
ISSN 2148-838Xhttp://dx.doi.org/10.13069/jacodesmath.13099

J. Algebra Comb. Discrete Appl.
3(1) • 37–44

Received: 19 May 2015
Accepted: 2 December 2015

Journal of Algebra Combinatorics Discrete Structures and Applications

Generalized hypercube graph Qn(S), graph products
and self-orthogonal codes

Research Article

Pani Seneviratne

Abstract: A generalized hypercube graph Qn(S) has Fn
2 = {0, 1}n as the vertex set and two vertices being

adjacent whenever their mutual Hamming distance belongs to S, where n ≥ 1 and S ⊆ {1, 2, . . . , n}.
The graph Qn({1}) is the n-cube, usually denoted by Qn. We study graph boolean products G1 =
Qn(S) × Q1, G2 = Qn(S) ∧ Q1, G3 = Qn(S)[Q1] and show that binary codes from neighborhood
designs of G1, G2 and G3 are self-orthogonal for all choices of n and S. More over, we show that the
class of codes C1 are self-dual. Further we find subgroups of the automorphism group of these graphs
and use these subgroups to obtain PD-sets for permutation decoding. As an example we find a full
error-correcting PD set for the binary [32, 16, 8] extremal self-dual code.
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1. Introduction

The generalized hypercube graphs Qn(S) were introduced in Berrachedi and Mollard [1], where the
authors mainly investigated the graph embeddings especially when the underlying graph is a hypercube.
Their connections to (0, 2)-graphs were studied in Laborde and Madani [6].

Binary codes from the row span of an adjacency matrix for the n-cube were first examined in Key
and Seneviratne [5] and the codes in the case of n even were found to be self-dual with minimum weight
n. Further 3-PD-sets were found for partial permutation decoding. In [2], Fish, Key and Mwambene
extended the results in [5] to graphs Γkn = Qn({k}), when k = 1, 2, 3.

In this paper we study generalized hypercube graphs and binary codes from the neighborhood designs
of their boolean products. Similar to the n-cube, we prove that the graphs Qn(S) are Cayley graphs
and hence are vertex transitive. In particular we study the codes from graph boolean products and show
that they are self-orthogonal and if the boolean product is the graph cartesian product, then the codes
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are self-dual. This construction leads to many optimal codes and we use properties of these graphs to
determine the properties of the codes.

Sections 2 gives the necessary background material and definitions. In Section 3 properties of the
generalized hypercube graph are studied. The binary codes from the graph boolean products are studied
in Section 4. In Section 5 we find PD-sets for permutation decoding.

2. Background and terminology

2.1. Codes

All the codes discussed in this paper are linear codes, i.e. subspaces of the vector space Fn where F
is the finite field. The support of a vector u in Fn is the set of non-zero coordinates positions of u, and
the weight of u, denoted by wt(u), is the cardinality of its support. The notation [n, k, d]q will be used for
a q-ary code of length n, dimension k, and minimum weight d. The dual code C⊥ of C is the orthogonal
complement of C under the standard inner product <,>, i.e. C⊥ = {v ∈ Fn |< v, c >= 0 for all c ∈ C}.
The dual code C⊥ is linear over the field F. A generator matrix of C is a matrix whose rows are vectors
of a basis for C. Two linear codes of the same length and over the same field are isomorphic if they
can be obtained from one another by permuting the coordinate positions. An isomorphism from a code
C into itself is called an automorphism of C, and the group of all automorphisms of C will be denoted
by Aut(C). Any code is isomorphic to a code with generator matrix in so-called standard form, i.e.
the form [Ik | A]. In this case, a check matrix of C, i.e. a generator matrix of C⊥, is then given by
[−AT | In−k]. An information set for a code is the set of the first k coordinates in the standard form and
the corresponding check set is the set of the last n− k coordinates.

2.2. Graphs

The graphs Γ = (V,E) with vertex set V and edge set E, discussed here are simple graphs. If two
distinct vertices x and y in V are adjacent, then we write x ∼ y, and denote [x, y] for the edge they define.
The set of vertices in Γ that are adjacent to a vertex x is the neighbour set of x and is denoted by N(x).
The cardinality of N(x) is the valency of x. A graph is regular if all the vertices have the same valency.
An adjacency matrix A of a graph of order n is an n × n matrix with entries aij such that aij = 1 if
vertices vi and vj are adjacent, and aij = 0 otherwise. The neighborhood design of a regular graph is
the design formed by taking the points to be the vertices of the graph and the blocks to be the neighbor
sets of the vertices. The code of a graph Γ over a finite field Fq is the row span of an adjacency matrix
A over the field Fq, denoted by Cq(Γ) or C(Γ) if the underlying field is obvious.

