

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 29 (2021) 211-222 DOI: 10.24330/ieja.852234

A GENERALIZATION OF THE ESSENTIAL GRAPH FOR MODULES OVER COMMUTATIVE RINGS

F. Soheilnia, Sh. Payrovi and A. Behtoei

Received: 18 April 2020; Revised: 27 July 2020; Accepted: 14 August 2020 Communicated by Burcu Üngör

ABSTRACT. Let R be a commutative ring with nonzero identity and let M be a unitary R-module. The essential graph of M, denoted by EG(M) is a simple undirected graph whose vertex set is $Z(M) \setminus \operatorname{Ann}_R(M)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_M(xy)$ is an essential submodule of M. Let $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. It is shown that EG(M) is a connected graph with diam $(EG(M)) \leq 2$. Whenever M is Noetherian, it is shown that EG(M)is a complete graph if and only if either $Z(M) = r(\operatorname{Ann}_R(M))$ or $EG(M) = K_2$ and diam(EG(M)) = 2 if and only if there are $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$ and $\mathfrak{p} \in$ $\operatorname{Ass}_R(M)$ such that $xy \notin \mathfrak{p}$. Moreover, it is proved that $\operatorname{gr}(EG(M)) \in \{3, \infty\}$. Furthermore, for a Noetherian module M with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ it is proved that $|\operatorname{Ass}_R(M)| = 2$ if and only if EG(M) is a complete bipartite graph that is not a star.

Mathematics Subject Classification (2020): 05C25, 13C99 Keywords: Prime submodule, essential submodule, essential graph

1. Introduction

The concept of the zero-divisor graph of a commutative ring was introduced and studied by I. Beck in [6]. Subsequently, D. F. Anderson and P. S. Livingston in [2] studied and investigated the concept of zero-divisor graph on nonzero zerodivisors of a commutative ring. Let R be a commutative ring and let Z(R) be its set of zero-divisors. The zero-divisor graph of R, which is the graph with vertex set $Z^*(R) = Z(R) \setminus \{0\}$ and two distinct vertices x and y are adjacent if and only if xy = 0, has been studied by many authors (see [1,3,4]). Variations of the zerodivisor graph are created by changing the vertex set, the edge condition, or both. The essential graph of R is a variation of the zero-divisor graph that changes the edge condition, and is introduced and studied in [10]. The essential graph of Ris a simple undirected graph, denoted by EG(R), with vertex set $Z^*(R)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_R(xy)$ is an essential ideal of R. Recently, a lot of research (e.g., [5,7,8,11,12]) has been devoted to the zerodivisor graph of a module (Definition 4.1). Let M be an R-module and let Z(M)be its set of zero-divisors. In this paper, we associate a graph to the module M, denoted by EG(M), with vertex set $Z(M) \setminus \operatorname{Ann}_R(M)$ and two distinct vertices $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$ are adjacent if and only if $\operatorname{Ann}_M(xy)$ is an essential submodule of M. Before we state some results, let us introduce some graphical notations.

Let G = (V(G), E(G)) be a simple undirected graph, V(G) and E(G) are called vertex set and edge set of G, respectively. Let $x, y \in V(G)$. Whenever x and y are joint by an edge, it is denoted by x - y. The vertex x is said to be a universal vertex if it is adjacent to every other vertex of G. The graph G is connected if there is a path between any two distinct vertices. For vertices x and y of G, we define d(x, y) to be the length of a shortest path between x and y (if there is no path, then $d(x,y) = \infty$). The open neighborhood of a vertex x is defined to be the set $N(x) = \{y \in V(G) : d(x,y) = 1\}$. The diameter of G is diam(G) = $\sup\{d(x,y)|x,y \in V(G)\}$. A graph G is complete if any two distinct vertices are adjacent and a complete graph with n vertices is denoted by K_n . A bipartite graph is one whose vertex set can be partitioned into two subsets so that an edge has both ends in no subset. A complete bipartite graph is a bipartite graph in which each vertex is adjacent to every vertex that is not in the same subset. The complete bipartite graph with part sizes m and n is denoted by $K_{m,n}$. If m = 1, then the bipartite graph is called star graph. The girth of G, denoted by gr(G) is the length of a shortest cycle contained in the graph (if there is no cycle, then $gr(G) = \infty$).

Throughout this paper, R is a commutative ring with nonzero identity and M is a unitary R-module. Recall that $Z(M) = \{r \in R : rm = 0 \text{ for some } 0 \neq m \in M\}$, $\operatorname{Ass}_R(M) = \{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} = \operatorname{Ann}_R(m) \text{ for some } 0 \neq m \in M\}$, $\operatorname{Ann}_R(M) = \{r \in R : rM = 0\}$ and $r(\operatorname{Ann}_R(M)) = \{x \in R : x^t \in \operatorname{Ann}_R(M) \text{ for some } t \in \mathbb{N}\}$. For $x \in R$, $\operatorname{Ann}_M(x) = \{m \in M : xm = 0\}$. Let $\operatorname{Spec}_R(M)$ denote the set of prime submodules of M. Then m- $\operatorname{Ass}_R(M) = \{P \in \operatorname{Spec}_R(M) : P = \operatorname{Ann}_M(x) \text{ for some } 0 \neq x \in R\}$. For notations and terminologies not given in this paper, the reader is referred to [13].

