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Abstract. Let C be a commutative ring and C[x1, x2, . . .] the polynomial ring

in a countable number of variables xi of degree 1. Suppose that the differential

operator d1 =
∑
i xi∂i acts on C[x1, x2, . . .]. Let Zp be the p–adic integers, K

the extension field of the p–adic numbers Qp, and F2 the 2-element filed. In this

article, first, the C-algebra A1(C) of differential operators is constructed by

the divided differential operators (d1)∨k/k! as its generators, where ∨ stands

for the wedge product. Then, the free Baxter algebra of weight 1 over ∅,

the λ–divided power Hopf algebra Aλ, the algebra C(Zp,K) of continuous

functions from Zp to K, and the algebra of all F2–valued continuous functions

on the ternary Cantor set are represented in terms of the differential operators

algebra A1(C).
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1. Introduction

In [11], Wood considered the differential operators

Dk =
∑
i

xk+1
i

∂

∂xi
, k ≥ 1,

acting in the usual way on the integral polynomial ring Z[x1, x2, . . .] in a countable

number of variables xi of degree 1 in order to give an introductory presentation of

the Steenrod algebra from a purely algebraic point of view.

The differential operators Dk have been known to topologists for a long time.

These operators form an algebra, under the wedge product ∨, generated by the

divided differential operators D∨rk /r!. Wood named this algebra as the divided

differential operator algebra D. Moreover, the algebra D is closed under the com-

position of operators and is isomorphic to the Landweber–Novikov algebra due to

this multiplication. Interpretations of the Landweber–Novikov algebra in terms of

differential operators have been offered in the works of Buhstaber and the others

[3,4,5].
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In this article, it is assumed that C is a commutative ring. Let C[x1, x2, . . .]

denote the polynomial ring in a countable number of variables xi of degree 1. Take

the differential operator

d1 =
∑
i

xi∂i

acting on C[x1, x2, . . .]. The operator D0 is familiar from Euler’s formula

D0(f) =
∑
i

xi
∂f

∂xi
= (deg f)f

for any homogeneous polynomial f . Wood considered D0 as the identity operator.

However, considering D0 as a non-identity operator, we define a specific differential

operators algebra A1(C) generated by the divided differential operators (d1)∨k/k!

which has certain properties. In particular, representations of several algebras are

expressed in the literature of the differential operators algebra A1(C). Given a

prime p we take Zp the p–adic integers and Qp the field of p–adic numbers.

(1) The free Baxter algebra of weight 1 over ∅ is isomorphic to the C–algebra

A1(C);

(2) The λ–divided power Hopf algebra Aλ [1] is represented by a suitable mul-

tiple of generators of A1(C);

(3) For a field F of characteristic 0, the F–algebraA1(F) is a polynomial algebra.

In particular, for the extension K of Qp, the completion Â1(K) of A1(K)

with the max–norm is isomorphic to C(Zp,K), the algebra of continuous

functions from Zp to K;

(4) For the two–element field F2, the algebra A1(F2) is isomorphic to the alge-

bra of all the F2–valued continuous functions on the ternary Cantor set.

2. The 1–Steenrod algebra

Let I = (ir11 , i
r2
2 , . . . , i

rn
n ) and K = (ks11 , k

s2
2 , . . . , k

sn
n ) be the multisets of positive

integers and put

∂ki =
∂k

∂xki
.

We write abbreviated expressions for monomials

xI = xr1i1 x
r2
i2
· · ·xrnin , ∂K = ∂s1k1∂

s2
k2
· · · ∂snkn .

The degree of xI and the order of ∂K are r1 + r2 + · · ·+ rn and s1 + s2 + · · ·+ sn,

respectively. Based on [11], we adopt the wedge symbol ∨ for the formal product

of two differential operators xI∂K and xJ∂L defined on C[x1, x2, . . .] by

xI∂K ∨ xJ∂L = xIxJ∂K∂L.
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Our work draws upon the differential operators of the form xI∂I , for the multiset

I = (i1, . . . , in). Therefore, we need only the special differential operator

d1 =
∑
i

xi∂i

acting on C[x1, x2, . . .]. By the above notation,

d1 ∨ d1 =
∑
i,j

xixj∂ij ,

and, generally, for the multiset I = (i1, i2, . . . , ik),

(d1)∨k =

k times︷ ︸︸ ︷
d1 ∨ · · · ∨ d1 =

∑
I

xI∂I =
∑

(i1,...,ik)

xi1 · · ·xik
∂k

∂xi1 · · · ∂xik
.

