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ABSTRACT. Let R be a commutative ring with nonzero identity and let M be
a unitary R-module. The essential graph of M, denoted by EG(M) is a simple
undirected graph whose vertex set is Z(M)\Anng (M) and two distinct vertices
z and y are adjacent if and only if Annys(zy) is an essential submodule of M.
Let r(Anng(M)) # Anng(M). It is shown that EG(M) is a connected graph
with diam(EG(M)) < 2. Whenever M is Noetherian, it is shown that EG(M)
is a complete graph if and only if either Z(M) = r(Anng(M)) or EG(M) = K3
and diam(EG(M)) = 2 if and only if there are z,y € Z(M)\Anng (M) and p €
Assgr (M) such that zy ¢ p. Moreover, it is proved that gr(EG(M)) € {3,00}.
Furthermore, for a Noetherian module M with r(Anng(M)) = Anng(M) it
is proved that |Assp(M)| = 2 if and only if EG(M) is a complete bipartite
graph that is not a star.
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1. Introduction

The concept of the zero-divisor graph of a commutative ring was introduced
and studied by I. Beck in [6]. Subsequently, D. F. Anderson and P. S. Livingston
in [2] studied and investigated the concept of zero-divisor graph on nonzero zero-
divisors of a commutative ring. Let R be a commutative ring and let Z(R) be its
set of zero-divisors. The zero-divisor graph of R, which is the graph with vertex
set Z*(R) = Z(R) \ {0} and two distinct vertices z and y are adjacent if and only
if zy = 0, has been studied by many authors (see [1,3,4]). Variations of the zero-
divisor graph are created by changing the vertex set, the edge condition, or both.
The essential graph of R is a variation of the zero-divisor graph that changes the
edge condition, and is introduced and studied in [10]. The essential graph of R
is a simple undirected graph, denoted by EG(R), with vertex set Z*(R) and two

distinct vertices x and y are adjacent if and only if Anng(zy) is an essential ideal
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of R. Recently, a lot of research (e.g., [5,7,8,11,12]) has been devoted to the zero-
divisor graph of a module (Definition 4.1). Let M be an R-module and let Z(M)
be its set of zero-divisors. In this paper, we associate a graph to the module M,
denoted by EG(M), with vertex set Z(M) \ Anng(M) and two distinct vertices
x,y € Z(M) \ Anng(M) are adjacent if and only if Annps(zy) is an essential
submodule of M. Before we state some results, let us introduce some graphical
notations.

Let G = (V(G), E(G)) be a simple undirected graph, V(G) and E(G) are called
vertex set and edge set of G, respectively. Let x,y € V(G). Whenever z and y
are joint by an edge, it is denoted by z — y. The vertex z is said to be a universal
vertex if it is adjacent to every other vertex of G. The graph G is connected if
there is a path between any two distinct vertices. For vertices z and y of G, we
define d(z,y) to be the length of a shortest path between x and y (if there is no
path, then d(z,y) = 00). The open neighborhood of a vertex z is defined to be
the set N(z) = {y € V(G) : d(z,y) = 1}. The diameter of G is diam(G) =
sup{d(z,y)|z,y € V(G)}. A graph G is complete if any two distinct vertices are
adjacent and a complete graph with n vertices is denoted by K,,. A bipartite graph
is one whose vertex set can be partitioned into two subsets so that an edge has both
ends in no subset. A complete bipartite graph is a bipartite graph in which each
vertex is adjacent to every vertex that is not in the same subset. The complete
bipartite graph with part sizes m and n is denoted by K, . If m = 1, then the
bipartite graph is called star graph. The girth of G, denoted by gr(G) is the length
of a shortest cycle contained in the graph (if there is no cycle, then gr(G) = o).

Throughout this paper, R is a commutative ring with nonzero identity and M is
a unitary R-module. Recall that Z(M) = {r € R: rm = 0 for some 0 # m € M},
Assp(M) = {p € Spec(R) : p = Anng(m) for some 0 # m € M}, Anng(M) =
{r € R:rM = 0} and 7(Anng(M)) = {z € R : 2' € Anng(M) for some t €
N}. For z € R, Anny(z) = {m € M : m = 0}. Let Specyp(M) denote the
set of prime submodules of M. Then m-Assg(M) = {P € Specp(M) : P =
Annps(z) for some 0 # = € R}. For notations and terminologies not given in this
paper, the reader is referred to [13].