Here is a brief summary of the paper. In the second section, for a Noetherian R-module M with $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$, we show that EG(M) is a connected graph with diam $(EG(M)) \leq 2$ and $\operatorname{gr}(EG(M)) \in \{3, \infty\}$ (Theorem 2.6). We show that EG(M) is a complete graph if and only if either $Z(M) = r(\operatorname{Ann}_R(M))$ or $EG(M) = K_2$ (Theorem 2.10). Whenever $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$, among other

things, we prove that $|Ass_R(M)| = 2$ if and only if EG(M) is a complete bipartite graph that is not a star (Theorem 3.7). In the fourth section, for a Noetherian Rmodule with $r(Ann_R(M)) = Ann_R(M)$, we show that $\Gamma(M) = EG(M)$ (Theorem 4.6), where $\Gamma(M)$ denotes the zero divisor graph of M.

2. Properties of the essential graph for modules

Let R be a commutative ring and M be an R-module. A submodule of M is called essential if it has a non-trivial intersection with every non-trivial submodule of M.

Definition 2.1. Let M be an R-module. The essential graph of M, denoted by EG(M) is a simple undirected graph associated to M with vertex set $Z(M) \setminus \operatorname{Ann}_R(M)$, and a pair of distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_M(xy)$ is an essential submodule of M.

Suppose that $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$. It is easy to see that x and y are adjacent in EG(M) if and only if $\operatorname{Ann}_M(x) + \operatorname{Ann}_M(y)$ is an essential submodule of M.

Lemma 2.2. Let M be an R-module. If $c \in r(Ann_R(M)) \setminus Ann_R(M)$, then c is a universal vertex of EG(M).

Proof. Let $c \in r(\operatorname{Ann}_R(M)) \setminus \operatorname{Ann}_R(M)$. Then $\operatorname{Ann}_M(c)$ is an essential submodule of M, by [5, Theorem 5(i)]. Hence, for each $a \in Z(M) \setminus \operatorname{Ann}_R(M)$, $\operatorname{Ann}_M(ac)$ is an essential submodule of M. This means that c is a universal vertex of EG(M). \Box

Lemma 2.3. Let M be an R-module and let $c \in Z(M) \setminus \operatorname{Ann}_R(M)$ be a universal vertex of EG(M). Then either $\operatorname{Ann}_M(c)$ is an essential submodule of M or $R = R_1 \oplus R_2$ and $M = M_1 \oplus M_2$, where R_1 and R_2 are subrings of R, M_1 and M_2 are R-submodules of M and (a, 0) is a universal vertex of EG(M), for all $a \in Z_{R_1}(M_1)$.

Proof. Suppose that $c \in Z(M) \setminus \operatorname{Ann}_R(M)$ is a universal vertex of EG(M). If $c^2M = 0$, then the result follows by [5, Theorem 5(i)]. Suppose that $c^2M \neq 0$ and $c \neq c^2$. Thus $\operatorname{Ann}_M(c^3)$ is an essential submodule of M so $\operatorname{Ann}_M(c)$ is an essential submodule of M.

Now, assume that $c^2 = c$. Thus $R = cR \oplus (1-c)R$ and $M = cM \oplus (1-c)M$. Assume that $R_1 = cR$ and $R_2 = (1-c)R$. Then R_1 and R_2 are subrings of R. In addition, $M_1 = cM$ and $M_2 = (1-c)M$ are R-submodules of M. Moreover, if $r = (r_1, r_2)$ and $m = (m_1, m_2)$, then $rm = (r_1m_1, r_2m_2)$. It is easy to see that c = (1, 0). Then (1, 0) is a universal vertex of EG(M). Assume that $0 \neq b \in Z_{R_2}(M_2)$. Thus there exists $0 \neq m_2 \in M_2$ such that $(1, b)(0, m_2) = (0, 0)$ but $(1,b)(M_1 \oplus M_2) = M_1 \oplus bM_2 \neq 0$. This means that $(1,b) \in Z(M) \setminus \operatorname{Ann}_R(M)$. Since (1,0) is a universal vertex $\operatorname{Ann}_M((1,0)(1,b)) = \operatorname{Ann}_M((1,0)) = 0 \oplus M_2$ is an essential submodule of M that is impossible. Therefore, $Z_{R_2}(M_2) = 0$. Moreover, if $a \in Z_{R_1}(M_1)$, then there exists $0 \neq m_1 \in M_1$ such that $(a,1)(m_1,0) = (0,0)$ so $(a,1) \in Z(M) \setminus \operatorname{Ann}_R(M)$. Thus $\operatorname{Ann}_M((1,0)(a,1)) = \operatorname{Ann}_M((a,0))$ is an essential submodule of M, as required.

Remark 2.4. Let the situation be as Lemma 2.3. Since $\operatorname{Ann}_M((a,0))$ is an essential submodule of M so $\operatorname{Ann}_{M_1}(a)$ is an essential submodule of M_1 . Moreover R_1 has characteristic 2; because, if $(1,0) \neq (-1,0)$, then $\operatorname{Ann}_M((1,0)(-1,0)) = \operatorname{Ann}_M((-1,0)) = 0 \oplus M_2$ is an essential submodule of M, that is impossible. Thus $1 = -1 \in R_1$ and R_1 has characteristic 2.

Theorem 2.5. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. Then $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$ are adjacent in EG(M) if and only if $xy \in \mathfrak{p}$, for all $\mathfrak{p} \in \operatorname{MinAss}_R(M)$.

Proof. Suppose that M is a Noetherian R-module and $\operatorname{MinAss}_R(M) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$. Thus there exists $m_i \in M$ such that $\mathfrak{p}_i = \operatorname{Ann}_R(m_i)$, for all $i = 1, \dots, k$. Assume that $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$ are adjacent in EG(M) so $\operatorname{Ann}_M(xy)$ is an essential submodule of M. Hence, $\operatorname{Ann}_M(xy) \cap Rm_i \neq 0$, for all $i = 1, \dots, k$. Therefore, $xyr_im_i = 0$ for some $r_i \in R$ with $0 \neq r_im_i$ so $xy \in \mathfrak{p}_i$.

