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Abstract. Let R be a commutative ring with nonzero identity and let M be

a unitary R-module. The essential graph of M , denoted by EG(M) is a simple

undirected graph whose vertex set is Z(M)\AnnR(M) and two distinct vertices

x and y are adjacent if and only if AnnM (xy) is an essential submodule of M .

Let r(AnnR(M)) 6= AnnR(M). It is shown that EG(M) is a connected graph

with diam(EG(M)) ≤ 2. Whenever M is Noetherian, it is shown that EG(M)

is a complete graph if and only if either Z(M) = r(AnnR(M)) or EG(M) = K2

and diam(EG(M)) = 2 if and only if there are x, y ∈ Z(M)\AnnR(M) and p ∈
AssR(M) such that xy 6∈ p. Moreover, it is proved that gr(EG(M)) ∈ {3,∞}.
Furthermore, for a Noetherian module M with r(AnnR(M)) = AnnR(M) it

is proved that |AssR(M)| = 2 if and only if EG(M) is a complete bipartite

graph that is not a star.
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1. Introduction

The concept of the zero-divisor graph of a commutative ring was introduced

and studied by I. Beck in [6]. Subsequently, D. F. Anderson and P. S. Livingston

in [2] studied and investigated the concept of zero-divisor graph on nonzero zero-

divisors of a commutative ring. Let R be a commutative ring and let Z(R) be its

set of zero-divisors. The zero-divisor graph of R, which is the graph with vertex

set Z∗(R) = Z(R) \ {0} and two distinct vertices x and y are adjacent if and only

if xy = 0, has been studied by many authors (see [1,3,4]). Variations of the zero-

divisor graph are created by changing the vertex set, the edge condition, or both.

The essential graph of R is a variation of the zero-divisor graph that changes the

edge condition, and is introduced and studied in [10]. The essential graph of R

is a simple undirected graph, denoted by EG(R), with vertex set Z∗(R) and two

distinct vertices x and y are adjacent if and only if AnnR(xy) is an essential ideal
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of R. Recently, a lot of research (e.g., [5,7,8,11,12]) has been devoted to the zero-

divisor graph of a module (Definition 4.1). Let M be an R-module and let Z(M)

be its set of zero-divisors. In this paper, we associate a graph to the module M ,

denoted by EG(M), with vertex set Z(M) \ AnnR(M) and two distinct vertices

x, y ∈ Z(M) \ AnnR(M) are adjacent if and only if AnnM (xy) is an essential

submodule of M . Before we state some results, let us introduce some graphical

notations.

Let G = (V (G), E(G)) be a simple undirected graph, V (G) and E(G) are called

vertex set and edge set of G, respectively. Let x, y ∈ V (G). Whenever x and y

are joint by an edge, it is denoted by x− y. The vertex x is said to be a universal

vertex if it is adjacent to every other vertex of G. The graph G is connected if

there is a path between any two distinct vertices. For vertices x and y of G, we

define d(x, y) to be the length of a shortest path between x and y (if there is no

path, then d(x, y) = ∞). The open neighborhood of a vertex x is defined to be

the set N(x) = {y ∈ V (G) : d(x, y) = 1}. The diameter of G is diam(G) =

sup{d(x, y)|x, y ∈ V (G)}. A graph G is complete if any two distinct vertices are

adjacent and a complete graph with n vertices is denoted by Kn. A bipartite graph

is one whose vertex set can be partitioned into two subsets so that an edge has both

ends in no subset. A complete bipartite graph is a bipartite graph in which each

vertex is adjacent to every vertex that is not in the same subset. The complete

bipartite graph with part sizes m and n is denoted by Km,n. If m = 1, then the

bipartite graph is called star graph. The girth of G, denoted by gr(G) is the length

of a shortest cycle contained in the graph (if there is no cycle, then gr(G) =∞).

Throughout this paper, R is a commutative ring with nonzero identity and M is

a unitary R-module. Recall that Z(M) = {r ∈ R : rm = 0 for some 0 6= m ∈ M},
AssR(M) = {p ∈ Spec(R) : p = AnnR(m) for some 0 6= m ∈ M}, AnnR(M) =

{r ∈ R : rM = 0} and r(AnnR(M)) = {x ∈ R : xt ∈ AnnR(M) for some t ∈
N}. For x ∈ R, AnnM (x) = {m ∈ M : xm = 0}. Let SpecR(M) denote the

set of prime submodules of M . Then m-AssR(M) = {P ∈ SpecR(M) : P =

AnnM (x) for some 0 6= x ∈ R}. For notations and terminologies not given in this

paper, the reader is referred to [13].

