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Abstract. Our aim in this paper is to present a reduction method that solves
first order functional differential inclusion in the nonconvex case. This ap-

proach is based on a discretization of the time interval, a construction of

approximate solutions by reducing the problem to a problem without delay
and an application of known results in this case. We generalize earlier results,

the right hand side of the inclusion has nonconvex values and satisfies a linear

growth condition instead to be integrably bounded. The lack of convexity is
replaced by the topological properties of decomposable sets, that represents a

good alternative in the absence of convexity.

1. Introduction

Let τ, T ≥ 0, be two non-negative real numbers, CT := CRn([−τ, T ]) is the
Banach space of all continuous mappings from [−τ, 0] to Rn equipped with the
norm of uniform convergence and F : [0, T ] × C0 ⇁ Rn be a set-valued mapping
with nonempty closed values. In this work, we study the existence of solutions for
the following differential inclusion with delay

(DP)

{
ẋ(t) ∈ F (t, T (t)x) a.e. t ∈ [0, T ];
x(t) = ϕ(t) t ∈ [−τ, 0];

where ϕ ∈ C0 and T (t) : CT −→ C0 defined by T (t)x(s) = x(t + s), ∀s ∈
[−τ, 0 ]. In [11], Fryszkowski proved an existence result for (DP) when F is a
set-valued mapping with nonconvex values, measurable, integrably bounded and
lower semicontinuous in x. The proof of this theorem is based on the construction
of a continuous selection for a class of nonconvex set-valued mapping. The existence
of such selection is proved in [10]. In [12], Fryszkowski and Gorniewicz proved an
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existence result for differential inclusion of the form

(P)

{
ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [0, T ]
x(0) = x0,

where F is a set-valued mapping measurable in (t, x) and lower semicontinuous in
x with nonconvex values, satisfying a linear growth condition. The main tool used
in their proof is a continuous selection theorem for the set-valued mapping

KF (x) = {y ∈ L1
Rn([0, T ]) : y(t) ∈ F (t, x(t)) a.e. on [0, T ]},

which is well defined on CRn([0, T ]) and is lower semicontinuous with decomposable
values. Decomposable sets represent a good alternative in the absence of convexity.
Our aim in this work, is to prove a general existence result for (DP), where F
satisfies a linear growth condition instead to be integrably bounded, that is

‖y‖ ≤ ( 1 + ‖ϕ‖ ) ρ(t), for every y ∈ F (t, ϕ) and (t, ϕ) ∈ [0, T ]× C0.

We extend also the existence result for the Cauchy problem without delay in the
nonconvex case. Some applications have been obtained by considering such delayed
set-valued mapping as perturbations (external forces applied) on systems governed
by subdifferential operators, particularly in the case of the so-called Sweeping pro-
cess, see for instance [7], [8]. We refer to [1]-[3] for recent results, [4], [5] and [13] for
other approaches. The paper is organized as follows. In Section 2, we recall con-
cepts and preliminaries needed in the paper. In Section 3, we provide the existence
result for problem (DP).

2. Preliminaries

Throughout the paper, we will use the following notations and definitions. Let
Rn be the n dimensional Euclidean space and ‖ · ‖ its norm. CT := CRn( [−τ, T ]) is
the Banach space of all continuous mappings from [−τ, T ] to Rn endowed with the
sup-norm, L1

Rn([0, T ]) is the Banach space of all measurable mappings from [0, T ] to
Rn. Let B(C0) be the σ-algebra of Borel sets of C0 and L the σ-algebra of Lebesgue
measurable subsets of [0, T ], d(x,A) mean the usual distance from a point x to a
set A, i.e., d(x,A) := infy∈A ‖x− y‖. A set-valued mapping F : [0, T ]×C0 ⇁ Rn is
integrably bounded if there exists an integrable function ρ : [0, T ]→ R+ such that

‖F (t, ϕ)‖ := sup{ ‖y‖; y ∈ F (t, ϕ) } ≤ ρ(t), t ∈ [0, T ], ϕ ∈ C0.

Definition 2.1. ([6]) Let X and Y be two topological spaces, F : X ⇁ Y a set-
valued mapping with closes valued, is called lower semicontinuous (lsc for short)
at a point x0 ∈ X if for any y0 ∈ F (x0) and any neighborhood U of y0 such
that F (x0) ∩ U 6= ∅, there exists a neighborhood V (x0) of the point x0 such that
F (x0) ∩ U 6= ∅ for all x ∈ V (x0). A set-valued mapping F is said to be lower
semicontinuous if it is so at every point x0 ∈ X.