Here is a brief summary of the paper. In the second section, for a Noetherian
R-module M with r(Anng(M)) # Anng(M), we show that EG(M) is a connected
graph with diam(EG(M)) < 2 and gr(EG(M)) € {3,00} (Theorem 2.6). We show
that FG(M) is a complete graph if and only if either Z(M) = r(Anng(M)) or
EG(M) = K3 (Theorem 2.10). Whenever r(Anng(M)) = Anng(M), among other
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things, we prove that |Assg(M)| = 2 if and only if EG(M) is a complete bipartite
graph that is not a star (Theorem 3.7). In the fourth section, for a Noetherian R-
module with r(Anng(M)) = Anng(M), we show that I'(M) = EG(M) (Theorem
4.6), where T'(M) denotes the zero divisor graph of M.

2. Properties of the essential graph for modules

Let R be a commutative ring and M be an R-module. A submodule of M is
called essential if it has a non-trivial intersection with every non-trivial submodule
of M.

Definition 2.1. Let M be an R-module. The essential graph of M, denoted by
EG(M) is a simple undirected graph associated to M with vertex set Z(M) \
Anng(M), and a pair of distinct vertices z and y are adjacent if and only if

Ann s (xy) is an essential submodule of M.

Suppose that z,y € Z(M)\ Anng(M). It is easy to see that x and y are adjacent
in EG(M) if and only if Annys(x) + Annys(y) is an essential submodule of M.

Lemma 2.2. Let M be an R-module. If ¢ € r(Anng(M)) \ Anng(M), then c is a

universal vertex of EG(M).

Proof. Let ¢ € r(Anng(M))\Anng(M). Then Annys(c) is an essential submodule
of M, by [5, Theorem 5(i)]. Hence, for each a € Z(M)\ Anng (M), Annyy(ac) is an

essential submodule of M. This means that ¢ is a universal vertex of EG(M). O

Lemma 2.3. Let M be an R-module and let ¢ € Z(M) \ Aung (M) be a universal
vertex of EG(M). Then either Anny;(c) is an essential submodule of M or R =
R1® Ry and M = My & Ms, where Ry and Ry are subrings of R, M1 and My are
R-submodules of M and (a,0) is a universal vertex of EG(M), for alla € Zg, (My).

Proof. Suppose that ¢ € Z(M) \ Anng(M) is a universal vertex of EG(M). If
M = 0, then the result follows by [5, Theorem 5(i)]. Suppose that ¢2M # 0 and
¢ # c%. Thus Annjs(c?) is an essential submodule of M so Annjs(c) is an essential
submodule of M.

Now, assume that ¢ = c¢. Thus R=cR® (1 —c¢)Rand M = cM & (1 — ¢)M.
Assume that Ry = ¢R and Ry = (1 — ¢)R. Then R; and Rs are subrings of R.
In addition, M; = ¢M and My = (1 — ¢)M are R-submodules of M. Moreover,
if r = (r1,r2) and m = (my, ma), then rm = (rymq,ramse). It is easy to see that
¢ = (1,0). Then (1,0) is a universal vertex of EG(M). Assume that 0 # b €
Zr,(Ms). Thus there exists 0 # mg € My such that (1,5)(0,mz2) = (0,0) but
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(1,b)(My ® Ms) = M; @ bMs, # 0. This means that (1,b) € Z(M)\ Anng(M).
Since (1,0) is a universal vertex Annps((1,0)(1,b)) = Annp((1,0)) = 0@ M; is an
essential submodule of M that is impossible. Therefore, Zg, (M2) = 0. Moreover,
if @ € Zg,(My), then there exists 0 # my € M such that (a,1)(mq,0) = (0,0) so
(a,1) € Z(M)\ Anng(M). Thus Annys((1,0)(a,1)) = Annps((a,0)) is an essential
submodule of M, as required. (I

Remark 2.4. Let the situation be as Lemma 2.3. Since Annps((a,0)) is an es-
sential submodule of M so Annyy, (a) is an essential submodule of M;. Moreover
Ry has characteristic 2; because, if (1,0) # (—1,0), then Anny((1,0)(—1,0)) =
Annps((—1,0)) = 0@ M; is an essential submodule of M, that is impossible. Thus
1= -1 € Ry, and R; has characteristic 2.