Here is a brief summary of the paper. In the second section, for a Noetherian

R-module M with r(AnnR(M)) 6= AnnR(M), we show that EG(M) is a connected

graph with diam(EG(M)) ≤ 2 and gr(EG(M)) ∈ {3,∞} (Theorem 2.6). We show

that EG(M) is a complete graph if and only if either Z(M) = r(AnnR(M)) or

EG(M) = K2 (Theorem 2.10). Whenever r(AnnR(M)) = AnnR(M), among other
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things, we prove that |AssR(M)| = 2 if and only if EG(M) is a complete bipartite

graph that is not a star (Theorem 3.7). In the fourth section, for a Noetherian R-

module with r(AnnR(M)) = AnnR(M), we show that Γ(M) = EG(M) (Theorem

4.6), where Γ(M) denotes the zero divisor graph of M .

2. Properties of the essential graph for modules

Let R be a commutative ring and M be an R-module. A submodule of M is

called essential if it has a non-trivial intersection with every non-trivial submodule

of M .

Definition 2.1. Let M be an R-module. The essential graph of M , denoted by

EG(M) is a simple undirected graph associated to M with vertex set Z(M) \
AnnR(M), and a pair of distinct vertices x and y are adjacent if and only if

AnnM (xy) is an essential submodule of M .

Suppose that x, y ∈ Z(M)\AnnR(M). It is easy to see that x and y are adjacent

in EG(M) if and only if AnnM (x) + AnnM (y) is an essential submodule of M .

Lemma 2.2. Let M be an R-module. If c ∈ r(AnnR(M)) \AnnR(M), then c is a

universal vertex of EG(M).

Proof. Let c ∈ r(AnnR(M))\AnnR(M). Then AnnM (c) is an essential submodule

of M , by [5, Theorem 5(i)]. Hence, for each a ∈ Z(M)\AnnR(M), AnnM (ac) is an

essential submodule of M . This means that c is a universal vertex of EG(M). �

Lemma 2.3. Let M be an R-module and let c ∈ Z(M) \AnnR(M) be a universal

vertex of EG(M). Then either AnnM (c) is an essential submodule of M or R =

R1 ⊕R2 and M = M1 ⊕M2, where R1 and R2 are subrings of R, M1 and M2 are

R-submodules of M and (a, 0) is a universal vertex of EG(M), for all a ∈ ZR1(M1).

Proof. Suppose that c ∈ Z(M) \ AnnR(M) is a universal vertex of EG(M). If

c2M = 0, then the result follows by [5, Theorem 5(i)]. Suppose that c2M 6= 0 and

c 6= c2. Thus AnnM (c3) is an essential submodule of M so AnnM (c) is an essential

submodule of M .

Now, assume that c2 = c. Thus R = cR ⊕ (1 − c)R and M = cM ⊕ (1 − c)M .

Assume that R1 = cR and R2 = (1 − c)R. Then R1 and R2 are subrings of R.

In addition, M1 = cM and M2 = (1 − c)M are R-submodules of M . Moreover,

if r = (r1, r2) and m = (m1,m2), then rm = (r1m1, r2m2). It is easy to see that

c = (1, 0). Then (1, 0) is a universal vertex of EG(M). Assume that 0 6= b ∈
ZR2(M2). Thus there exists 0 6= m2 ∈ M2 such that (1, b)(0,m2) = (0, 0) but
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(1, b)(M1 ⊕M2) = M1 ⊕ bM2 6= 0. This means that (1, b) ∈ Z(M) \ AnnR(M).

