEW 

100 
100 
100 

2.1704 
2.1506 
2.1819 

0.5442 
0.5115 
0.6558 

0.5288 
0.5000 
0.5942 

0.6071 
0.6063 
0.4296 

0.6078 
0.6071 
0.4873 

 

 
Figure 4: The average training accuracy for 
Thyroid 

 
Figure 5: The average training error results 
for Thyroid 
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Figure 6: The average training accuracy for 
Glass 

 

 
Figure 7: The average training error results for 
Glass 

 
Figure 8: The average training accuracy for Wi-
ne 

 
Figure 9: The average training error results for 
Wine  

 
Figure 10: The average training accuracy for 
Breast Cancer 

 
Figure 11: The average training error results for 
Breast Cancer 
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Figure 12: The average training accuracy 
for Sonar 
 

 
Figure 13: The average training error 
results for Sonar 

 

4 Conclusion 
Our Conjugate gradient technique is a good option to a gradient descent method for its 

faster convergence speed via looking for a conjugate descent path with adaptive learning 
coefficients. An updated conjugate gradient approach has been proposed in this paper to 
train the fuzzy neural network system of the 0-th order Takagi-Sugeno (TS). Numerical 
simulations shown that new algorithm has a better generalization efficiency than its 
current counterparts. Also, the simulations observed endorse the converging behavior of 
the suggested algorithm is very well. We also conclude that the proposed technique can 
solve the optimization functions and can be used in training artificial neural networks. 
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