If X and Y are metric spaces, it’s equivalent to say: for each x0 ∈ [0, T ] and
y0 ∈ F (x0) and any sequence xn −→ x0 there is yn ∈ F (xn) such that yn −→ y0.

Lemma 2.1. (Gronwall inequality) Let u, v : [t0, t1] −→ R+ two continuous func-
tions such that, for any C ≥ 0, we have

u(t) ≤ C +

∫ t

t0

u(s)v(s)ds, ∀t ∈ [t0, t1].
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Then

u(t) ≤ C exp(

∫ t

t0

v(s)ds), ∀t ∈ [t0, t1].

3. Existence of solutions

In this section, we begin by the following result for the undelayed problem due
to Fryszkowski and Gorniewicz (see [12]).

Theorem 3.1. Let G : [0, T ] × Rn ⇁ Rn be a set-valued mapping with nonempty
closed values satisfying

(i) G is L ⊗ B(Rn) measurable;
(ii) for every t ∈ [0, T ], G(t, ·) is lsc in Rn;
(iii) there exists an integrable function ρ : [0, T ] −→ R+ such that

‖y‖ ≤ ( 1 + |x| ) ρ(t), for every y ∈ G(t, x) and (t, x) ∈ [0, T ]× Rn.

Then, ∀ x0 ∈ Rn, the problem{
ẋ(t) ∈ G(t, x(t)) a.e. on [0, T ];
x(0) = x0;

(3.1)

admits at least one solution x : [0, T ]→ Rn absolutely continuous on [0, T ].

The proof of this theorem is based on a selection theorem for decomposable sets
stated in [11].

Now, we are able to give the existence result for the delayed problem.

Theorem 3.2. Let F : [0, T ] × C0 ⇁ Rn be a set-valued mapping with nonempty
closed values such that

(i) F is L ⊗ B(C0) measurable;
(ii) for every t ∈ [0, T ], F (t, ·) is lsc in C0;

(iii) for every (t, ϕ) ∈ [0, T ]× C0

‖F (t, ϕ)‖ ≤ (1 + ‖ϕ(0)‖)ρ(t).

Then, ∀ ϕ ∈ C0, the problem (DP) admits at least one continuous solution x :
[−τ, T ]→ Rn, absolutely continuous on [0, T ].

Proof. We will reduce our problem to a problem without delay and apply Theorem
3.1. For simplcity, we take T = 1 and consider for every n ∈ N a partition of [0, T ]
defined by tni = iµnT , µn = 2−n, i = 0, 1, ......, 2n.

Step 1 Construction of approximate solutions.
For every (t, x) ∈ [−τ, tn1 ]× Rn, we define fn0 : [−τ, tn1 ]× Rn by

fn0 (t, x) =

{
ϕ(t) if t ∈ [−τ, 0];
ϕ(0) + t

µn
(x− ϕ(0)) if t ∈]0, tn1 ];

clearly fn0 (tn1 , x) = x, ∀x ∈ Rn.
We define the set-valued mapping Gn0 on [0, tn1 ]× Rn with closed values in Rn by

Gn0 (t, x) := F (t, T (tn1 )fn0 (·, x)) ∀(t, x) ∈ [0, tn1 ]× Rn.
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Let show that Gn0 satisfies the conditions of Theorem 3.1. Remark first, that the
function x 7−→ T (tn1 )fn0 (·, x) is Lipschitz. Indeed, for every x, y ∈ Rn we have

‖T (tn1 )fn0 (·, x)− T (tn1 )fn0 (·, y)‖C0 = sup
s∈[−τ,0]

‖fn0 (tn1 + s, x)− fn0 (tn1 + s, y)‖

= sup
s∈[−µn,0]

‖fn0 (tn1 + s, x)− fn0 (tn1 + s, y)‖

= sup
s∈[−µn,0]

‖ t
n
1 +s
µn

(x− y)‖

= ‖x− y‖.

The measurability and lower semicontinuity of G follows from that of F. Further-
more, by the condition iii) of Theorem 3.2, we have, for every t ∈ [0, tn1 ] and
x ∈ Rn,

‖Gn0 (t, x)‖ = ‖F (t, T (tn1 )fn0 (·, x))‖ ≤ (1 + ‖T (tn1 )fn0 (0, x)‖) ρ(t)
= (1 + ‖fn0 (tn1 , x)‖) ρ(t)
= (1 + ‖x‖) ρ(t).