Conversely, suppose that $xy \in \mathfrak{p}$, for all $\mathfrak{p} \in \operatorname{MinAss}_R(M)$. We may assume that $x \in \cap_{j=1}^t \mathfrak{p}_j$ and $y \in \cap_{j=t+1}^k \mathfrak{p}_j$, for some t with $1 \leq t \leq k$. So $xy \in r(\operatorname{Ann}_R(M)) = \cap_{j=1}^k \mathfrak{p}_j$. Hence, $\operatorname{Ann}_M(xy)$ is an essential submodule of M by Lemma 2.2. Therefore, x and y are adjacent in EG(M), as needed.

Theorem 2.6. Let M be an R-module such that $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. Then the following statements hold:

- (i) EG(M) is a connected graph with diam $(EG(M)) \leq 2$.
- (ii) If M is Noetherian, then $gr(EG(M)) \in \{3, \infty\}$.

Proof. (i) It is clear by Lemma 2.2.

(ii) If $|r(\operatorname{Ann}_R(M)) \setminus \operatorname{Ann}_R(M)| \ge 2$, then either $EG(M) = K_{1,1}$ or EG(M) has a cycle with length three, by Lemma 2.2, so $\operatorname{gr}(EG(M)) = 3$. Now, assume that $r(\operatorname{Ann}_R(M)) \setminus \operatorname{Ann}_R(M) = \{c\}$. Two following cases may occur:

Case 1. Let $\operatorname{MinAss}_R(M) = \{\mathfrak{p}_1, \cdots, \mathfrak{p}_k\}$ $(k \ge 2)$. Then for $x \in \mathfrak{p}_i \setminus \bigcup_{j=1, j \ne i}^k \mathfrak{p}_j$ and $y \in \bigcap_{j=1, j \ne i}^k \mathfrak{p}_j \setminus \mathfrak{p}_i$ we have $x \ne y, x, y \ne r(\operatorname{Ann}_R(M))$ and $xy \in r(\operatorname{Ann}_R(M)) = \bigcap_{j=1}^k \mathfrak{p}_j$. Hence, x, y are adjacent in EG(M) so c - x - y - c is a cycle in EG(M).

Case 2. Let $\operatorname{MinAss}_R(M) = \{\mathfrak{p}\}$. If $x, y \in Z(M) \setminus r(\operatorname{Ann}_R(M))$ are adjacent in EG(M), then $\operatorname{Ann}_M(xy)$ is an essential submodule of M. So $\operatorname{Ann}_M(xy) \cap Rm \neq 0$, where $\mathfrak{p} = \operatorname{Ann}_R(m)$ and $0 \neq m \in M$. Thus it is easy to see that either $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$ which is a contradiction. Therefore, either $Z(M) \setminus r(\operatorname{Ann}_R(M)) = \{x\}$ and $EG(M) = K_{1,1}$ or $|Z(M) \setminus r(\operatorname{Ann}_R(M))| \geq 2$ and $EG(M) = K_{1,|Z(M) \setminus r(\operatorname{Ann}_R(M))|}$ that has no any cycle.

Corollary 2.7. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. If $\mathfrak{p} = r(\operatorname{Ann}_R(M))$ is a prime ideal of R, then $EG(M) = K_{|\mathfrak{p}\setminus\operatorname{Ann}_R(M)|} \vee \overline{K}_{|Z(M)\setminus\mathfrak{p}|}$. In particular, diam(EG(M)) = 2.

Proof. It is immediate by the proof of Theorem 2.6.

Corollary 2.8. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. Then diam(EG(M)) = 2 if and only if there are $x, y \in Z(M) \setminus \operatorname{Ann}_R(M)$ and $\mathfrak{p} \in \operatorname{Ass}(M)$ such that $xy \notin \mathfrak{p}$.

Proof. It is immediate by Theorems 2.5 and 2.6.

Lemma 2.9. Let M be an R-module. Then EG(M) is a complete graph if and only if one of the following statements holds:

- (i) $\operatorname{Ann}_M(x)$ is an essential submodule of M, for all $x \in Z(M) \setminus \operatorname{Ann}_R(M)$.
- (ii) $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $M = (\oplus \mathbb{Z}_2) \oplus (\oplus \mathbb{Z}_2)$ and $Z(M) = \{(0,0), (1,0), (0,1)\}.$

Proof. Suppose that EG(M) is complete and $x \in Z(M) \setminus \operatorname{Ann}_R(M)$. If either $x \in r(\operatorname{Ann}_R(M))$ or $x \notin r(\operatorname{Ann}_R(M))$ and $x \neq x^2$, then $\operatorname{Ann}_M(x)$ is an essential submodule of M, by Lemmas 2.2 and 2.3. Now, assume that $x \notin r(\operatorname{Ann}_R(M))$ and $x = x^2$. Then, $R = R_1 \oplus R_2$ and $M = M_1 \oplus M_2$, where R_1 and R_2 are subrings of R, M_1 and M_2 are R-submodules of M and $Z(M) = (Z_{R_1}(M_1) \oplus R_2) \cup (R_1 \oplus 0)$, which follows from the proof of Lemma 2.3. If $0 \neq a \in Z_{R_1}(M_1)$, then there exists $0 \neq m_1 \in M_1$ such that $(a, 1)(m_1, 0) = (0, 0)$ so $(a, 1) \in Z(M) \setminus \operatorname{Ann}_R(M)$. Thus $\operatorname{Ann}_M((0, 1)(a, 1)) = \operatorname{Ann}_M((0, 1))$ is an essential submodule of M, that is impossible. Hence, $Z(M) = (R_1 \oplus 0) \cup (0 \oplus R_2)$. Let $(a, 0) \in (R_1 \oplus 0) \setminus \{(0, 0), (1, 0)\}$. Then $(a, 0) \in Z(M) \setminus \operatorname{Ann}_R(M)$ and $\operatorname{Ann}_M((1, 0)(a, 0)) = \operatorname{Ann}_M((a, 0)) = 0 \oplus M_2$ is an essential submodule of M, that is impossible. So $R_1 = \{0, 1\}$ and $Z(M) = \{(0, 0), (1, 0)\} \cup \{(0, 0), (0, 1)\}$ as desired. The converse is obvious. \Box