Leibniz formula yields for the above operation.

Lemma 2.1 (Leibniz formula). For any polynomials f, g ∈ C[x1, x2, . . .],

(d1)∨n(fg) =

n∑
s=0

(
n

s

)
(d1)∨s(f)(d1)∨(n−s)(g).

Proof. First, note that for f, g ∈ C[x1, x2, . . .], we have

∂n(fg)

∂xi1 · · · ∂xin
=
∑
S

∂|S|(f)∏
ik∈S ∂xik

∂n−|S|(g)∏
ik /∈S ∂xik

, (1)

where the summation runs over all subsets S of the set {i1, . . . , in}. For S =

{ir1 , . . . , irs}, denote by (S) the multiset (ir1 , . . . , irs) of s–tuples of elements of

{i1, . . . , in}. As before, put I = (i1, . . . , in). Then, we can rewrite (1) in terms of

the multisets as

∂I(fg) =
∑
S

∂(S)(f)∂(S′)(g),

where S′ is the complement of S in {i1, . . . , in}. Accordingly,

(d1)∨n(fg) =
∑
I

xI∂I(fg)

=
∑
I

xI
∑
S

∂(S)(f)∂(S′)(g).

For an arbitrary subset S of {i1, . . . , in}, we have∑
I

xI∂(S)(f)∂(S′)(g) =
∑
I

(
x(S)∂(S)(f)

) (
x(S′)∂(S′)(g)

)
= (d1)∨|S|(f)(d1)∨(n−|S|)(g).

Since there are exactly
(
n
s

)
subsets of {i1, . . . , in} of size |S| = s, the result follows.

�
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By applying the Leibniz formula to xf , where x is linear, and using induction on

the degree of f , it follows that (d1)∨k is divisible by k! for k > 0. Consequently, it

makes sense to consider the differential operators

dk :=
(d1)∨k

k!
for k > 0, d0 := id.

Proposition 2.2. The differential operators dk, k > 0, have the following proper-

ties.

(1) For any non-negative integer r and single variable xj,

dk(xrj) =


(
r
k

)
xrj , if k ≤ r,

0, if k > r.

(2) (Cartan formula) For any polynomials f, g ∈ C[x1, x2, . . .],

dk(fg) =
∑
i+j=k

di(f)dj(g).

Proof. By definition, for xrj we have

dk(xrj) =
1

k!

∑
(i1,...,ik)

xi1 · · ·xik
∂k

∂xi1 · · · ∂xik
(xrj),

which is 0 except for the index (j, j, . . . , j). Thus,

dk(xrj) =
1

k!
xkj

∂k

(∂xj)k
(xrj) =


(
r
k

)
xrj , if k ≤ r,

0, if k > r.

To deduce the Cartan formula, for f, g ∈ C[x1, x2, . . .] we write

(d1)∨k

k!
=
∑
i+j=k

(d1)∨i

i!
(f)

(d1)∨j

j!
(g),

using Lemma 2.1. This completes the proof. �

Definition 2.3. The C–algebra generated by the set {dk}k≥0, under the compo-

sition of the differential operators dk, is called the 1–Steenrod algebra over C and

denoted by A1(C).

For example, d1d1 is computed in A1(C) as follow.

d1d1 =
∑
i

xi∂i

∑
j

xj∂j

 =
∑
i,j

xi∂i(xj)∂j +
∑
i,j

xixj∂ij = d1 + 2d2.
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Remark 2.4. The mod 2 Steenrod algebra A2 is representable in terms of the

differential operators

SQk =
D∨k1
k!

,

where D1 =
∑
i x

2
i ∂i [11]. However, instead of the squares of the variables xi, in

the present article, we deal with their first powers. This is the reason for selecting

the notation A1(C) and calling it the 1–Steenrod algebra.