Theorem 2.5. Let M be a Noetherian R-module with r(Anng(M)) # Anng(M).
Then x,y € Z(M) \ Anng(M) are adjacent in EG(M) if and only if xy € p, for
all p € MinAssg(M).

Proof. Suppose that M is a Noetherian R-module and MinAssr(M) = {p1,--- ,pr}-
Thus there exists m; € M such that p; = Anng(m;), for all 4 = 1,--- , k. Assume
that z,y € Z(M) \ Anng(M) are adjacent in EG(M) so Annys(zy) is an essential
submodule of M. Hence, Annys(zy) N Rm; # 0, for all ¢ = 1,--- k. Therefore,
xyr;m; = 0 for some r; € R with 0 # r;m; so xy € p;.

Conversely, suppose that zy € p, for all p € MinAssg(M). We may assume that
zeni_ypjand y € ﬁ§:t+1pj, for some t with 1 <t < k. So zy € r(Anng(M)) =
ﬁ?zlpj. Hence, Annj,(xy) is an essential submodule of M by Lemma 2.2. There-

fore, x and y are adjacent in EG(M), as needed. O

Theorem 2.6. Let M be an R-module such that r(Anng(M)) # Anng(M). Then
the following statements hold:

(i) EG(M) is a connected graph with diam(EG(M)) < 2.

(ii) If M is Noetherian, then gr(EG(M)) € {3,00}.

Proof. (i) It is clear by Lemma 2.2.

(i) If |r(Anng(M)) \ Anng(M)| > 2, then either EG(M) = K1, or EG(M) has
a cycle with length three, by Lemma 2.2, so gr(EG(M)) = 3. Now, assume that
r(Anng(M)) \ Anng(M) = {c}. Two following cases may occur:
Case 1. Let MinAssgp(M) = {p1,--- ,px} (k > 2). Then for z € p;\UF_, ,;p; and
y € ﬁ;?:l’j#pj \ p; we have © # y, z,y € r(Anng(M)) and zy € r(Anng(M)) =
ﬂ;?:lpj. Hence, x,y are adjacent in EG(M) so ¢ — x —y — cis a cycle in EG(M).
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Case 2. Let MinAssg(M) = {p}. If z,y € Z(M) \ r(Aunr(M)) are adjacent in
EG(M), then Annjs(zy) is an essential submodule of M. So Annys(xy) N Rm # 0,
where p = Anng(m) and 0 # m € M. Thus it is easy to see that either x € p or
y € p which is a contradiction. Therefore, either Z(M) \ r(Anng(M)) = {z} and
EG(M) = K1 or |Z(M)\ r(Anng(M))| 2 2 and EG(M) = K1 |z(M)\r(Annr(M)))|
that has no any cycle. (I

Corollary 2.7. Let M be a Noetherian R-module with r(Anng(M)) # Anng(M).
Ifp = r(Anng(M)) is a prime ideal of R, then EG(M) = K|p\AnnR(M)‘\/I_(|Z(M)\p‘.
In particular, diam(EG(M)) = 2.

Proof. It is immediate by the proof of Theorem 2.6. O

Corollary 2.8. Let M be a Noetherian R-module with r(Anng(M)) # Anng(M).
Then diam(EG(M)) = 2 if and only if there are z,y € Z(M) \ Anng(M) and
p € Ass(M) such that xy & p.

Proof. It is immediate by Theorems 2.5 and 2.6. O

Lemma 2.9. Let M be an R-module. Then EG(M) is a complete graph if and

only if one of the following statements holds:

(i) Annys(x) is an essential submodule of M, for all x € Z(M) \ Anng(M).

Proof. Suppose that EG(M) is complete and © € Z(M) \ Anng(M). If either
x € r(Anng(M)) or x € r(Anng(M)) and x # 22, then Annys () is an essential
submodule of M, by Lemmas 2.2 and 2.3. Now, assume that = ¢ r(Anng(M)) and
z =x2. Then, R = R1 ® Ry and M = M; & M>, where R, and R, are subrings of
R, My and M, are R-submodules of M and Z(M) = (Zg,(M1) & R2) U (Ry & 0),
which follows from the proof of Lemma 2.3. If 0 # a € Zg, (M), then there
exists 0 # my € M; such that (a,1)(mq,0) = (0,0) so (a,1) € Z(M) \ Anng(M).
Thus Annps((0,1)(a,1)) = Annps((0,1)) is an essential submodule of M, that is
impossible. Hence, Z (M) = (R1®0)U(0® Rs). Let (a,0) € (R100)\{(0,0),(1,0)}.
Then (a,0) € Z(M) \ Anng(M) and Annps((1,0)(a,0)) = Annys((a,0)) = 0® M,
is an essential submodule of M, that is impossible. So R; = {0,1} and Z(M) =
{(0,0),(1,0)} U(0® R3). By a similar argument one can show that Ry = {0,1} and
Z(M) ={(0,0),(1,0)} U {(0,0),(0,1)} as desired. The converse is obvious. O