Theorem 2.10. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$. Then EG(M) is a complete graph if and only if one of the following statements holds:

- (i) $Z(M) = r(\operatorname{Ann}_R(M)).$
- (ii) $EG(M) = K_2$.

Proof. Of course, (i) and (ii) imply that EG(M) is a complete graph, see Lemma 2.2. Hence, it is enough to prove that if EG(M) is complete, then either (i) or (ii) holds. Suppose that $EG(M) \neq K_2$ is a complete graph and $x \in Z(M) \setminus \operatorname{Ann}_R(M)$. Then the increasing chain of submodules $\operatorname{Ann}_M(x) \subseteq \operatorname{Ann}_M(x^2) \subseteq \ldots \subseteq \operatorname{Ann}_M(x^n) \subseteq \ldots$ does stabilize. Suppose that $n \in \mathbb{N}$ and $\operatorname{Ann}_M(x^n) = \operatorname{Ann}_M(x^{n+i})$, for all $i \geq 0$. If $m \in \operatorname{Ann}_M(x) \cap x^n M$, then $m = x^n m'$, for some $m' \in M$. Hence, $x^{n+1}m' = xm = 0$ which implies that $m' \in \operatorname{Ann}_M(x^{n+1}) = \operatorname{Ann}_M(x^n)$. So m = 0 and then $x^n M = 0$ since $\operatorname{Ann}_M(x)$ is an essential submodule of M. Therefore, $x \in r(\operatorname{Ann}_R(M))$ and $Z(M) = r(\operatorname{Ann}_R(M))$.

The following example has been presented to show that the property of being Noetherian is a necessary condition in Theorem 2.10.

Example 2.11. Let p be a prime number and consider $\mathbb{Z}_{p^{\infty}}$ as a \mathbb{Z} -module. It is easy to see that $\operatorname{Ann}_{\mathbb{Z}_{p^{\infty}}}(p^i)$ is an essential submodule of $\mathbb{Z}_{p^{\infty}}$, for all $i \geq 1$. Thus $EG(\mathbb{Z}_{p^{\infty}})$ is a complete graph, but neither $Z_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}}) = r(\operatorname{Ann}(\mathbb{Z}_{p^{\infty}}))$ nor $EG(\mathbb{Z}_{p^{\infty}}) = K_2$. Therefore, the Noetherian condition in Theorem 2.10 is necessary.

3. Results when $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$

In this section, we investigate more results about the essential graph of M whenever $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$.

Lemma 3.1. Let M be a Noetherian R-module such that $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ and let $0 = \bigcap_{j=1}^n Q_j$ be a minimal primary decomposition of the zero submodule of Mwith $r(\operatorname{Ann}_R(M/Q_j)) = \mathfrak{p}_j$, for each $j = 1, \dots, n$. Then the following statements hold:

- (i) If \mathfrak{p}_i is a minimal element of $\operatorname{Ass}_R(M)$, for some i with $1 \leq i \leq n$, then there exists $a_i \in R$ such that $Q_i = \operatorname{Ann}_M(a_i)$.
- (ii) If p_i is a minimal element of Ass_R(M), for some i with 1 ≤ i ≤ n, then Q_i is a prime submodule of M.
- (iii) If $P = \operatorname{Ann}_M(a)$ is a prime submodule of M and $\mathfrak{p} = \operatorname{Ann}_R(M/\operatorname{Ann}_M(a))$, then \mathfrak{p} is a minimal element of $\operatorname{Ass}_R(M)$.
- (iv) If $P = \operatorname{Ann}_M(a)$ is a prime submodule of M, $\mathfrak{p} = \operatorname{Ann}_R(M/\operatorname{Ann}_M(a))$ and $\mathfrak{p} = \mathfrak{p}_i$ for some i with $1 \le i \le n$, then $P = Q_i$.

Proof. (i) Suppose that $0 = \bigcap_{j=1}^{n} Q_i$ is a minimal primary decomposition of the zero submodule of M with $r(\operatorname{Ann}_R(M/Q_j)) = \mathfrak{p}_j$, for each $j = 1, \dots, n$. Assume

216

that $\mathfrak{p}_i = r(\operatorname{Ann}_R(M/Q_i))$ is a minimal element of $\operatorname{Ass}_R(M)$ for some i with $1 \leq i \leq n$. Then $\bigcap_{j=1, j\neq i}^n \operatorname{Ann}_R(M/Q_j) \not\subseteq \mathfrak{p}_i$. Let $a_i \in \bigcap_{j=1, j\neq i}^n \operatorname{Ann}_R(M/Q_j) \setminus \mathfrak{p}_i$. We show that $\operatorname{Ann}_M(a_i) = Q_i$. Of course, we have $\operatorname{Ann}_M(a_i) = (0 :_M a_i) = (\bigcap_{j=1}^n Q_j :_M a_i) = \bigcap_{j=1}^n (Q_j :_M a_i) = (Q_i :_M a_i)$ and $Q_i \subseteq (Q_i :_M a_i)$. If $m \in (Q_i :_M a_i) \setminus Q_i$, then there exists $t \in \mathbb{N}$ such that $a_i^t M \subseteq Q_i$ so $a_i \in \mathfrak{p}_i$ which is a contradiction. Hence, $Q_i = \operatorname{Ann}_M(a_i)$.