Let J = Jp be the p × p matrix with all entries 1 and let I = Ip be the identity matrix of order p.
Let A = [aij ] and B = [bij ] be matrices of size p1 × p1 and p2 × p2 respectively. Their tensor product,
also known as the Kronecker product A ∗B is defined as the partitioned matrix [aijB] :

A ∗B =

 a11B a12B · · · a1p1B
a21B a22B · · · a2p1B
· · · · · · · · · · · ·

aP11B ap12B · · · ap1p1B

 .

A boolean operation on an ordered pair of disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) results
in a graph G = G1 ◦ G2 which has the cartesian product V = V1 × V2 as its vertex set and the edge
set E is expressed in terms of E1 and E2, differently for each boolean operation. In [3], Harary and
Wilcox gave a detailed explanation of the follwoing boolean operations. The cartesian product is the
boolean operation G = G1×G2 in which for any two points u = (u1, u2) and v = (v1, v2) ∈ V = V1×V2,
the edge [u, v] is in E(G) whenever u1 = v1 andu2 ∼ v2 or u1 ∼ v1 and, u2 = v2. We can express the
adjacency matrix , A(G1 × G2) = (A1 ∗ Ip2) + (Ip1 ∗ A2). The conjunction or the Kronecker product
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G = G1 ∧ G2: For any two points u = (u1, u2) and v = (v1, v2) ∈ V = V1 × V2, the edge [u, v] is in
E(G) if [u1, v1] ∈ E(G1) and [u2, v2] ∈ E(G2). The adjacency matrix of the conjunction G1 ∧ G2 is
the tensor product A(G1 ∧ G2) = A1 ∗ A2 of the adjacency matrices A1 and A2. The composition or
the lexicographical product G = G1[G2] is the graph with u = (u1, u2) and, v = (v1, v2) are adjacent
whenever u1 ∼ v1 or u1 = v1 and u2 ∼ v2. The adjacency matrix of the composition is given by
A(G1[G2]) = (A1 ∗ Jp2) + (Ip1 ∗ A2). Similarly we can define the composition [G1]G2 by its adjacency
matrix A([G1]G2) = (A1 ∗ Ip2) + (Jp1 ∗A2).

2.3. Permutation decoding

Permutation decoding is described fully in MacWilliams and Sloane [7, Chapter 16] and Huffman [4,
Section 8]. A PD-set defined here will fully use the error-correction potential of the code which follows
easily and is proved in [4].

Definition 2.1. Let C be a t-error-correcting code with information set I and check set C. A PD-set for
C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved by at
least one member of S into the check positions C.

Permutation decoding employs the following theorem in [4, Theorem 8.1] to ensure that all the errors
in a received vector are moved out of the information symbols.

Theorem 2.2. Let C be a t-error-correcting [n, k, d]q code with check matrix H that has the identity
matrix In−k in the redundancy positions. Suppose y = c + e is a vector where c ∈ C and e has weight
s ≤ t. Then the information symbols in y are correct if and only if the weight of the syndrome HyT of y
is ≤ s.

The algorithm for permutation decoding can then be stated as follows: we have a t-error-correcting
[n, k, d]q code C with generator matrix G and check matrix H in standard form, i.e. G = [Ik|A] and
H = [−AT |In−k], where A is a k × (n− k) matrix, so that the first k coordinate positions correspond to
the information symbols. Any message v of length k is then encoded as vG. Suppose x is a sent codeword
and y is a received vector with at most t errors. Let S = {g1, . . . , gm} be a PD-set for C. Compute the
syndromes H(ygi)

T for i = 1, . . . ,m until an i is found such that the weight of this vector is t or less.
Compute the codeword c that has the same information symbols as ygi and decode y as cg−1i .

3. Generalized hypercube graph Qn(S)

For a positive integer n, let S ⊆ [n] = {1, 2, . . . , n} and let ⊕ denote the addition in Fn2 = {0, 1}n.
The Hamming distance of vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Fn2 is d(u, v) = |{i ∈ S |
ui 6= vi}|.