Theorem 2.10. Let M be a Noetherian R-module with r(Anng(M)) # Anng(M).
Then EG(M) is a complete graph if and only if one of the following statements
holds:
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(i) Z(M) = r(Anng(M)).
(i) EG(M) = Ko.

Proof. Of course, (i) and (ii) imply that EG(M) is a complete graph, see Lemma
2.2. Hence, it is enough to prove that if EG(M) is complete, then either (i) or
(ii) holds. Suppose that EG(M) # K, is a complete graph and x € Z(M) \
Anng(M). Then the increasing chain of submodules Annys(z) € Annps(z?) C

. C Anny(z™) C ... does stabilize. Suppose that n € N and Anny(z") =
Annp (2", for all i > 0. If m € Anny(z)Na™M, then m = z™m/’, for some m' €
M. Hence, z""'m/ = xm = 0 which implies that m’ € Anny, (2" *1) = Anny(z7).
So m = 0 and then "M = 0 since Annjs(x) is an essential submodule of M.
Therefore, x € r(Anng(M)) and Z(M) = r(Anng(M)). O

The following example has been presented to show that the property of being

Noetherian is a necessary condition in Theorem 2.10.

Example 2.11. Let p be a prime number and consider Z,~ as a Z-module. It
is easy to see that Anng . (p') is an essential submodule of Z,e, for all i > 1.
Thus EG(Z,~) is a complete graph, but neither Zz(Zy~) = r(Ann(Z,~)) nor
EG(Zy~) = Ks. Therefore, the Noetherian condition in Theorem 2.10 is necessary.

3. Results when r(Anng(M)) = Anng (M)

In this section, we investigate more results about the essential graph of M when-
ever r(Anng(M)) = Anng(M).

Lemma 3.1. Let M be a Noetherian R-module such that r(Anng(M)) = Anng(M)
and let 0 = N}_,Q; be a minimal primary decomposition of the zero submodule of M
with r(Anng(M/Q;)) = p;, for each j = 1,--- ,n. Then the following statements
hold:
(i) If p; is a minimal element of Assg(M), for some i with 1 < i < n, then
there exists a; € R such that Q; = Annpy(a;).
(ii) If p; is a minimal element of Assg(M), for some i with 1 < i < n, then Q;
s a prime submodule of M .
(iii) If P = Annp(a) is a prime submodule of M and p = Anng(M/Anny(a)),
then p is a minimal element of Assr(M).
(iv) If P = Anny(a) is a prime submodule of M, p = Anng(M/Anny(a)) and
p=1p; for some i with 1 < i <n, then P = Q);.

Proof. (i) Suppose that 0 = N}_;Q; is a minimal primary decomposition of the
zero submodule of M with r(Anng(M/Q;)) = p;, for each j =1,--- ,n. Assume
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that p; = r(Anng(M/Q;)) is a minimal element of Assp(M) for some i with 1 <4 <
n. Then N}_, ;;Anng(M/Q;) < p;. Let a; € Nj_; ;,,Annr(M/Q;) \ p;. We show
that Annps(a;) = Q;. Of course, we have Annps(a;) = (0 :p a;) = (N)_1Q; ;s
a;) = N7 (Qj v ai) = (Qi :mr a;) and Q; € (Q; :ar ai). I m € (Qi iar ai) \ Qi
then there exists ¢ € N such that a!M C Q; so a; € p; which is a contradiction.
Hence, Q; = Anny;(a;).

(ii) From (i) it follows that Q; = Annas(a;), for some a; € NJ_y ;.p; \ pi. We
show that ; is a prime submodule. Suppose that b € R,m € M are such that
bm € Q; but m € @Q;. Thus there is t € N such that b!M C Q;. So (a;0)!M C Q;.
On the other hand, a;b € N}_; ;_,p; thus (a;b)!M C N5_; j2i@i- Hence, (a;0)'M C
N7_1Q; = 0. Therefore, by the hypothesis a;bM = 0 so bM C @); and @); is prime.