(ii) From (i) it follows that $Q_i = \operatorname{Ann}_M(a_i)$, for some $a_i \in \bigcap_{j=1, j \neq i}^n \mathfrak{p}_j \setminus \mathfrak{p}_i$. We show that Q_i is a prime submodule. Suppose that $b \in R, m \in M$ are such that $bm \in Q_i$ but $m \notin Q_i$. Thus there is $t \in \mathbb{N}$ such that $b^t M \subseteq Q_i$. So $(a_i b)^t M \subseteq Q_i$. On the other hand, $a_i b \in \bigcap_{j=1, j \neq i}^n \mathfrak{p}_i$ thus $(a_i b)^t M \subseteq \bigcap_{j=1, j \neq i}^n Q_i$. Hence, $(a_i b)^t M \subseteq \bigcap_{j=1}^n Q_j = 0$. Therefore, by the hypothesis $a_i bM = 0$ so $bM \subseteq Q_i$ and Q_i is prime.

(iii) Let $P = \operatorname{Ann}_M(a)$ be a prime submodule of M and $\mathfrak{p} = \operatorname{Ann}_R(M/\operatorname{Ann}_M(a))$. It is easy to see that $\mathfrak{p} = \operatorname{Ann}_R(aM)$. Let $m \in M$ and $am \neq 0$. We show that $\mathfrak{p} = \operatorname{Ann}_R(am)$. It is obvious that $\mathfrak{p} \subseteq \operatorname{Ann}_R(am)$. Assume that $r \in R$ and ram = 0. Thus $rm \in P = \operatorname{Ann}_M(a)$ and $m \notin P = \operatorname{Ann}_M(a)$ so raM = 0 and $r \in \operatorname{Ann}_R(aM) = \mathfrak{p}$. Hence, $\mathfrak{p} = \operatorname{Ann}_R(am) \in \operatorname{Ass}_R(M)$. If $a \in \bigcap_{j=1}^n \mathfrak{p}_j$, then there is $t \in \mathbb{N}$ such that $a^t \in \bigcap_{j=1}^n (Q_j :_R M)$ so $a^t M \subseteq \bigcap_{j=1}^n Q_j = 0$. Therefore, $a^t M = 0$ and aM = 0 which is a contradiction. Thus there are $1 \leq i \leq n$ and $\mathfrak{p}_i \in \operatorname{MinAss}_R(M)$ such that $a \notin \mathfrak{p}_i$. Assume that $r \in \mathfrak{p}$. Thus raM = 0 and so $raM \subseteq \bigcap_{j=1}^n Q_j$. Hence, $ra \in (\bigcap_{j=1}^n Q_j :_R M) \subseteq \bigcap_{j=1}^n (Q_j :_R M) \subseteq \bigcap_{j=1}^n \mathfrak{p}_j$. Now, from $ra \in \mathfrak{p}_i$ and $a \notin \mathfrak{p}_i$ it follows that $\mathfrak{p} \subseteq \mathfrak{p}_i$ so $\mathfrak{p} = \mathfrak{p}_i$.

(iv) Suppose that $1 \leq i \leq n$ and $\mathfrak{p} = \mathfrak{p}_i$. We show that $P = Q_i$. Assume that $m \in Q_i$. Thus $a_i m = 0 \in P$. If $m \notin P$, then $a_i \in \mathfrak{p} = \mathfrak{p}_i$, which is a contradiction so $Q_i \subseteq P$. Assume that $m \in P$ so $am = 0 \in Q_i$. If $m \notin Q_i$, then there is $s \in \mathbb{N}$ such that $a^s M \subseteq Q_i = \operatorname{Ann}_M(a_i)$. Hence, $a_i a^s M = 0$ and so $a_i a^{s-1}(aM) = 0$. Therefore, $a_i a^{s-1} \in \mathfrak{p} = \mathfrak{p}_i$ which implies that $a^{s-1} \in \mathfrak{p} = \mathfrak{p}_i$ since $a_i \notin \mathfrak{p}_i$. Hence, $a \in \mathfrak{p}$. This means that $a^2 M = 0$ and $a \in r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ which is a contradiction. Therefore, $m \in Q_i$ and so $P \subseteq Q_i$.

Theorem 3.2. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$. Then EG(M) is a null graph if and only if $|\operatorname{MinAss}_R(M)| = 1$.

Proof. (\Leftarrow) Suppose that $a \in Z(M) \setminus \operatorname{Ann}_R(M)$ and $\operatorname{Ann}_M(a)$ is a prime submodule of M. Thus $\mathfrak{p} = \operatorname{Ann}_R(aM)$ is a minimal element of $\operatorname{Ass}_R(M)$, by Lemma 3.1(iii). In view of [9, Lemma 3.2], $\operatorname{Ann}_M(a)$ is a unique maximal element of $X = \{\operatorname{Ann}_M(x) : x \in Z(M) \setminus \operatorname{Ann}_R(M)\}$. So the zero submodule of M has only one minimal primary component. Thus $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M) = \mathfrak{p}$. Assume that x and y are adjacent vertices of EG(M) so $\operatorname{Ann}_M(xy)$ is an essential submodule of M. If $\operatorname{Ann}_M(xy)$ is a proper submodule of M, then $\operatorname{Ann}_M(xy) \subseteq \operatorname{Ann}_M(a)$ implies that $\operatorname{Ann}_M(a)$ is an essential submodule of M, which contradicts [5, Theorem 5(iii)]. Hence, $\operatorname{Ann}_M(xy) = M$. So $xy \in \operatorname{Ann}_R(M) = \mathfrak{p}$ which implies that either $x \in \operatorname{Ann}_R(M)$ or $y \in \operatorname{Ann}_R(M)$ that is impossible. Therefore, EG(M) is a null graph.