Definition 3.1. The generalized hypercube graph Qn(S) = (V,E) is an undirected graph with the vertex
set V (Qn(S)) = Fn2 and the edge set E(Qn(S) = {uv | d(u, v) ∈ S}.

The cardinality of the vertex set is independent of the choice of S and is equal to 2n and is regular
with valency

∑
i∈S
(
n
i

)
.

We will use the following notation: for r ∈ Z and 0 ≤ r ≤ 2n − 1, if r =
∑n
i=1 ri2

i−1 is the binary
representation of r, let r = (r1, r2, . . . , rn) be the correspondng vector in Fn2 . Standard basis of the vector
space Vn will be denoted by e1, e2, . . . , en.

An automorphism σ of a graph Γ = (V,E) is a bijection σ : V 7→ V such that [u, v] ∈ E if and only
if [σ(u), σ(v)] ∈ E. The set of all automorphisms of Γ is a group and is denoted by Aut(Γ). A group G
acts transitively on a set V , if for every u, v ∈ V there is a σ ∈ G such that σ(u) = v. A graph Γ = (V,E)
is vertex transitive if Aut(Γ) acts transitively on V .
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Definition 3.2. For n ≥ 1, u = (u1, u2, . . . , un) ∈ Fn2 and σ ∈ Sn, where Sn is the symmetric group on
the set [n].

• A translation by u is the map τu : w 7→ w ⊕ u, for all w ∈ Fn2 .

• A rotation by σ is the map rσ : w 7→ wσ, where
wσ = (wσ(1), wσ(2), . . . , wσ(n)) for w = (w1, w2, . . . , wn).

Lemma 3.3. The group of translations Tn = {τu | u ∈ Fn2} and the group of rotations Rn are subgroups
of Aut(Qn(S)).

Proof. Clearly, τx · τy = τx⊕y, τ−1x = τx and τ0 = ı. Further dH(u ⊕ w, v ⊕ w) = dH(u, v). Therefore
the set Tn = {τu | u ∈ Fn2} is a subgroup of Aut(Qn(S). For rotations, we have rσ · rρ = rσ·ρ, r−1σ = rσ−1

and rid = ı. Hence, the set of all rotations Rn is a sugbroup of Aut(Qn(S)) and in fact Rn ∼= Sn.

Theorem 3.4. The generalized hypercube graph Qn(S) is vertex transitive.

Proof. Every Cayley graph Γ = Cay(G,S) is vertex transitive. We will show that the graph Qn(S) is
a Cayley graph. It is well known that the the hypercube graph Qn can be defined as the Cayley graph
Qn = Cay(Tn, {e1, e2, . . . , en}). Similarly we can extend this result to the generalized hypercube graph
Qn(S). Let E1 denote the set of weight 1 vectors {e1, e2, . . . , en} in Fn2 , E2 denote the weight 2 vectors
{
∑n
i,j ei + ej |i 6= j} and so on. Then it it easy to see that Qn(S) = Cay(Tn, {E1, E2, . . . , En}).

4. Self-orthogonal codes from Qn(S)

In this Section we determine the binary codes C1, C2 and C3 from the neighborhood designs of graph
products G1 = Qn(S)×Q1, G2 = Qn(S) ∧Q1 and G3 = Qn(S)[Q1] respectively.

Lemma 4.1. Let A be the adjacency matrix of the graph Qn(S), then

A2 =

{
0 mod 2 : if

∑
i∈S
(
n
i

)
is even.

I2n mod 2 : otherwise.

Proof. Let vi, vj be vertices of Qn(S) such that i 6= j and let N(vi) and N(vj) be the neighborhoods
of vi and vj respectively. Since the Qn(S) is regular |N(vi)| = |N(vj)| and further |N(vi) ∪ N(vj)| is
even. Therefore |N(vi)∩N(vj)| is even. But, |N(vi)∩N(vj)| is equal to the number of walks of length 2
between vertices vi and vj . Also, the (i, j)th entry of A2 counts the number of walks of length 2 between
the vertices vi and vj . Hence (i, j)th entry = 0mod 2 for i 6= j. Next, suppose if i = j then the (i, i)th

entry of A counts the number of walks of length 2 from a vertex vi to itself. Since |N(vi)| is equal to the
valency of Qn(S), (i, i)th entry of A is equal to 0 if valency is even and 1 if odd. Hence the result.