(iii) Let P = Annjps(a) be a prime submodule of M and p = Anng(M/Anny(a)).
It is easy to see that p = Anng(aM). Let m € M and am # 0. We show that
p = Anng(am). It is obvious that p C Anng(am). Assume that » € R and
ram = 0. Thus rm € P = Anny/(a) and m ¢ P = Anny(a) so raM = 0 and
r € Anng(aM) = p. Hence, p = Anng(am) € Assgr(M). If a € N7_,p;, then
there is t € N such that o' € N7_,(Q; :r M) so a'M C N?_,Q; = 0. Therefore,
a'M = 0 and aM = 0 which is a contradiction. Thus there are 1 < ¢ < n and
p; € MinAssp(M) such that a ¢ p,. Assume that » € p. Thus raM = 0 and so
raM C N7_,Q;. Hence, ra € (N7_,Q; :r M) C NJ_;(Q; :r M) € N7_;p;. Now,
from ra € p; and a ¢ p; it follows that p C p; so p = p;.

(iv) Suppose that 1 < i < n and p = p;. We show that P = @;. Assume that
m € ;. Thus aym =0 € P. If m &€ P, then a; € p = p;, which is a contradiction
so Q; € P. Assume that m € Psoam =0 € Q;. If m € @Q;, then there is s € N
such that a*M C Q; = Annys(a;). Hence, a;a®*M = 0 and so a;a®~!(aM) = 0.
Therefore, a;a*~! € p = p; which implies that a*~! € p = p; since a; ¢ p;. Hence,
a € p. This means that a?M = 0 and a € r(Anng(M)) = Anng(M) which is a
contradiction. Therefore, m € @; and so P C Q;. (]

Theorem 3.2. Let M be a Noetherian R-module with r(Anng(M)) = Anng(M).
Then EG(M) is a null graph if and only if [MinAssg(M)| = 1.

Proof. (<) Suppose that a € Z(M) \ Anng(M) and Annys(a) is a prime sub-
module of M. Thus p = Anng(aM) is a minimal element of Assg(M), by Lemma
3.1(iii). In view of [9, Lemma 3.2], Annys(a) is a unique maximal element of
X = {Anny(x) : x € Z(M) \ Anng(M)}. So the zero submodule of M has only

one minimal primary component. Thus r(Anng(M)) = Anng(M) = p. Assume
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that = and y are adjacent vertices of EG(M) so Anny,(zy) is an essential submod-
ule of M. If Annys(zy) is a proper submodule of M, then Anny,(zy) C Annys(a)
implies that Annj/(a) is an essential submodule of M, which contradicts [5, The-
orem 5(iii)]. Hence, Annys(zy) = M. So zy € Anng(M) = p which implies that
either € Anng(M) or y € Anng(M) that is impossible. Therefore, EG(M) is a
null graph.

(=) Since M is a Noetherian R-module we have |MinAssg(M)| > 1. Moreover,
[MinAssg(M)| = |m-Ass(M)| < 1, by Lemma 3.1 and [5, Theorem 6(i)]. O

Theorem 3.3. [5, Theorem 7] Let M be a Noetherian R-module and Anng(M) =
r(Anng(M)). Then EG(M) is a disconnected graph if and only if there exists
be Z(M)\ Anng(M) such that Annps(b) C (\pepy—ass(ar) L-

Corollary 3.4. Let M be a Noetherian R-module with r(Anng(M)) = Anng(M).
Then EG(M) is a connected graph if and only if for allb € Z(M)\ Anng(M) there
exists P € m-Ass(M) such that Annys(b) € P.

Corollary 3.5. Let M be a Noetherian R-module. If EG(M) is a connected graph,
then diam(EG(M)) < 3.

Proof. If r(Anng(M)) # Anng(M), then the result follows by Theorem 2.6. Oth-
erwise, it follows by Corollary 3.4, [5, Corollary 2] and [5, Remark 1(iii)], note that
by Theorem 3.2, |m-Ass(M)| > 2. O

Corollary 3.6. Let M be a Noetherian R-module. If the connected graph EG(M)
has a cycle, then gr(EG(M)) < 4.