Given the positive integers m and n, the general product dmdn in A1(C) is

determined in the next result. We use the multiset notations in the proof of Lemma

2.1.

Theorem 2.5. In A1(C), we have

dmdn =

m∑
s=0

(
m

s

)(
m+ n− s

m

)
dm+n−s.

In particular, A1(C) is commutative.

Proof. All we need is to calculate the value

dmdn =
1

m!n!

∑
I

xI∂I(
∑
J

xJ∂J) =
1

m!n!

∑
I,J

xI∂I(xJ∂J).

We know that

∂I(xJ∂J) =
∑
S

∂(S)(xJ)∂(S′)(∂J).

Let m ≤ n. Then,

dmdn =
1

m!n!

∑
I,J

xI
∑
S

∂(S)(xJ)∂(S′)(∂J). (2)

For any individual subset S, we compute the S–summation. In the case |S| = 0,

we have the S–summand

1

m!n!

∑
I,J

xIxJ∂I∂J =
(m+ n)!

m!n!
dm+n =

(
m

0

)(
m+ n− 0

m

)
dm+n.

If |S| = s > 0, then S = {ir1 , . . . , irs} and the S–summand is

1

m!n!

∑
I,J

xI∂(S)(xJ)∂(S′)∂J , (3)

where ∂(S)(xJ) is nonzero only if ir1 , . . . , irs are components of J in which case,

∂(S)(xJ) =
xJ
x(S)

.
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However, there are n(n− 1) · · · (n− s+ 1) possibilities for ir1 , . . . , irs to be compo-

nents of J . Therefore, the S–summand (3) turns to

n(n− 1) · · · (n− s+ 1)

m!n!

∑
I,J

xI
xJ
x(S)

∂(S′)∂J

= n(n− 1) · · · (n− s+ 1)
(m+ n− s)!

m!n!
dm+n−s

=

(
m+ n− s

m

)
dm+n−s.

On the other hand, there are
(
m
s

)
subsets of size |S| = s. We can conclude that the

coefficient of dm+n−s in the right hand of (2) is(
m

s

)(
m+ n− s

m

)
.

Now, for 0 ≤ s ≤ m, (
m

s

)(
m+ n− s

m

)
=

(
n

s

)(
m+ n− s

n

)
,

while for m < s ≤ n the coefficient
(
m+n−s

n

)
annihilates. Therefore, A1(C) is

commutative. �

3. Baxter algebra and the Hopf algebra structure of A1(C)

Definition 3.1. A commutative C–algebra B is called a Baxter algebra of weight

λ ∈ C, if there exists a C–linear operator T : B → B such that for all x, y ∈ B,

T (x)T (y) = T (xT (y)) + T (yT (x)) + λT (xy).

The operator T is called a Baxter operator of weight λ.

Theorem 3.2. The map T : A1(C) → A1(C) defined by T (dn) = dn+1 on the

generators dn is a Baxter operator of weight 1.

Proof. For the sake of simplicity, denote the coefficient
(
m
s

)(
m+n−s
m

)
by Rnm(s).

For m,n ≥ 1, calculate

A = T (dmT (dn)) + T (dnT (dm)) + T (dmdn)

= T (dmdn+1) + T (dm+1dn) + T (dmdn)
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as follows.

A =

m∑
s=0

Rn+1
m (s)dm+n+2−s +

m+1∑
s=0

Rnm+1(s)dm+n+2−s +

m∑
s=0

Rnm(s)dm+n+1−s

=

[(
m+ n+ 1

m

)
+

(
m+ n+ 1

m+ 1

)]
dm+n+2 +

[(
n

m+ 1

)
+

(
n

m

)]
dn+1

+

m∑
s=1

(
Rn+1
m (s) +Rnm+1(s) +Rnm(s− 1)