Remark 4.2. If C is the binary code from the neighborhood design of a graph G with the adjacency
matrix A then we will use C to denote the corresponding binary code from the matrix A = A + I. The
matrix A is the adjacency matrix of the reflexive graph G, which is obtained from G by adding a loop to
every vertex.

Theorem 4.3. Let C1, C2 and C3 be the binary codes from the neighborhood designs of the graph products
G1 = Qn(S) × Q1, G2 = Qn(S) ∧ Q1 and G3 = Qn(S)[Q1]. Then the codes C1, C2 and C3 are self-
orthogonal if the valency of Qn(S) is odd and C1, C2 and C3 are self-orthogonal if the valency of Qn(S)
is even.

Proof. Let A1, A2 and A3 denote the adjacency matrices of the graph products G1, G2 and G3 respec-
tively. Let A denote the adjacency matrix of Qn(S) and B denote the adjacency matrix of Q1. The
identity matrix of size r is denoted by Ir and N = 2n. We will use the fact that a binary code with the
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generator matrix G is self-orthogonal if GGT = 0.
Case I:

A1A
T
1 = (A⊗ I2 + IN ⊗B)(A⊗ I2 + IN ⊗B)T

= (A⊗ I2 + IN ⊗B)(AT ⊗ IT2 + ITN ⊗BT )

= (A⊗ I2 + IN ⊗B)(A⊗ I2 + IN ⊗B)

= (A⊗ I2)2 + (IN ⊗B)(A⊗ I2) + (A⊗ I2)(IN ⊗B) + (IN ⊗B)2

= (A2 ⊗ I22 ) + 2(A⊗B) + (I2N ⊗B2)

= A2 ⊗ I2 + IN ⊗ I2
= (A2 + IN )⊗ I2.

If the valency of Qn(S) is odd, then A2 = IN by Lemma 4.1, and hence A1A
T
1 = 0 mod 2. If valency is

even then A2 = 0. In this case A1 ·A1
T

= A2
1 + I2n+1 = (A2 + IN )⊗ I2 + I2n+1 = 0.

Case II:

A2A
T
2 = (A⊗B)(A⊗B)T = (A⊗B)(A⊗B) = A2 ⊗B2 = A2 ⊗ I2.

By Lemma 4.1, A2 = 0 if valency of Qn(S) is even and hence A2A
T
2 = 0 ⊗ I2 = 0. If the valency of

Qn(S) is odd, consider A2 ·A2
T

= A2
2 + I2n+1 = A2 ⊗ I2 + I2n+1 = IN ⊗ I2 + I2n+1 = 0.

Case III:

A3A
T

3 = (A⊗ J2 + IN ⊗B + I2n+1)(A⊗ J2 + IN ⊗B + I2n+1)T

= A2 ⊗ J2
2 +A⊗BJ2 +A⊗ J2 +A⊗ J2B + IN ⊗B2 + IN ⊗B

+A⊗ J2 + IN ⊗B + I2n+1

= IN ⊗ I2 + I2n+1 = 0.

Theorem 4.4. The binary code C1 from the neighborhood design of the graph product G1 = Qn(S)×Q1

is self-dual when the valency of Qn(S) is odd and the code C1 is self-dual when the valency is even.
Further the set of points 0,1,2, . . . ,2n − 1 form an information set for C1 and C1.

Proof. We will change the ordering of points in the adjacency A1 of the graph G1. Use the natural
ordering of points:

0,1,2, . . . ,2n − 1,2n, . . . ,2n+1 − 1

to index the columns of A1 and use the ordering

2n,2n + 1, . . . ,2n+1 − 1,0,1, . . . ,2n−1

to index the rows. Then the (i, i)th entry aii = 1 for 1 ≤ i ≤ 2n−1 and aii = 0 for 2n ≤ i ≤ 2n+1−1. By
row reduction it is easy to see that the incidence vectors v0, v1, . . . , v2n−1 are linear independent. Hence
dimension of C1 is 2n and C1 is self-dual.

Remark 4.5. Instead of using separate notations C1 and C1 to denote codes from the graphs Qn(S)×Q1

and Qn(S)×Q1 we will only use C1 to denote codes from Qn(S)×Q1 or Qn(S)×Q1 as it is understood
when the valency is even C1 refers to C1.
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Example 4.6. Let n = 3 and S = {1, 3}. Then the valency of Qn(S) is 4 with the adjacency matrix:

A =



0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0
0 1 0 0 0 1 1 1
0 1 0 0 0 1 1 1
0 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0
1 0 1 1 1 0 0 0


.

