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Abstract-The aim of this paper is to present the complete modeling and simulation of a grid-connected brushless doubly fed 

induction generator (BDFG) for variable wind energy conversion is used to assess a maximum power point tracking MPPT 

strategy for different velocities. The decoupling control of active and reactive powers for BDFG has been developed using PI 

controllers. The performance of proposed stator power winding flux oriented vector control is examined. The complete system 

is simulated in the Matlab/Simulink environment and the computer simulation results obtained confirm the effectiveness and 

validity of MPPT strategy. 
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1. Introduction 

The BDFM which is also known as a self-cascaded 

machine is composed of two three-phase windings in the 

stator of different pole numbers (called power winding PW 

and control winding CW) and a special rotor 

winding[10].Typically the two stator supplies are of different 

frequencies, one a fixed frequency supply connected to the 

grid, and the other a variable frequency supply derived from 

a power electronic frequency converter (inverter), as 

illustrated in figure (1), the natural synchronous speed of the 

machine equal to: 

cp

cp

r
pp 





             (1) 

Where p  and c  are the electrical angular velocities 

of the PW and CW voltages. 

Recent research has illustrated the advantages of the 

brushless doubly-fed machine (BDFM) in motor drive and 

generator system applications promise significant advantages 

for wind power generation, as they offer high reliability and 

low-maintenance requirements by virtue of absence of a 

brush gear [6]. 
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Fig. 1. Configuration of a BDFG wind energy conversion 

system 

This configuration finds an interesting in energy 

generations applications especially in renewable  source, The 

variable speed constant frequency (VSCF) is the most 

interesting if the nature of wind with the capability of wind 

generating systems constantly increasing , it is more 

important to improve the efficiency by capture the  

maximum wind energy and use the high quality, efficient and 

controllable where the major challenge is independent 

control of active and reactive powers exchanged between the 

BDFG and the grid. 
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2. Control Mechanism of the Maximal Wind Energy 

Capturing 

Wind energy is captured by the blades of the wind 

turbine and is turned into mechanical torque on the hub. from 

Betz theory, the capture power got from wind energy by 

wind turbine can be expressed as  [16,17]: 

32

2



RCP p            (2) 

Where   is the air density, R is the turbine radius and   

the wind velocity, further the power coefficient Cp is a 

function of the tip speed ratio )/(  Rt  as well as the 

blade pitch angle  , t  is the angular speed of the wind 

turbine. 
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Clearly the turbine speed has to be changed along with 

wind speed so that optimal tip speed ratio is maintained for 

maximum power capture and the generator active power 

matches up to the output power of the turbine.  

Figure 2 shows the curve of the power coefficient versus 

λ for a constant value of the patch angle β . It  is clear from 

this picture that there is a certain value  of  λ for which  Cp  is 

maximized, maximizing thus the power for a given wind 

speed . 

Figure 3 shows the Power- Speed characteristics of the 

wind turbine, the peak power for each wind speed occurs at 

the point where Cp is maximized .To maximize the power 

generated , it is therefore desirable for the generator to have a 

power characteristic that will follow the maximum maxpC  

line. 
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Fig. 2. Wind Turbine Generator pC  characteristics 
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Fig. 3. Wind Turbine Generator power- rotor speed 

characteristics 

To extract the maximum power generated, we must 

maintain λ at the optimal command rotor speed opt  .The 

measurement of wind speed is difficult, an estimate of its 

value can be obtained:  

opt

t R
ref 





            (5) 

The electromagnetic power must be set to the following 

value:  

32

2
rmaxpref RCP 


              (6) 

From the electromagnetic power reference value, it is 

easy to determine the value of the electromagnetic torque 

setting: 

trefref /PT               (7) 
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Fig .4. Wind turbine control 

3. Mathematical Model 

The model in the power winding flux frame is expressed 

as [4,7,12] : 
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The flux equations are given as: 
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The electromagnetic torque is expressed as [20]: 
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The active and reactive powers of power winding are 

defined as: 

)(
2

3
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4. Controller Design 

4.1. Control of the BDFM With a Power Winding Field 

Oriented. 

If the d-axis of the power winding synchronous reference 

frame is aligned with the power winding air gap flux the 

power winding pR  is neglected, then there is relation 

between the power winding voltage and its flux: 
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From (18), the equations linking the rotor currents to the 

power winding currents are deduced below:  
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4.2. PW Flux Estimator 

Form of PW voltage equation shown (8) its derivation in 

the stationary reference frame (    reference frame) is 

given as follows: 
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The PW flux angle can be expressed as: 

p
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4.3. Control of Power Winding Current: 

Suppose that the BDFM is running in steady state, then 

the dynamic model can be transferred to the state model 

[7,21]  as is following: 
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1s , 2s are the slips, which are defined as: 

p
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Equation (26),(27) can be obtained by combining 

equation (22) with equation (24) and  considering equation 

(18) ,(20) and neglecting the power winding resistance. 
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Equation (15),(26) represents the relationship of the 

power current and control wincurrent. 