(⇒) Since *M* is a Noetherian *R*-module we have $|MinAss_R(M)| \ge 1$. Moreover, $|MinAss_R(M)| = |m-Ass(M)| \le 1$, by Lemma 3.1 and [5, Theorem 6(i)]. \Box

Theorem 3.3. [5, Theorem 7] Let M be a Noetherian R-module and $\operatorname{Ann}_R(M) = r(\operatorname{Ann}_R(M))$. Then EG(M) is a disconnected graph if and only if there exists $b \in Z(M) \setminus \operatorname{Ann}_R(M)$ such that $\operatorname{Ann}_M(b) \subseteq \bigcap_{P \in m-\operatorname{Ass}(M)} P$.

Corollary 3.4. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$. Then EG(M) is a connected graph if and only if for all $b \in Z(M) \setminus \operatorname{Ann}_R(M)$ there exists $P \in m$ -Ass(M) such that $\operatorname{Ann}_M(b) \not\subseteq P$.

Corollary 3.5. Let M be a Noetherian R-module. If EG(M) is a connected graph, then diam $(EG(M)) \leq 3$.

Proof. If $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$, then the result follows by Theorem 2.6. Otherwise, it follows by Corollary 3.4, [5, Corollary 2] and [5, Remark 1(iii)], note that by Theorem 3.2, |m-Ass $(M)| \geq 2$.

Corollary 3.6. Let M be a Noetherian R-module. If the connected graph EG(M) has a cycle, then $gr(EG(M)) \leq 4$.

Proof. If $r(\operatorname{Ann}_R(M)) \neq \operatorname{Ann}_R(M)$, then the result follows by Theorem 2.6. Now, assume that $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$. For $|m\operatorname{-Ass}(M)| \geq 3$ there is nothing to prove, see [5, Remark 1(iii)]. So we may assume that $|m\operatorname{-Ass}(M)| \leq 2$. On the other hand, $|m\operatorname{-Ass}(M)| > 1$ since EG(M) is a connected graph, see Corollary 3.4. Hence, $|m\operatorname{-Ass}(M)| = 2$. Now, by a similar argument to that of [11, Theorem 3.3] one can show that $\operatorname{gr}(EG(M)) \leq 4$.

Theorem 3.7. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ and assume that EG(M) is not a star graph. Then EG(M) is a complete bipartite graph if and only if $|\operatorname{Ass}_R(M)| = 2$.

Proof. Let $I = \operatorname{Ann}_R(M)$. Note that

 $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ and $r(\operatorname{Ann}_R(M))/I = r(\operatorname{Ann}_{R/I}(M)).$

Thus $r(\operatorname{Ann}_{R/I}(M)) = 0$. Moreover, for each $a \in R$, we have $a \in Z(M) \setminus \operatorname{Ann}_R(M)$ if and only if $a + I \in Z_{R/I}(M) \setminus \{0\}$ and $\mathfrak{p} \in \operatorname{Ass}_R(M)$ if and only if $\mathfrak{p}/I \in \operatorname{Ass}_{R/I}(M)$. It is therefore enough for us to prove this result under the additional hypothesis that $r(\operatorname{Ann}_R(M)) = 0$.

Let EG(M) be a complete bipartite graph and $\{V_1, V_2\}$ be a partition of the vertex set of EG(M). We prove that $V_i \cup \{0\}$ for i = 1, 2 is a prime ideal of R. Let $a, b \in V_1 = V_1 \cup \{0\}$. If a = 0 or b = 0 or a + b = 0, then $a + b \in V_1$ and we are done. Suppose that $a, b \in V_1$. Thus there exist $x, y \in V_2$ such that $\operatorname{Ann}_M(ax)$ and $\operatorname{Ann}_M(by)$ are essential submodules of M. If $\operatorname{Ann}_M(ax) \cap \operatorname{Ann}_M(by) \subseteq \operatorname{Ann}_M(xy)$, then $\operatorname{Ann}_M(xy)$ is an essential submodules of M which is a contradiction. Thus assume that $m \in \operatorname{Ann}_M(ax) \cap \operatorname{Ann}_M(by) \setminus \operatorname{Ann}_M(xy)$. Hence, (a+b)xym = 0 and $xym \neq 0$ this means $a + b \in Z(M)$. If $a + b \in V_1$ we are done; otherwise $a + b \in V_2$ and it follows that $\operatorname{Ann}_M(a(a+b))$ and $\operatorname{Ann}_M(b(a+b))$ are essential submodules of M. Then $\operatorname{Ann}_M((a+b)^2)$ and so $\operatorname{Ann}_M(a+b)$ is an essential submodule of M which is a contradiction. So $a + b \in V_1$. Let $a, b \in R$ and $ab \in \overline{V_1}$. We show that either $a \in \overline{V_1}$ or $b \in \overline{V_1}$. If a = 0 or b = 0, then there is nothing to prove. If ab = 0, then $Ann_M(ab)$ is an essential submodule of M contrary to the assumption. So assume that $0 \neq a, b, 0 \neq ab$ and $a, b \notin V_1$. Thus either Ann_M (a^2b) or $\operatorname{Ann}_M(ab^2)$ is an essential submodule of M and so $\operatorname{Ann}_M((ab)^2)$ is an essential submodule of M which implies that $\operatorname{Ann}_M(ab)$ is an essential submodule of M, this is a contradiction. Hence, either $a \in V_1$ or $b \in V_1$.