)
dm+n+2−s

=

(
m+ n+ 2

m+ 1

)
dm+n+2 +

(
n+ 1

m+ 1

)
dn+1

+

m∑
s=1

(
m+ 1

s

)(
m+ n+ 2− s

m

)
dm+n+2−s

= dm+1dn+1

= T (dm)T (dn),

showing that T is a Baxter operator of weight 1. �

Additionally, A1(C) is a free Baxter algebra of weight 1 over X = ∅ [6]. Gener-

ally, for λ ∈ C, let

Aλ(C) =

∞⊕
n=0

Can

be the free C–module over the set {an}n≥0. Then the map

µλ : Aλ(C)⊗C Aλ(C)→ Aλ(C),

defined by

µλ(am ⊗ an) =

m∑
s=0

λs
(
m

s

)(
m+ n− s

m

)
am+n−s,

provides a multiplication on Aλ(C) subject to a0 = 1. Now, the operator

T : Aλ(C)→ Aλ(C),

an 7→ an+1

is a Baxter operator of weight λ. The Hopf algebra structure of Aλ(C) is given by

the next result [1, Theorem 1.1].

Theorem 3.3. The algebra Aλ(C) is a Hopf algebra with the diagonal map ∆ :

Aλ(C)→ Aλ(C)⊗C Aλ(C) defined by

∆(an) =

n∑
k=0

n−k∑
j=0

(−λ)kaj ⊗ an−k−j ,
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and the counit ε : Aλ(C)→ Aλ(C) defined by

ε(an) =


1, if n = 0,

λ1, if n = 1,

0, if n ≥ 2.

Whenever λ = 0, we have the divided power Hopf algebra A0(C) in which,

aman =
(
m+n
m

)
am+n. In general, Aλ(C) is called the λ–divided power Hopf alge-

bra. The divided power algebra A0(C) plays an important role in several areas

of mathematics, including the crystalline cohomology in number theory [2], the

umbral calculus in combinatorics [8], and the Hurwitz series in differential algebra

[7].

In the next theorem, we provide a representation of the algebra Aλ(C) as an

algebra of differential operators.

Theorem 3.4. Consider the operators

dnλ =
λn

n!

∑
(i1,...,in)

xi1 · · ·xin
∂n

∂xi1 · · · ∂xin
= λndn, λ 6= 0,

dn0 =
1

n!

∑
(i1,...,in)

∂n

∂xi1 · · · ∂xin
.

Then, the C–algebra generated by the set {dnλ}n≥0, under composition, is isomorphic

to Aλ(C).

Proof. We examine the multiplication of the elements dmλ and dnλ. For λ 6= 0, we

have

dmλ d
n
λ = λm+ndmdn

=

m∑
s=0

λm+n

(
m

s

)(
m+ n− s

m

)
dm+n−s

=

m∑
s=0

(
m

s

)(
m+ n− s

m

)
λsdm+n−s

λ

= dmλ d
n
λ.
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And for λ = 0,

dm0 d
n
0 =

1

m!n!

∑
(i1,...,im)

∂m

∂xi1 · · · ∂xim

∑
(j1,...,jn)

∂n

∂xj1 · · · ∂xjn

=
1

m!n!

∑
(i1,...,im)
(j1,...,jn)

∂m+n

∂xi1 · · · ∂xin∂xj1 · · · ∂xjm

=

(
m+ n

m

)
dm+n
0 .

This establishes the theorem. �

Therefore, the functor Aλ(−), associates any commutative ring C with the Bax-

ter algebra Aλ(C) of weight λ and any ring homomorphism φ : C → C ′ with the

algebra homomorphism

Aλ(φ) : Aλ(C)→ Aλ(C ′),

n∑
i=1

aid
ki 7→

n∑
i=1

φ(ai)d
ki .

4. Representation of C(Zp,K) in terms of differential operators

Over a field F of characteristic 0, the algebra A1(F) is familiar.

Theorem 4.1. Let F be a field of characteristic 0. Then A1(F) is isomorphic to

the polynomial algebra F[t].

Proof. By Theorem 2.5, we have d1d1 = d1+2d2 or d2 = 1
2d

1(d1−1). By induction

on n we get

dn =
1

k!
d1(d1 − 1) · · · (d1 − n+ 1).

Now consider the morphism A1(F)→ F[t], defined by

dn 7→ t(t− 1) · · · (t− n+ 1)

n!
.