Since (1, 0) is a universal vertex AnnM ((1, 0)(1, b)) = AnnM ((1, 0)) = 0⊕M2 is an

essential submodule of M that is impossible. Therefore, ZR2(M2) = 0. Moreover,

if a ∈ ZR1
(M1), then there exists 0 6= m1 ∈ M1 such that (a, 1)(m1, 0) = (0, 0) so

(a, 1) ∈ Z(M) \AnnR(M). Thus AnnM ((1, 0)(a, 1)) = AnnM ((a, 0)) is an essential

submodule of M , as required. �

Remark 2.4. Let the situation be as Lemma 2.3. Since AnnM ((a, 0)) is an es-

sential submodule of M so AnnM1
(a) is an essential submodule of M1. Moreover

R1 has characteristic 2; because, if (1, 0) 6= (−1, 0), then AnnM ((1, 0)(−1, 0)) =

AnnM ((−1, 0)) = 0⊕M2 is an essential submodule of M , that is impossible. Thus

1 = −1 ∈ R1 and R1 has characteristic 2.

Theorem 2.5. Let M be a Noetherian R-module with r(AnnR(M)) 6= AnnR(M).

Then x, y ∈ Z(M) \ AnnR(M) are adjacent in EG(M) if and only if xy ∈ p, for

all p ∈ MinAssR(M).

Proof. Suppose that M is a Noetherian R-module and MinAssR(M) = {p1, · · · , pk}.
Thus there exists mi ∈ M such that pi = AnnR(mi), for all i = 1, · · · , k. Assume

that x, y ∈ Z(M) \AnnR(M) are adjacent in EG(M) so AnnM (xy) is an essential

submodule of M . Hence, AnnM (xy) ∩ Rmi 6= 0, for all i = 1, · · · , k. Therefore,

xyrimi = 0 for some ri ∈ R with 0 6= rimi so xy ∈ pi.

Conversely, suppose that xy ∈ p, for all p ∈ MinAssR(M). We may assume that

x ∈ ∩tj=1pj and y ∈ ∩kj=t+1pj , for some t with 1 ≤ t ≤ k. So xy ∈ r(AnnR(M)) =

∩kj=1pj . Hence, AnnM (xy) is an essential submodule of M by Lemma 2.2. There-

fore, x and y are adjacent in EG(M), as needed. �

Theorem 2.6. Let M be an R-module such that r(AnnR(M)) 6= AnnR(M). Then

the following statements hold:

(i) EG(M) is a connected graph with diam(EG(M)) ≤ 2.

(ii) If M is Noetherian, then gr(EG(M)) ∈ {3,∞}.

Proof. (i) It is clear by Lemma 2.2.

(ii) If |r(AnnR(M)) \AnnR(M)| ≥ 2, then either EG(M) = K1,1 or EG(M) has

a cycle with length three, by Lemma 2.2, so gr(EG(M)) = 3. Now, assume that

r(AnnR(M)) \AnnR(M) = {c}. Two following cases may occur:

Case 1. Let MinAssR(M) = {p1, · · · , pk} (k ≥ 2). Then for x ∈ pi\∪kj=1,j 6=ipj and

y ∈ ∩kj=1,j 6=ipj \ pi we have x 6= y, x, y 6∈ r(AnnR(M)) and xy ∈ r(AnnR(M)) =

∩kj=1pj . Hence, x, y are adjacent in EG(M) so c− x− y − c is a cycle in EG(M).
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Case 2. Let MinAssR(M) = {p}. If x, y ∈ Z(M) \ r(AnnR(M)) are adjacent in

EG(M), then AnnM (xy) is an essential submodule of M . So AnnM (xy)∩Rm 6= 0,

where p = AnnR(m) and 0 6= m ∈ M . Thus it is easy to see that either x ∈ p or

y ∈ p which is a contradiction. Therefore, either Z(M) \ r(AnnR(M)) = {x} and

EG(M) = K1,1 or |Z(M) \ r(AnnR(M))| ≥ 2 and EG(M) = K1,|Z(M)\r(AnnR(M))|

that has no any cycle. �

Corollary 2.7. Let M be a Noetherian R-module with r(AnnR(M)) 6= AnnR(M).

If p = r(AnnR(M)) is a prime ideal of R, then EG(M) = K|p\AnnR(M)|∨K̄|Z(M)\p|.

In particular, diam(EG(M)) = 2.

Proof. It is immediate by the proof of Theorem 2.6. �

Corollary 2.8. Let M be a Noetherian R-module with r(AnnR(M)) 6= AnnR(M).