Conversely, assume that $\operatorname{Ass}_R(M) = \{\mathfrak{p}_1, \mathfrak{p}_2\}$. Thus $\mathfrak{p}_1 \cap \mathfrak{p}_2 = r(\operatorname{Ann}_R(M)) = 0$. Suppose that $a, b \in \mathfrak{p}_1 \setminus \{0\}$ and $\operatorname{Ann}_M(ab)$ is an essential submodule of M. Moreover, suppose that $\mathfrak{p}_2 = \operatorname{Ann}_R(m)$, for some $m \in M$. Thus $\operatorname{Ann}_M(ab) \cap Rm \neq 0$. If $0 \neq rm \in \operatorname{Ann}_M(ab)$, then $abr \in \mathfrak{p}_2$ which implies that $ab \in \mathfrak{p}_2$ and so either $a \in \mathfrak{p}_2$ or $b \in \mathfrak{p}_2$. Hence, either a = 0 or b = 0 which is a contradiction. Therefore, the elements of $\mathfrak{p}_1 \setminus \{0\}$ are not adjacent with each other. By a similar argument, one can show that any two distinct elements of $\mathfrak{p}_2 \setminus \{0\}$ are not adjacent. Let $a \in \mathfrak{p}_1 \setminus \{0\}$ and $b \in \mathfrak{p}_2 \setminus \{0\}$. Then $ab \in \mathfrak{p}_1 \mathfrak{p}_2 \subseteq \mathfrak{p}_1 \cap \mathfrak{p}_2 = 0$ so abM = 0 which means that an element of $\mathfrak{p}_1 \setminus \{0\}$ is adjacent to all elements of $\mathfrak{p}_2 \setminus \{0\}$. Therefore, EG(M) is a complete bipartite graph. \Box

Corollary 3.8. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$. Then EG(M) is a star graph if and only if $R = \mathbb{Z}_2 \oplus R'$ and $M = (\oplus \mathbb{Z}_2) \oplus M'$, where R' is a subring of R and M' is an R-submodule of M and $\operatorname{Ass}_R(M) = \{\mathbb{Z}_2 \oplus 0, 0 \oplus R'\}$. **Proof.** As in Theorem 3.7 we can assume that $r(\operatorname{Ann}_R(M)) = 0$. Let EG(M) be a star graph and let $\{V_1 = \{c\}, V_2 = \{x, y, z, \cdots\}\}$ be a partition of V(EG(M)). We prove that $V_i \cup \{0\}$ for i = 1, 2, is a prime ideal of R. By the hypotheses and the proof of Lemma 2.3 we have $c^2 = c$ and also it follows that $R = R_1 \oplus R_2$ and $M = M_1 \oplus M_2$, where R_1 and R_2 are subrings of R, M_1 and M_2 are R-submodules of M, c = (1,0) is the universal vertex of EG(M), $Z_{R_1}(M_1) = Z_{R_2}(M_2) = 0$. Moreover, R_1 has characteristic 2 so $R_1 = \mathbb{Z}_2$. Hence, $Z(M) = \mathbb{Z}_2 \oplus 0 \cup 0 \oplus R_2$. Therefore, $V_1 \cup \{0\} = \mathbb{Z}_2 \oplus 0, V_2 \cup \{0\} = 0 \oplus R_2$ and $\operatorname{Ass}_R(M) = \{\mathbb{Z}_2 \oplus 0, 0 \oplus R_2\}$. \Box

4. Relations between the zero divisor graph and the essential graph

In this section we will study the relations between the zero-divisor graph defined in [11] and the essential graph for modules.

Definition 4.1. [11, Definition 2.1] Let M be an R-module. The zero-divisor graph of M, denoted by $\Gamma(M)$ is a simple undirected graph whose vertex set is $Z(M) \setminus \operatorname{Ann}_R(M)$ and two distinct vertices x and y are adjacent if and only if xyM = 0.

To commence, we show that the zero-divisor graph is a subgraph of the essential graph.

Lemma 4.2. Let M be an R-module. Then $\Gamma(M)$ is a subgraph of EG(M).

Proof. Suppose that x and y are adjacent in $\Gamma(M)$. Then xyM = 0 and $M = \text{Ann}_M(xy)$ is an essential submodule of M. Hence, x and y are adjacent in EG(M).

Lemma 4.3. Let M be an R-module and $x \in Z(M) \setminus r(\operatorname{Ann}_R(M))$. If $\operatorname{Ann}_M(x)$ is a prime submodule of M, then $N_{\Gamma(M)}(x) = N_{EG(M)}(x)$.

Proof. Suppose that $x \in Z(M) \setminus r(\operatorname{Ann}_R(M))$ and $\operatorname{Ann}_M(x)$ is a prime submodule of M. It is enough to show that $N_{EG(M)}(x) \subseteq N_{\Gamma(M)}(x)$. Assume that $y \in N_{EG(M)}(x)$. Thus $\operatorname{Ann}_M(xy)$ is an essential submodule of M. In view of [5, Theorem 5(iii)] $\operatorname{Ann}_M(x)$ is not an essential submodule of M. Hence, there exists a nonzero submodule N of M such that $\operatorname{Ann}_M(x) \cap N = 0$. Therefore, for some $m \in M$ we have xym = 0 but $xm \neq 0$ so we get that xyM = 0 since $\operatorname{Ann}_M(x)$ is a prime submodule of M. Therefore, x and y are adjacent in $\Gamma(M)$ and the proof is completed. \Box

The following example shows that Lemma 4.3 does not hold necessarily for elements of $r(\operatorname{Ann}_R(M))$.