This map is an isomorphism of F–algebras since the F[t] is generated by the poly-

nomials t(t−1)···(t−n+1)
n! for n ≥ 1. In fact, we have

tn =

n∑
k=0

ak
t(t− 1) · · · (t− k + 1)

k!
,

where

ak =

k∑
i=1

(−1)k−i
(
k

i

)
ik

for all 0 ≤ k ≤ n [9, Section 52]. This completes the proof. �
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Using Theorems 2.5 and 4.1, one can see that(
x

m

)(
x

n

)
=

m∑
s=0

(
m

s

)(
m+ n− s

m

)(
x

m+ n− s

)
.

In particular, (
x

m

)2

=

m∑
s=0

(
m

s

)(
2m− s
m

)(
x

2m− s

)
. (4)

Definition 4.2. For n ≥ 0, the polynomial Fn(x) is defined by

Fn(x) =

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
for n > 0, and F0(x) = 1.

Suppose that C(Zp,K) is the set of all continuous maps from the p–adic integers

Zp to the extension K of the field of p–adic numbers Qp. Under the point-wise

addition and multiplication

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

for all f, g ∈ C(Zp,K) and x ∈ Zp, the set C(Zp,K) forms a K–algebra. Further-

more, C(Zp,K) is a Banach algebra subject to the sup-norm

‖f‖∞ := sup
x∈Zp

|f(x)|

where | | denotes the absolute value of the field K (see [9, Section 13]). The next

result is a combination of Theorems 51.1 and 52.1 of [9].

Theorem 4.3. Let K be an extension of the field of p–adic numbers with absolute

value | |.

(1) (Mahler expansion). For f ∈ C(Zp,K), there exist unique elements a0, a1, . . .

of K, called Mahler coefficients of f , such that

f(x) =

∞∑
n=0

anFn(x).

This series is called the Mahler expansion of f and converges uniformly.

Moreover, the sup-norm of f is calculated by

‖f‖∞ = sup
n≥0
|an|.

(2) If a0, a1, . . . is a null sequence in K, i.e., if limn→∞ |an| = 0, then x 7→∑∞
n=0 anFn(x) defines a continuous function Zp → K.
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(3) For f ∈ C(Zp,K) with Mahler expansion f =
∑∞
n=0 anFn, the coefficients

an can be reconstructed from f by

an =

n∑
j=0

(−1)n−j
(
n

j

)
f(j).

For example, using the equation (4), we can see that, for a fixed m,

n∑
j=0

(−1)n−j
(
n

j

)(
j

m

)2

= 0,

for all n < m and n > 2m.

By Theorem 4.3, we have ‖Fn‖ = 1 for n ≥ 0. Using the isomorphism dn 7→ Fn,

we can define a norm on A1(K) by ‖dn‖ = 1 for all n ≥ 0 and for an arbitrary

element θ =
∑r
i=1 aid

ni ∈ A1(K),

‖θ‖ = sup
1≤i≤r

|ai|.

Denote by Â1(K) the completion of the normed algebra A1(K) consisting of all

infinite series
∑∞
n=0 and

n with limn→∞ |an| = 0. Then, the following corollary is

clear.

Corollary 4.4. C(Zp,K) is isomorphic to Â1(K).

5. {0, 1}–valued continuous functions on the ternary Cantor set

In this section, taking P as the classic ternary Cantor set, we present the F2–

algebra C(P,F2) in terms of differential operators. To this end, first we concentrate

on A1(F2).

Theorem 5.1. Every element of A1(F2) is idempotent. Additively, the collection

{d2n}n≥0 generates the F2–algebra A1(F2) and for the positive integer n with binary

expansion n = 2j1 + · · ·+ 2jr ,

dn = d2
j1 · · · d2

jr
.

To prove the theorem, we need the following lemma [10, Proposition 1.4.11]. For

the positive integer d = 2d1 + · · · + 2dr , define bin(d) = {2d1 , . . . , 2dr} and put

bin(0) = ∅.

Lemma 5.2. For a, b ≥ 0,
(
b
a

)
≡ 1 (mod 2) if and only if bin(a) ⊆ bin(b).
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Proof of Theorem 5.1. For n ≥ 1, by Theorem 2.5, we calculate dndn in A1(F2)

as follows.

dndn =

n∑
s=0

(
n

s

)(
2n− s
n

)
d2n−s = dn +

n−1∑
s=0

(
n

s

)(
2n− s
n

)
d2n−s.