Then diam(EG(M)) = 2 if and only if there are x, y ∈ Z(M) \ AnnR(M) and

p ∈ Ass(M) such that xy 6∈ p.

Proof. It is immediate by Theorems 2.5 and 2.6. �

Lemma 2.9. Let M be an R-module. Then EG(M) is a complete graph if and

only if one of the following statements holds:

(i) AnnM (x) is an essential submodule of M , for all x ∈ Z(M) \AnnR(M).

(ii) R = Z2 ⊕ Z2, M = (⊕Z2)⊕ (⊕Z2) and Z(M) = {(0, 0), (1, 0), (0, 1)}.

Proof. Suppose that EG(M) is complete and x ∈ Z(M) \ AnnR(M). If either

x ∈ r(AnnR(M)) or x 6∈ r(AnnR(M)) and x 6= x2, then AnnM (x) is an essential

submodule of M , by Lemmas 2.2 and 2.3. Now, assume that x 6∈ r(AnnR(M)) and

x = x2. Then, R = R1 ⊕R2 and M = M1 ⊕M2, where R1 and R2 are subrings of

R, M1 and M2 are R-submodules of M and Z(M) = (ZR1
(M1) ⊕ R2) ∪ (R1 ⊕ 0),

which follows from the proof of Lemma 2.3. If 0 6= a ∈ ZR1(M1), then there

exists 0 6= m1 ∈ M1 such that (a, 1)(m1, 0) = (0, 0) so (a, 1) ∈ Z(M) \ AnnR(M).

Thus AnnM ((0, 1)(a, 1)) = AnnM ((0, 1)) is an essential submodule of M , that is

impossible. Hence, Z(M) = (R1⊕0)∪(0⊕R2). Let (a, 0) ∈ (R1⊕0)\{(0, 0), (1, 0)}.
Then (a, 0) ∈ Z(M) \ AnnR(M) and AnnM ((1, 0)(a, 0)) = AnnM ((a, 0)) = 0⊕M2

is an essential submodule of M , that is impossible. So R1 = {0, 1} and Z(M) =

{(0, 0), (1, 0)}∪ (0⊕R2). By a similar argument one can show that R2 = {0, 1} and

Z(M) = {(0, 0), (1, 0)} ∪ {(0, 0), (0, 1)} as desired. The converse is obvious. �

Theorem 2.10. Let M be a Noetherian R-module with r(AnnR(M)) 6= AnnR(M).

Then EG(M) is a complete graph if and only if one of the following statements

holds:
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(i) Z(M) = r(AnnR(M)).

(ii) EG(M) = K2.

Proof. Of course, (i) and (ii) imply that EG(M) is a complete graph, see Lemma

2.2. Hence, it is enough to prove that if EG(M) is complete, then either (i) or

(ii) holds. Suppose that EG(M) 6= K2 is a complete graph and x ∈ Z(M) \
AnnR(M). Then the increasing chain of submodules AnnM (x) ⊆ AnnM (x2) ⊆
. . . ⊆ AnnM (xn) ⊆ . . . does stabilize. Suppose that n ∈ N and AnnM (xn) =

AnnM (xn+i), for all i ≥ 0. If m ∈ AnnM (x)∩xnM , then m = xnm′, for some m′ ∈
M . Hence, xn+1m′ = xm = 0 which implies that m′ ∈ AnnM (xn+1) = AnnM (xn).

So m = 0 and then xnM = 0 since AnnM (x) is an essential submodule of M .

Therefore, x ∈ r(AnnR(M)) and Z(M) = r(AnnR(M)). �

The following example has been presented to show that the property of being

Noetherian is a necessary condition in Theorem 2.10.

Example 2.11. Let p be a prime number and consider Zp∞ as a Z-module. It

is easy to see that AnnZp∞ (pi) is an essential submodule of Zp∞ , for all i ≥ 1.

Thus EG(Zp∞) is a complete graph, but neither ZZ(Zp∞) = r(Ann(Zp∞)) nor

EG(Zp∞) = K2. Therefore, the Noetherian condition in Theorem 2.10 is necessary.

3. Results when r(AnnR(M)) = AnnR(M)

In this section, we investigate more results about the essential graph of M when-

ever r(AnnR(M)) = AnnR(M).