Example 4.4. Consider $M = \mathbb{Z}/12\mathbb{Z}$ as a \mathbb{Z} -module. For $6 \in r(\operatorname{Ann}_R(M))$, Ann_M(6) = $2\mathbb{Z}/12\mathbb{Z}$ is a prime submodule of M but $N_{\Gamma(M)}(6) \neq N_{EG(M)}(6)$.

Lemma 4.5. Let M be a Noetherian R-module. Then 0 is a prime submodule of M if and only if EG(M) is a null graph. In particular, $EG(M) = \Gamma(M)$.

Proof. Suppose that 0 is a prime submodule of M. Then $|MinAss_R(M)| = 1$ and so the result follows by Theorem 3.2.

Theorem 4.6. Let M be a Noetherian R-module with $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$. Then $\Gamma(M) = EG(M)$.

Proof. It is obvious that $\Gamma(M)$ is a subgraph of EG(M), by Lemma 4.2. Now, it is sufficient to show that each edge of EG(M) is an edge of $\Gamma(M)$. Suppose that x - y is an edge of EG(M). Then $\operatorname{Ann}_M(xy)$ is an essential submodule of M. By the assumption the chain $\operatorname{Ann}_M(xy) \subseteq \operatorname{Ann}_M((xy)^2) \subseteq \ldots \subseteq \operatorname{Ann}_M((xy)^n) \subseteq$ \ldots of submodules does stabilize, thus there is $n \in \mathbb{N}$ such that $\operatorname{Ann}_M((xy)^n) =$ $\operatorname{Ann}_M((xy)^{n+i})$, for all $i \geq 0$. Assume that $m \in \operatorname{Ann}_M(xy) \cap (xy)^n M$. Thus $m = (xy)^n m'$ for some $m' \in M$. Hence $(xy)^{n+1}m' = xym = 0$, which implies that $m' \in \operatorname{Ann}_M((xy)^{n+1}) = \operatorname{Ann}_M((xy)^n)$. Then m = 0 and $(xy)^n M = 0$ since $\operatorname{Ann}_M(xy)$ is an essential submodule of M. Therefore, $xy \in r(\operatorname{Ann}_R(M))$ and so xyM = 0.

The following examples have been presented to show that the properties of being Noetherian and $r(\operatorname{Ann}_R(M)) = \operatorname{Ann}_R(M)$ are necessary conditions in Theorem 4.6.

Example 4.7. (i) Example 2.11 shows that for the non-Noetherian \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ we have $r(\operatorname{Ann}_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}})) = \operatorname{Ann}_{\mathbb{Z}}(\mathbb{Z}_{p^{\infty}})$ but $EG(\mathbb{Z}_{p^{\infty}}) \neq \Gamma(\mathbb{Z}_{p^{\infty}})$.

(ii) For the Noetherian \mathbb{Z} -module $\mathbb{Z}/12\mathbb{Z}$, $\operatorname{Ann}_{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z})) \neq \operatorname{Ann}_{\mathbb{Z}}(\mathbb{Z}/12\mathbb{Z})$. The following figures (induced subgraphs of $\Gamma(\mathbb{Z}/12\mathbb{Z})$ and $EG(\mathbb{Z}/12\mathbb{Z})$) show that $EG(\mathbb{Z}/12\mathbb{Z}) \neq \Gamma(\mathbb{Z}/12\mathbb{Z})$.

Acknowledgement. The authors would like to thank the referee for a careful reading of our paper and insightful comments which saved us from several errors.

References

- S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra, 274 (2004), 847-855.
- [2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(2) (1999), 434-447.
- [3] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210(2) (2007), 543-550.
- [4] D. F. Anderson and D. Weber, The zero-divisor graph of a commutative ring without identity, Int. Electron. J. Algebra, 23 (2018), 176-202.
- [5] S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules and the annihilator essential graph, Acta Math. Vietnam., 44 (2019), 905-914.
- [6] I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
- [7] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4(2) (2012), 175-197.
- [8] S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules, Honam Math. J., 34(4) (2012), 571-584.
- [9] C. P. Lu, Unions of prime submodules, Houston J. Math., 23(2) (1997), 203-213.
- [10] M. J. Nikmehr, R. Nikandish and M. Bakhtyiari, On the essential graph of a commutative ring, J. Algebra Appl., 16(7) (2017), 1750132 (14 pp).
- K. Nozari and Sh. Payrovi, A generalization of zero-divisor graph for modules, Publ. Inst. Math. (Beograd) (N.S.), 106(120) (2019), 39-46.
- [12] S. Safaeeyan, M. Baziar and E. Momtahan, A generalization of the zero-divisor graph for modules, J. Korean Math. Soc., 51(1) (2014), 87-98.
- [13] R. Y. Sharp, Steps in Commutative Algebra, Second edition, Cambridge University Press, Cambridge, 2000.

F. Soheilnia, Sh. Payrovi (Corresponding Author), and A. Behtoei

Department of Mathematics

Imam Khomeini International University

P. O. Box: 3414916818, Qazvin, Iran

e-mails: f.soheilnia@edu.ikiu.ac.ir (F. Soheilnia) shpayrovi@sci.ikiu.ac.ir (Sh. Payrovi)

a.behtoei@sci.ikiu.ac.ir (A. Behtoei)