Then C1 = [16, 8, 4] self-dual, C2 = [16, 4, 4] self-orthogonal and C3 = [16, 8, 2] self-dual codes.

5. Permutation decoding

In this Section we will find particular information sets for permutation decoding and use these
sets to find partial permutation decoding sets for the codes C1. The vertex set of the graph product
G1 = Qn(S)×Q1 can be viewed as vectors of the space Fn+1

2 .

Theorem 5.1. For all n and S and for G1 = Qn(S)×Q1:

• The translation group T = {τu|u ∈ Fn+1
2 } is a subgroup of Aut(G1).

• The group of rotations Rn is a subgroup of Aut(G1).

• Transpositions of the form ti = (i, n+ 1), where 1 ≤ i < n are in Aut(G1).

Proof. Since the translation group T and the group of rotations Rn are subgroups of the graph Qn(S),
they are also subgroups of the graph cartesian product G1 = Qn(S)×Q1. Let u = (u1, u2, . . . , un+1), v =
(v1, v2, . . . , vn+1) ∈ V (G1) such that u ∼ v. That is, d(u, v) ∈ S. Now tiu = (u1, u2, . . . , un+1,
. . . , ui) and tiv = (v1, v2, . . . , vn+1, . . . , vi), but d(tiu, tiv) = d(u, v) ∈ S. Hence ti ∈ Aut(G1).

The following result shows that any information set for C1 from the graph Qn({1}) can be extended
to a code from the graphs Qn(S), where {1} ⊆ S.

Lemma 5.2. If I is an information set for C1 with S = {1}, then I is an information set for C1 for all
S such that {1} ⊆ S.

Proof. Since I is an information set for C1 when S = {1} and since the dimension of C1 is 2n the first
2n incidence vectors are linearly independent. If we take any super set S that contains {1} these first 2n

vectors will still be linearly independent and since the dimension of the code C1 is 2n is independent of
the choice of S, the set I will be an information set for C1 for all {1} ⊆ S.

Permutation decoding method depends on the information set and hence different information sets
will yield different PD-sets and results. The information set obtained in Theorem 4.4 is only useful for
finding one error-correcting PD sets for C1. We will re-order the vertices so that the resulting information
set can be used for correcting more than one error.

Lemma 5.3. An information set can be obtained for the binary code C1 from the graph G1 = Qn(S)×Q1

for all n and {1} ⊆ S by making the following interchange between the information and check sets from
the natural ordering of the vectors: Move 2n − 1 = (0, 1, 1, . . . , 1) into check positions and 2n+1 − 2 =
(1, 1, . . . , 1, 0) into information positions.

Define Pn = {ti|1 ≤ i ≤ n} ∪ {ı} and Tn = TPn.
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Proposition 5.4. With I = {0,1, . . . ,2n − 2} ∪ {2n+1 − 2} as information set for C1, Tn is a 3-PD
set of size (n+ 1)2n+1 for C1 for all n and {1} ⊆ S.