Lemma 3.1. Let M be a Noetherian R-module such that r(AnnR(M)) = AnnR(M)

and let 0 = ∩nj=1Qj be a minimal primary decomposition of the zero submodule of M

with r(AnnR(M/Qj)) = pj, for each j = 1, · · · , n. Then the following statements

hold:

(i) If pi is a minimal element of AssR(M), for some i with 1 ≤ i ≤ n, then

there exists ai ∈ R such that Qi = AnnM (ai).

(ii) If pi is a minimal element of AssR(M), for some i with 1 ≤ i ≤ n, then Qi

is a prime submodule of M .

(iii) If P = AnnM (a) is a prime submodule of M and p = AnnR(M/AnnM (a)),

then p is a minimal element of AssR(M).

(iv) If P = AnnM (a) is a prime submodule of M , p = AnnR(M/AnnM (a)) and

p = pi for some i with 1 ≤ i ≤ n, then P = Qi.

Proof. (i) Suppose that 0 = ∩nj=1Qi is a minimal primary decomposition of the

zero submodule of M with r(AnnR(M/Qj)) = pj , for each j = 1, · · · , n. Assume
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that pi = r(AnnR(M/Qi)) is a minimal element of AssR(M) for some i with 1 ≤ i ≤
n. Then ∩nj=1,j 6=iAnnR(M/Qj) 6⊆ pi. Let ai ∈ ∩nj=1,j 6=iAnnR(M/Qj)\pi. We show

that AnnM (ai) = Qi. Of course, we have AnnM (ai) = (0 :M ai) = (∩nj=1Qj :M

ai) = ∩nj=1(Qj :M ai) = (Qi :M ai) and Qi ⊆ (Qi :M ai). If m ∈ (Qi :M ai) \ Qi,

then there exists t ∈ N such that atiM ⊆ Qi so ai ∈ pi which is a contradiction.

Hence, Qi = AnnM (ai).

(ii) From (i) it follows that Qi = AnnM (ai), for some ai ∈ ∩nj=1,j 6=ipj \ pi. We

show that Qi is a prime submodule. Suppose that b ∈ R,m ∈ M are such that

bm ∈ Qi but m 6∈ Qi. Thus there is t ∈ N such that btM ⊆ Qi. So (aib)
tM ⊆ Qi.

On the other hand, aib ∈ ∩nj=1,j 6=ipi thus (aib)
tM ⊆ ∩nj=1,j 6=iQi. Hence, (aib)

tM ⊆
∩nj=1Qj = 0. Therefore, by the hypothesis aibM = 0 so bM ⊆ Qi and Qi is prime.

(iii) Let P = AnnM (a) be a prime submodule of M and p = AnnR(M/AnnM (a)).

It is easy to see that p = AnnR(aM). Let m ∈ M and am 6= 0. We show that

p = AnnR(am). It is obvious that p ⊆ AnnR(am). Assume that r ∈ R and

ram = 0. Thus rm ∈ P = AnnM (a) and m 6∈ P = AnnM (a) so raM = 0 and

r ∈ AnnR(aM) = p. Hence, p = AnnR(am) ∈ AssR(M). If a ∈ ∩nj=1pj , then

there is t ∈ N such that at ∈ ∩nj=1(Qj :R M) so atM ⊆ ∩nj=1Qj = 0. Therefore,

atM = 0 and aM = 0 which is a contradiction. Thus there are 1 ≤ i ≤ n and

pi ∈ MinAssR(M) such that a 6∈ pi. Assume that r ∈ p. Thus raM = 0 and so

raM ⊆ ∩nj=1Qj . Hence, ra ∈ (∩nj=1Qj :R M) ⊆ ∩nj=1(Qj :R M) ⊆ ∩nj=1pj . Now,

from ra ∈ pi and a 6∈ pi it follows that p ⊆ pi so p = pi.

(iv) Suppose that 1 ≤ i ≤ n and p = pi. We show that P = Qi. Assume that

m ∈ Qi. Thus aim = 0 ∈ P . If m 6∈ P , then ai ∈ p = pi, which is a contradiction

so Qi ⊆ P . Assume that m ∈ P so am = 0 ∈ Qi. If m 6∈ Qi, then there is s ∈ N
such that asM ⊆ Qi = AnnM (ai). Hence, aia

sM = 0 and so aia
s−1(aM) = 0.