On the other hand, for 0 ≤ s < n, we obtain(
n

s

)(
2n− s
n

)
=

n!

s!(n− s)!
(2n− s)!
n!(n− s)!

=
(2(n− s))!

(n− s)!(n− s)!
(2n− s)!

s!(2(n− s))!

=

(
2(n− s)
n− s

)(
2n− s
s

)
= 2

(
2(n− s)− 1

n− s− 1

)(
2n− s
s

)
≡ 0 (mod 2).

Thus, dndn = dn in A1(F2). Consider the product

d2
a

dn =

2a∑
s=0

(
2a

s

)(
2a + n− s

2a

)
d2

a+n−s,

where 2a /∈ bin(n). By Lemma 5.2,
(
2a

s

)
≡ 1 (mod 2), if and only if bin(s) ⊆

bin(2a), if and only if s = 0 or 2a. Therefor,

d2
a

dn = d2
a+n +

(
n

2a

)
dn = d2

a+n, (5)

since 2a /∈ bin(n). Let k = 2a1 + · · · + 2ar be the binary expansion of the number

k. Then, by the inductive use of (5) we obtain

dk = d2
a1+···+2ar

= d2
a1
d2

a2+···+2ar
= · · · = d2

a1 · · · d2
ar
.

To complete the proof, it suffices to show that the elements d2
n

, for n ≥ 0,

are indecomposable. Contrarily, suppose d2
n

= dadb, for some 0 < a, b < 2n.

Therefore, there exists an index 0 ≤ s0 ≤ a for which, a+ b−s0 = 2n. By Theorem

2.5, the coefficient of da+b−s0 = d2
n

in dadb is
(
a
s0

)(
2n

a

)
which is 1 (mod 2) if and

only if bin(a) ⊆ {2n}, or equivalently a = 0 or 2n, contradicts the choice of a. �

The ternary Cantor set P consisting of all the real numbers in [0, 1] with the

ternary expansion
∑∞
n=1 an3−n, where an = 0 or 2 for all n, is homeomorphic to

the infinite product
∏∞
n=0 F2.
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Suppose that C(P,F2) is the set of all continuous functions over P with values

in F2 = {0, 1}. The point-wise addition and multiplication

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

for all f, g ∈ C(P,F2) and x ∈ P , equip the set C(P,F2) with a commutative

F2–algebra structure. The next result confirms A1(F2) as a representation of this

algebra.

Theorem 5.3. A1(F2) ∼= C(P,F2).

Proof. We investigate the elements of C(P,F2). For any f ∈ C(P,F2), define the

subset

Af = {(xi)i≥0 ∈ P : f
(
(xi)

)
= 1}.

Since f is continuous, Af is a clopen subset of P . Furthermore, Af completely

determines the function f . In fact, the functions f, g ∈ C(P,F2) are equal if and

only if Af = Ag. Therefore, there is a one to one correspondence between the

elements of C(P,F2) and the clopen subsets of P . It is noteworthy that

Afg = Af ∩Ag, Af+g = Af ∪Ag −Afg, A1−f = A′f = P −A,

where 1 is the function corresponds to the entire clopen set P and A′f stands for

the complement of Af in P .

Let Aj =
∏∞
i=0Xi, where Xj = {1} and for i 6= j, Xi = F2. Then, Aj is

clopen and any clopen subset of P is a finite intersection of the Aj ’s. Consider

the projections πj : P → F2, defined by πj
(
(xi)

)
= xj , the jth component of

(xi)i≥0 ∈ P . Then,

Aπj
= {(xi)i≥0 ∈ P : f

(
(xi)

)
= 1} = Aj , A1−πj

= P −Aj = A′j .

Therefore, any clopen subset of P corresponds to a finite sum of the finite products

of projection maps. Now, the map

πn 7→ d2
n

, n ≥ 0.

is clearly an isomorphism of algebras C(P,F2)→ A1(F2). �
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