Proof. Let T = {a, b, c} be a set of three points in Vn+1. We need to show that there is an automor-
phism σ ∈ Tn that maps T into C, i.e. T σ ⊆ C. We consider all the possibilities for the points in T .
If T ⊆ C then all the errors are in check positions and hence we can use the identity map, ı as σ. Thus,
assume at least one of the points is in the information positions I, and by using a translation, suppose
one of the points, say c, is 0.
If T ⊆ I. First suppose both a, b ∈ I1, then σ = T (1, 0, 0, . . . , 0) will map T to C unless
a, b 6= (0, 1, 1, . . . , 1, 0). In this case σ = T (1, 1, 0, . . . , 0) will work. Next, suppose one of the points,
say b ∈ I2 and a ∈ I1. Then b = (1, 1, 1, . . . , 1, 0) and σ = T (1, 0, . . . , 0, 1) will map T into C.
The other cases for T involve one or more points in C.
Case(i): a ∈ I1 and b ∈ C1. Then a = (0, a2, . . . , an+1) and b = (1, b2, . . . , bn+1).
(1).Suppose a = bc and let σ = T (1, a2, . . . , an+1) then cσ = (1, a2, . . . , an+1),
aσ = (1, 0, . . . , 0) and yσ = (0, 1, . . . , 1). This σ will work unless a 6= (0, 1, . . . , 1, 0). In this case
b = ac = (1, 0, . . . , 0, 1) and σ = T (1, 1, . . . , 1, 0) will work.
(2). Suppose ai = bi for 2 ≤ i ≤ n + 1. Then a = (0, a2, . . . , an+1) and b = (1, a2, . . . , an+1). If
σ = T (ac), we have cσ = ac, aσ = (1, 1, . . . , 1), yσ = (0, 1, . . . , 1) ∈ C. (3). Suppose there exists an i such
that ai = bi = 0 and xj 6= yj for some j. The map σ = T (1, 1, . . . , 1)ti will work unless an+1 = bn+1 = 0
is the only common zero. In this case σ = T (0, . . . , 0, 1)ti will work.
Case(ii): a ∈ I2 and b ∈ C1. Then a = (1, 1, . . . , 1, 0) and b = (1, b2, . . . , bn+1). The map σ = T (0, 1, . . . , 1)
will work as cσ = (0, 1, . . . , 1) ∈ C2, aσ = (1, 0, . . . , 0, 1) ∈ C2 and bσ = (1, b2c, . . . , bn+1c) ∈ C1 unless
b = (1, 0, . . . , 0, 1), in which case the map σ = T (0, . . . , 0, 1)tn+1 will work.
Case(iii): a ∈ I2 and b ∈ C2. Then a = (1, . . . , 1, 0) and b = (1, . . . , 1) or b = (0, 1, . . . , 1). If b = (1, . . . , 1)
then σ = T (1, 0, . . . , 0)tn+1 will work and otherwise if b = (0, 1, . . . , 1), σ = T (1, 0, 1, . . . , 1)t2 will work.
Case(iv): a ∈ I1 and b ∈ C∈. Then a = (0, a2, . . . , an+1) and b = (1, 1, . . . , 1) or (0, 1, . . . , 1). If
a 6= (0, 1, . . . , 1, 0) then σ = T (1, 0, . . . , 0) will work. If a = (0, 1, . . . , 1, 0) and b = (1, 1, . . . , 1) then
σ = T (1, 0, 1, . . . , 1)t2 and if a = (0, 1, . . . , 1, 0), b = (0, 1, . . . , 1) then σ = T (1, 0, . . . , 0, 1tn+1 will work.
Case(v): Both a and b in C1. Then a = (1, a2, . . . , an+1) and b = (1, b2, . . . , bn+1). Then σ = T (0, 1, . . . , 1)
will work except when a or b equals (1, 0, . . . , 0, 1). In this case aT (1, . . . , 1) and bT (1, . . . , 1) contain at
least one common i such that ai = bi = 1. Then the map σ = T (1, . . . , 1)ti will work.
Case(vi): a ∈ C1 and b ∈ C2. Then a = (1, a2, . . . , an+1) and b = (1, . . . , 1) or (0, 1, . . . , 1). If b = (1, . . . , 1)
then σ = T (0, 1, . . . , 1) will work unless a = (1, 0, . . . , 0, 1). In that case then σ = T (1, 0, . . . , 0, 1)t2 will
work. If b = (0, 1 . . . , 1)
Case (vii): Both a, b ∈ C2. In this case the map σ = T (1, 0, . . . , 0) will work.
This completes all the cases.

Example 5.5. Let n = 4 and S = {1, 2}, then Qn(S) has valency 10 with the adjacency matrix:

A =



0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0
1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1
1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 0
0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1
1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0
0 1 0 1 1 0 0 0 1 1 1 1 1 1 0 1
1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1
1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1
1 1 0 0 1 1 1 0 0 1 1 0 1 0 1 1
1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1
0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1
0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1
1 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0
1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0
1 0 1 0 1 0 1 1 1 1 1 1 0 0 0 1
0 1 0 1 0 1 1 1 1 1 1 1 0 0 1 0


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and C1 = [32, 16, 8] is the binary extremal doubly even self-dual code. The total error correcting capability
of this code is t = 3. Then |T | = 32 and |Pn| = 5 and hence |TPn| = 160. By Proposition 5.4 the set
TPn is a full error-correcting PD-set for this code.

6. Conclusion

In this work we have considered the generalized hypercube graphs and their boolean products. We
obtained self-orthogonal codes from the neighborhood designs of these graphs and used subgroups of the
automorphism group of the graph to find partial permutation decoding sets for permutation decoding.

Acknowledgment: The author would like to thank the anonymous referees for their careful reading
of the paper and for their insightful comments and suggestions.
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