Therefore, aia
s−1 ∈ p = pi which implies that as−1 ∈ p = pi since ai /∈ pi. Hence,

a ∈ p. This means that a2M = 0 and a ∈ r(AnnR(M)) = AnnR(M) which is a

contradiction. Therefore, m ∈ Qi and so P ⊆ Qi. �

Theorem 3.2. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).

Then EG(M) is a null graph if and only if |MinAssR(M)| = 1.

Proof. (⇐) Suppose that a ∈ Z(M) \ AnnR(M) and AnnM (a) is a prime sub-

module of M . Thus p = AnnR(aM) is a minimal element of AssR(M), by Lemma

3.1(iii). In view of [9, Lemma 3.2], AnnM (a) is a unique maximal element of

X = {AnnM (x) : x ∈ Z(M) \ AnnR(M)}. So the zero submodule of M has only

one minimal primary component. Thus r(AnnR(M)) = AnnR(M) = p. Assume
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that x and y are adjacent vertices of EG(M) so AnnM (xy) is an essential submod-

ule of M . If AnnM (xy) is a proper submodule of M , then AnnM (xy) ⊆ AnnM (a)

implies that AnnM (a) is an essential submodule of M , which contradicts [5, The-

orem 5(iii)]. Hence, AnnM (xy) = M . So xy ∈ AnnR(M) = p which implies that

either x ∈ AnnR(M) or y ∈ AnnR(M) that is impossible. Therefore, EG(M) is a

null graph.

(⇒) Since M is a Noetherian R-module we have |MinAssR(M)| ≥ 1. Moreover,

|MinAssR(M)| = |m-Ass(M)| ≤ 1, by Lemma 3.1 and [5, Theorem 6(i)]. �

Theorem 3.3. [5, Theorem 7] Let M be a Noetherian R-module and AnnR(M) =

r(AnnR(M)). Then EG(M) is a disconnected graph if and only if there exists

b ∈ Z(M) \AnnR(M) such that AnnM (b) ⊆
⋂

P∈m−Ass(M) P .

Corollary 3.4. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).

Then EG(M) is a connected graph if and only if for all b ∈ Z(M)\AnnR(M) there

exists P ∈ m-Ass(M) such that AnnM (b) 6⊆ P .

Corollary 3.5. Let M be a Noetherian R-module. If EG(M) is a connected graph,

then diam(EG(M)) ≤ 3.

Proof. If r(AnnR(M)) 6= AnnR(M), then the result follows by Theorem 2.6. Oth-

erwise, it follows by Corollary 3.4, [5, Corollary 2] and [5, Remark 1(iii)], note that

by Theorem 3.2, |m-Ass(M)| ≥ 2. �

Corollary 3.6. Let M be a Noetherian R-module. If the connected graph EG(M)

has a cycle, then gr(EG(M)) ≤ 4.

Proof. If r(AnnR(M)) 6= AnnR(M), then the result follows by Theorem 2.6. Now,

assume that r(AnnR(M)) = AnnR(M). For |m-Ass(M)| ≥ 3 there is nothing to

prove, see [5, Remark 1(iii)]. So we may assume that |m-Ass(M)| ≤ 2. On the

other hand, |m-Ass(M)| > 1 since EG(M) is a connected graph, see Corollary 3.4.

Hence, |m-Ass(M)| = 2. Now, by a similar argument to that of [11, Theorem 3.3]

one can show that gr(EG(M)) ≤ 4. �

Theorem 3.7. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M)

and assume that EG(M) is not a star graph. Then EG(M) is a complete bipartite

graph if and only if |AssR(M)| = 2.

Proof. Let I = AnnR(M). Note that

r(AnnR(M)) = AnnR(M) and r(AnnR(M))/I = r(AnnR/I(M)).
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Thus r(AnnR/I(M)) = 0. Moreover, for each a ∈ R, we have a ∈ Z(M)\AnnR(M)

if and only if a + I ∈ ZR/I(M) \ {0} and p ∈ AssR(M) if and only if p/I ∈
AssR/I(M). It is therefore enough for us to prove this result under the additional

hypothesis that r(AnnR(M)) = 0.