The first term of equation (25) (26) defines the direct 

coupling between ic,ip The second term, performs as a 

constant and the third term reflects the cross coupling. 

4.4. Control of Power Control Current 

Combining with equations (09), (12), (19), (24) the 

control winding voltage can be derived as: 
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relation between qcV  with qci  

The second term: 
dt

di

L

MM

dt

di

MsL

LRM qp

r

cpdp

prp

prc


1
 

represents the cross coupling it can be neglected in steady 

state. 

The third term: 
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another cross coupling, it can be neglected compared with 

the direct coupling term. 

A similar derivation can be applied to the analysis of 

equation (28) therefore cV  and ci  can be a first order 

relation. 

5. Controller Synthesis 

The active and reactive power control strategy for 

BDFM is described by means of the power winding current, 

the d-q components of the control winding current are 

defined in the power winding flux oriented reference frame, 

with it can be linearly controlled through a proportional- 

integral (PI) regulator . 

We will introduce an additional control loop power level 

in order to improve the static error, the stator power winding 

can be controlled by controlling  path  as shown in Fig (5). 
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Fig.6. Active and reactive vector control block diagram 

 

6. Simulation Results 

The simulation under MATLAB®/Simulink® has been 

done with a ode 3, fixed-step solver with a step size of 2e-5s. 

The sample machine used in this simulation model is 3Y-3Y 

connected and its stator winding is 6-2 pole, the main 

parameters of BDFM simulation model are reported  in Table 

I, The wind parameters are: 0 , mR 3 ,the optimal tip 
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speed ratio 1.8opt  ,and the corresponding maximum 

power coefficient 48.0max pC  ,otherwise the speed 

increase ratio of the gearbox N=2.  

To evaluate the dynamic performance of maximum 

power point tracking of  the system proposed   a step change 

in wind speed as shown in Figure 7. 

The theoretical optimal angular frequency of BDFM is 

calculated: 

(rpm) .51.5662    
N

(rpm) R/))2/60((
r
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When wind speed sm /10,9,8 , the optimal angular 

electrical frequency are:  412.5, 464, 515.6 (rpm),  

In Fig.8 is depicted the optimal command electrical 

angular speed of rotor and its varies with the variable wind 

velocity as it is shown in Fig 7.  

The active and reactive stator powers and its references 

are depicted in Fig 9 and Fig 10. These curves represent a 

good pursuit excepting that the presence of the oscillations 

during the transient mode.  

Fig 7 shows the situation when the wind velocity varies 

suddenly from 8 m/s to 9 m/s at t= 3s and from v= 9 m/s to 

10 m/s at t= 4 s., In both cases, Cp can fast reach around the 

optimal value. The power coefficient is kept around its 

optimum Cpmax = 0.48 occurs at a λopt = 8.1as is depicted 

in Fig.11 and Fig.12. 

Fig.13  illustrates  the  rotor  speed- power 

characteristics of BDFG accorder  with    the  optimal    

value, these results  realize   the maximum wind  energy  

tracking  control.  
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Fig. 10. power winding reactive power 
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Fig. 13 .Wind turbine maximum power trajectory 
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Fig . 17.Zoom of phase power winding current and Voltage 

Fig.14 shown the frequency and amplitude of the control 

winding current both change during the period of the active 

and reactive power variation, the Fig.15 shown the frequency 

of power winding current is constants according  to power 

frequency of the grid with amplitude change when the 

reference of the active and reactive machine power  is 

modified. 

In Fig 16, we can see that the power winding flux 

follows its reference axis (d) with a quadratic  component  

near zero and Fig 17 is the zoom of a stator power winding 

voltage and the corresponding current shows  that  the stator 

power winding current phase changes as a result of increase 

or decrease of reactive or active winding power demand. 

7. Conclusion 

In this paper a wind energy conversion system using 

brushless doubly fed induction generator (BDFG) was 

presented. The aim of the paper was to develop a strategy of 

vector control in stator power winding flux oriented of the 

BDFG based on a control algorithm decoupled of the active 

and reactive power. The linear PI controllers are used to 

control both powers and currents and their parameters are 

initially designed at a specific operating point, the proposed 

control mechanism of the wind turbine in order to obtain a 

maximum power is used and The simulation results confirm 

the validity and effectiveness of the proposed optimal control 

strategy. 

Table 1. The electrical parameters of BDFG 
 PW CW Rotor 

Resistance ( ) pR =0.435 cR =0.435 rR 1.63 

self-inductance (mH) pL =71.38 cL =65.33 rL =142.8 

Mutual inductance (mH) pM =69.311  cM =60.21  
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