Proof. If r(Anng(M)) # Anng(M), then the result follows by Theorem 2.6. Now,
assume that r(Anng(M)) = Anng(M). For |m-Ass(M)| > 3 there is nothing to
prove, see [5, Remark 1(iii)]. So we may assume that |m-Ass(M)| < 2. On the
other hand, |m-Ass(M)| > 1 since EG(M) is a connected graph, see Corollary 3.4.
Hence, |m-Ass(M)| = 2. Now, by a similar argument to that of [11, Theorem 3.3]
one can show that gr(EG(M)) < 4. O

Theorem 3.7. Let M be a Noetherian R-module with r(Anng(M)) = Anng(M)
and assume that EG(M) is not a star graph. Then EG(M) is a complete bipartite
graph if and only if |Assp(M)| = 2.

Proof. Let I = Anng(M). Note that

r(Anng(M)) = Anng(M) and r(Anng(M))/I = r(Anng,(M)).



A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES 219

Thus 7(Anng,;(M)) = 0. Moreover, for each a € R, we have a € Z(M)\ Anng(M)
if and only if a +1 € Zg;(M) \ {0} and p € Assg(M) if and only if p/I €
Assp,r(M). It is therefore enough for us to prove this result under the additional
hypothesis that r(Anng(M)) = 0.

Let EG(M) be a complete bipartite graph and {Vi,V2} be a partition of the
vertex set of EG(M). We prove that V; U{0} for ¢ = 1,2 is a prime ideal of R. Let
a,beVy =ViU{0}. fa=0o0orb=0o0ra+b=0,then a+b eV, and we are
done. Suppose that a,b € V4. Thus there exist 2,y € V5 such that Annys(azx) and
Annj; (by) are essential submodules of M. If Annys(az) N Annps (by) C Annyy (zy),
then Ann,(xy) is an essential submodules of M which is a contradiction. Thus
assume that m € Annpys(ax) N Annp(by) \ Annps(zy). Hence, (a + b)zym = 0 and
xym # 0 this means a+b € Z(M). If a+ b € V; we are done; otherwise a+b € V;
and it follows that Annys(a(a + b)) and Annyy(b(a + b)) are essential submodules
of M. Then Anny;((a + b)?) and so Anny(a + b) is an essential submodule of
M which is a contradiction. So a +b € Vi. Let a,b € R and ab € V. We
show that either a € V; or b € V. If a = 0 or b = 0, then there is nothing to
prove. If ab = 0, then Annj;(ab) is an essential submodule of M contrary to the
assumption. So assume that 0 # a,b,0 # ab and a,b € V;. Thus either Anny;(a?b)
or Annys(ab?) is an essential submodule of M and so Annjs((ab)?) is an essential
submodule of M which implies that Ann,;(ab) is an essential submodule of M, this
is a contradiction. Hence, either a € V] or b € V7.

Conversely, assume that Assp(M) = {p1,p2}. Thus p1 Np2 = r(Anng(M)) =
0. Suppose that a,b € p; \ {0} and Annps(ab) is an essential submodule of M.
Moreover, suppose that po = Anng(m), for some m € M. Thus Annys(ab) N Rm #
0. If 0 # rm € Annys(ab), then abr € py which implies that ab € ps and so either
a € ps or b € py. Hence, either a = 0 or b = 0 which is a contradiction. Therefore,
the elements of p; \ {0} are not adjacent with each other. By a similar argument,
one can show that any two distinct elements of ps \ {0} are not adjacent. Let
a € p1 \ {0} and b € po \ {0}. Then adb € p1pa C p1 Np2 = 0 so abM = 0 which
means that an element of p; \ {0} is adjacent to all elements of py \ {0}. Therefore,
EG(M) is a complete bipartite graph. O

Corollary 3.8. Let M be a Noetherian R-module with r(Anng(M)) = Anng(M).
Then EG(M) is a star graph if and only if R = Zs ® R’ and M = (©Zs) ® M,
where R’ is a subring of R and M’ is an R-submodule of M and Assr(M) =
(Z,®0,0@ R').
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Proof. As in Theorem 3.7 we can assume that r(Anng(M)) = 0. Let EG(M) be
a star graph and let {V} = {c},Va2 = {z,9,2,---}} be a partition of V(EG(M)).
We prove that V; U {0} for i = 1,2, is a prime ideal of R. By the hypotheses and
the proof of Lemma 2.3 we have ¢? = ¢ and also it follows that R = Ry @ Rs and
M = My ® M5, where Ry and Ry are subrings of R, M; and M5 are R-submodules
of M, ¢ = (1,0) is the universal vertex of EG(M), Zgr,(My) = Zp,(M2) = 0.
Moreover, Ry has characteristic 2 so Ry = Zo. Hence, Z(M) = Zs ®0U 0 ® Ro.
Therefore, V1 U{0} = Z2®0,Vo,U{0} = 00 R and Assg(M) = {Z2®0,0&Ry}. O

4. Relations between the zero divisor graph and the essential graph

In this section we will study the relations between the zero-divisor graph defined

in [11] and the essential graph for modules.