Let EG(M) be a complete bipartite graph and {V1, V2} be a partition of the

vertex set of EG(M). We prove that Vi ∪{0} for i = 1, 2 is a prime ideal of R. Let

a, b ∈ V̄1 = V1 ∪ {0}. If a = 0 or b = 0 or a + b = 0, then a + b ∈ V̄1 and we are

done. Suppose that a, b ∈ V1. Thus there exist x, y ∈ V2 such that AnnM (ax) and

AnnM (by) are essential submodules of M . If AnnM (ax)∩AnnM (by) ⊆ AnnM (xy),

then AnnM (xy) is an essential submodules of M which is a contradiction. Thus

assume that m ∈ AnnM (ax)∩AnnM (by) \AnnM (xy). Hence, (a + b)xym = 0 and

xym 6= 0 this means a+ b ∈ Z(M). If a+ b ∈ V1 we are done; otherwise a+ b ∈ V2

and it follows that AnnM (a(a + b)) and AnnM (b(a + b)) are essential submodules

of M . Then AnnM ((a + b)2) and so AnnM (a + b) is an essential submodule of

M which is a contradiction. So a + b ∈ V1. Let a, b ∈ R and ab ∈ V̄1. We

show that either a ∈ V̄1 or b ∈ V̄1. If a = 0 or b = 0, then there is nothing to

prove. If ab = 0, then AnnM (ab) is an essential submodule of M contrary to the

assumption. So assume that 0 6= a, b, 0 6= ab and a, b 6∈ V1. Thus either AnnM (a2b)

or AnnM (ab2) is an essential submodule of M and so AnnM ((ab)2) is an essential

submodule of M which implies that AnnM (ab) is an essential submodule of M , this

is a contradiction. Hence, either a ∈ V1 or b ∈ V1.

Conversely, assume that AssR(M) = {p1, p2}. Thus p1 ∩ p2 = r(AnnR(M)) =

0. Suppose that a, b ∈ p1 \ {0} and AnnM (ab) is an essential submodule of M .

Moreover, suppose that p2 = AnnR(m), for some m ∈M . Thus AnnM (ab)∩Rm 6=
0. If 0 6= rm ∈ AnnM (ab), then abr ∈ p2 which implies that ab ∈ p2 and so either

a ∈ p2 or b ∈ p2. Hence, either a = 0 or b = 0 which is a contradiction. Therefore,

the elements of p1 \ {0} are not adjacent with each other. By a similar argument,

one can show that any two distinct elements of p2 \ {0} are not adjacent. Let

a ∈ p1 \ {0} and b ∈ p2 \ {0}. Then ab ∈ p1p2 ⊆ p1 ∩ p2 = 0 so abM = 0 which

means that an element of p1 \ {0} is adjacent to all elements of p2 \ {0}. Therefore,

EG(M) is a complete bipartite graph. �

Corollary 3.8. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).

Then EG(M) is a star graph if and only if R = Z2 ⊕ R′ and M = (⊕Z2) ⊕M ′,

where R′ is a subring of R and M ′ is an R-submodule of M and AssR(M) =

{Z2 ⊕ 0, 0⊕R′}.
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Proof. As in Theorem 3.7 we can assume that r(AnnR(M)) = 0. Let EG(M) be

a star graph and let {V1 = {c}, V2 = {x, y, z, · · · }} be a partition of V (EG(M)).

We prove that Vi ∪ {0} for i = 1, 2, is a prime ideal of R. By the hypotheses and

the proof of Lemma 2.3 we have c2 = c and also it follows that R = R1 ⊕ R2 and

M = M1⊕M2, where R1 and R2 are subrings of R, M1 and M2 are R-submodules

of M , c = (1, 0) is the universal vertex of EG(M), ZR1
(M1) = ZR2

(M2) = 0.

Moreover, R1 has characteristic 2 so R1 = Z2. Hence, Z(M) = Z2 ⊕ 0 ∪ 0 ⊕ R2.

Therefore, V1∪{0} = Z2⊕0, V2∪{0} = 0⊕R2 and AssR(M) = {Z2⊕0, 0⊕R2}. �

4. Relations between the zero divisor graph and the essential graph

In this section we will study the relations between the zero-divisor graph defined

in [11] and the essential graph for modules.

Definition 4.1. [11, Definition 2.1] Let M be an R-module. The zero-divisor

graph of M , denoted by Γ(M) is a simple undirected graph whose vertex set is

Z(M) \ AnnR(M) and two distinct vertices x and y are adjacent if and only if

xyM = 0.

To commence, we show that the zero-divisor graph is a subgraph of the essential

graph.

Lemma 4.2. Let M be an R-module. Then Γ(M) is a subgraph of EG(M).

Proof. Suppose that x and y are adjacent in Γ(M). Then xyM = 0 and M =

AnnM (xy) is an essential submodule of M . Hence, x and y are adjacent in EG(M).

�

Lemma 4.3. Let M be an R-module and x ∈ Z(M) \ r(AnnR(M)). If AnnM (x)

is a prime submodule of M , then NΓ(M)(x) = NEG(M)(x).

Proof. Suppose that x ∈ Z(M) \ r(AnnR(M)) and AnnM (x) is a prime sub-

module of M . It is enough to show that NEG(M)(x) ⊆ NΓ(M)(x). Assume that

y ∈ NEG(M)(x). Thus AnnM (xy) is an essential submodule of M . In view of [5,

Theorem 5(iii)] AnnM (x) is not an essential submodule of M . Hence, there exists

a nonzero submodule N of M such that AnnM (x) ∩ N = 0. Therefore, for some

m ∈M we have xym = 0 but xm 6= 0 so we get that xyM = 0 since AnnM (x) is a

prime submodule of M . Therefore, x and y are adjacent in Γ(M) and the proof is

completed. �

The following example shows that Lemma 4.3 does not hold necessarily for ele-

ments of r(AnnR(M)).
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Example 4.4. Consider M = Z/12Z as a Z-module. For 6 ∈ r(AnnR(M)),

AnnM (6) = 2Z/12Z is a prime submodule of M but NΓ(M)(6) 6= NEG(M)(6).

Lemma 4.5. Let M be a Noetherian R-module. Then 0 is a prime submodule of

M if and only if EG(M) is a null graph. In particular, EG(M) = Γ(M).

Proof. Suppose that 0 is a prime submodule of M . Then |MinAssR(M)| = 1 and

so the result follows by Theorem 3.2. �

Theorem 4.6. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M).

Then Γ(M) = EG(M).

Proof. It is obvious that Γ(M) is a subgraph of EG(M), by Lemma 4.2. Now,

it is sufficient to show that each edge of EG(M) is an edge of Γ(M). Suppose

that x− y is an edge of EG(M). Then AnnM (xy) is an essential submodule of M .

By the assumption the chain AnnM (xy) ⊆ AnnM ((xy)2) ⊆ . . . ⊆ AnnM ((xy)n) ⊆
. . . of submodules does stabilize, thus there is n ∈ N such that AnnM ((xy)n) =

AnnM ((xy)n+i), for all i ≥ 0. Assume that m ∈ AnnM (xy) ∩ (xy)nM . Thus

m = (xy)nm′ for some m′ ∈ M . Hence (xy)n+1m′ = xym = 0, which implies

that m′ ∈ AnnM ((xy)n+1) = AnnM ((xy)n). Then m = 0 and (xy)nM = 0 since

AnnM (xy) is an essential submodule of M . Therefore, xy ∈ r(AnnR(M)) and so

xyM = 0. �

The following examples have been presented to show that the properties of being

Noetherian and r(AnnR(M)) = AnnR(M) are necessary conditions in Theorem 4.6.

Example 4.7. (i) Example 2.11 shows that for the non-Noetherian Z-module

Zp∞ we have r(AnnZ(Zp∞)) = AnnZ(Zp∞) but EG(Zp∞) 6= Γ(Zp∞).

(ii) For the Noetherian Z-module Z/12Z, AnnZ(Z/12Z)) 6= AnnZ(Z/12Z). The

following figures (induced subgraphs of Γ(Z/12Z) and EG(Z/12Z)) show

that EG(Z/12Z) 6= Γ(Z/12Z).

2 4 8 10

3 6 9

Γ(M)

2 4 8 10

3 6 9

EG(M)
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