Definition 4.1. [11, Definition 2.1] Let M be an R-module. The zero-divisor
graph of M, denoted by I'(M) is a simple undirected graph whose vertex set is
Z (M) \ Anng(M) and two distinct vertices  and y are adjacent if and only if
zyM = 0.

To commence, we show that the zero-divisor graph is a subgraph of the essential

graph.
Lemma 4.2. Let M be an R-module. Then I'(M) is a subgraph of EG(M).

Proof. Suppose that = and y are adjacent in I'(M). Then zyM = 0 and M =
Annjs(zy) is an essential submodule of M. Hence, z and y are adjacent in EG(M).
U

Lemma 4.3. Let M be an R-module and x € Z(M) \ r(Anng(M)). If Annps(x)
is a prime submodule of M, then Ny (x) = Ngar) ().

Proof. Suppose that x € Z(M) \ 7(Anng(M)) and Annps(z) is a prime sub-
module of M. It is enough to show that Npgar(r) € Nran(z). Assume that
y € Ngguy(x). Thus Annyy(xy) is an essential submodule of M. In view of [5,
Theorem 5(iii)] Annys(z) is not an essential submodule of M. Hence, there exists
a nonzero submodule N of M such that Annys(z) N N = 0. Therefore, for some
m € M we have xym = 0 but xm # 0 so we get that xyM = 0 since Ann,(z) is a
prime submodule of M. Therefore, x and y are adjacent in I'(M) and the proof is
completed. O

The following example shows that Lemma 4.3 does not hold necessarily for ele-
ments of r(Anng(M)).
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Example 4.4. Consider M = 7Z/12Z as a Z-module. For 6 € r(Anng(M)),
Anny(6) = 27Z/127Z is a prime submodule of M but Ny (6) # Ngaar)(6).

Lemma 4.5. Let M be a Noetherian R-module. Then 0 is a prime submodule of
M if and only if EG(M) is a null graph. In particular, EG(M) =T(M).

Proof. Suppose that 0 is a prime submodule of M. Then |[MinAssg(M)| =1 and
so the result follows by Theorem 3.2. (]

Theorem 4.6. Let M be a Noetherian R-module with r(Anng(M)) = Anng(M).
Then T'(M) = EG(M).

Proof. It is obvious that I'(M) is a subgraph of EG(M), by Lemma 4.2. Now,
it is sufficient to show that each edge of EG(M) is an edge of I'(M). Suppose
that  —y is an edge of EG(M). Then Ann)(zy) is an essential submodule of M.
By the assumption the chain Anny(zy) C€ Annyy((zy)?) C ... C Annp((zy)™) C

. of submodules does stabilize, thus there is n € N such that Anny((zy)") =
Annyy((zy)™*?), for all i > 0. Assume that m € Annps(zy) N (zy)"M. Thus
m = (zy)"m’ for some m’ € M. Hence (xy)"*'m’ = zym = 0, which implies
that m’ € Annps((zy)" ') = Annps((zy)™). Then m = 0 and (zy)"M = 0 since
Anny;(xy) is an essential submodule of M. Therefore, xy € r(Anng(M)) and so
zyM = 0. (]

The following examples have been presented to show that the properties of being

Noetherian and r(Anng(M)) = Anng(M) are necessary conditions in Theorem 4.6.

Example 4.7. (i) Example 2.11 shows that for the non-Noetherian Z-module
Zpos we have r(Anng(Zpe)) = Anng(Zpeo) but EG(Zpso) # T(Zpes).
(ii) For the Noetherian Z-module Z/127Z, Anny(Z/12Z)) # Anny(Z/12Z). The
following figures (induced subgraphs of I'(Z/12Z) and EG(Z/12Z)) show
that EG(Z/12Z) # T'(Z/127).

2 4 8 10 2 4 8 10
3 6 9 3 6 9

(M) EG(M)
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