Hence Gn0 verifies the conditions of Theorem 3.1, this provides an absolutely con-
tinuous solution vn0 : [0, tn1 ] −→ Rn to the problem

v̇n0 (t) ∈ Gn0 (t, vn1 (t)) a.e. on [0, tn1 ];

vn0 (t) = ϕ(0) +
∫ t
0
v̇n0 (s)ds ∀t ∈]0, tn1 ];

vn0 (0) = ϕ(0).

That is, vn0 is a solution to{
v̇n0 (t) ∈ F (t, T (tn1 )fn0 (·, x)) a. e. on [0, tn1 ];
vn0 (0) = ϕ(0).

Put

xn(t) =

{
ϕ(t) if t ∈ [−τ, 0];
vn0 (t) if t ∈]0, tn1 ].

As before, for every (t, x) ∈ [−τ, tn1 ]× Rn, we define fn1 : [−τ, tn2 ]× Rn −→ Rn by

fn1 (t, x) =

{
xn(t) if t ∈ [−τ, tn1 ];

xn(tn1 ) +
t−tn1
µn

(x− xn(tn1 )) if t ∈]tn1 , t
n
2 ].

with fn1 (tn2 , x) = x, ∀x ∈ Rn. Hence, we can define similarly the set-valued map-
ping Gn1 on [tn1 , t

n
2 ]× Rn with closed values of Rn by

Gn1 (t, x) := F (t, T (tn1 )fn1 (·, x)) ∀(t, x) ∈ [tn1 , t
n
2 ]× Rn

satisfying for every t ∈ [tn1 , t
n
2 ] and x ∈ Rn,

‖Gn1 (t, x)‖ = ‖F (t, T (tn2 )fn1 (·, x))‖ ≤ (1 + ‖T (tn2 )fn1 (0, x)‖) ρ(t)
= ( 1 + ‖fn1 (tn2 , x)‖) ρ(t)
= ( 1 + ‖x‖) ρ(t).
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The function x 7−→ T (tn2 )fn1 (·, x) is Lipschitz since for all x, y ∈ Rn we have

‖T (tn2 )fn1 (·, x)− T (tn2 )fn1 (·, y)‖ = sup
s∈[−τ,0]

‖fn1 (tn2 + s, x)− fn1 (tn2 + s, y)‖

= sup
s∈[−µn,0]

‖fn1 (tn2 + s, x)− fn1 (tn2 + s, y)‖

= sup
s∈[−µn,0]

‖xn(tn1 ) +
tn2 +s−t

n
1

µn
(x− xn(tn1 ))

− (xn(tn1 ) +
tn2 +s−t

n
1

µn
(y − xn(tn1 )))‖

= sup
s∈[−µn,0]

‖ t
n
2 +s−t

n
1

2−n (x− y)‖

= ‖ t
n
2−t

n
1

µn
(x− y)‖

= ‖x− y‖.
Hence Gn1 verifies the conditions of Theorem 3.1, this provides an absolutely con-
tinuous solution vn1 : [tn1 , t

n
2 ] −→ Rn to the problem

v̇n1 (t) ∈ Gn1 (t, vn1 (t)) a. e. on [tn1 , t
n
2 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
v̇n1 (s)ds ∀ t ∈]tn1 , t

n
2 ];

vn1 (tn1 ) = xn(tn1 ).

So vn1 is a solution of
v̇n1 (t) ∈ F (t, T (tn2 )fn1 (·, x)) a.e. on [tn1 , t

n
2 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
v̇n1 (s)ds ∀ t ∈]tn1 , t

n
2 ];

vn1 (0) = ϕ(0).

By induction, suppose that xn is defined on [−τ, tnk ], absolutely continuous on [0, tnk ],
and satisfies{

ẋn(t) ∈ F (t, T (tnk−1)fnk−1(·, x)) a.e. on [tnk−1, t
n
k ];

xn(t) = xn(tnk−1) +
∫ t
tnk−1

ẋn(s)ds ∀ t ∈]tnk−1, t
n
k ];

and build a solution on [tnk , t
n
k+1]. For every (t, x) ∈ [−τ, tn1 ] × Rn, we defined

fnk : [−τ, tnk+1]× Rn −→ Rn by

fnk (t, x) =

{
xn(t) if t ∈ [−τ, tnk ];

xn(tnk ) +
t−tnk
µn

(x− xn(tnk )) if t ∈]tnk , t
n
k+1];

with fnk (tnk+1, x) = x and fnk ∈ CRn([−τ, tnk+1]). The function x 7−→ T (tnk+1)fnk (·, x)
is Lipschitz. Indeed, for all x, y ∈ Rn we have

‖T (tnk+1)fnk (·, x)− T (tnk+1)fnk (·, y)‖ =

sup
s∈[−τ,0]

‖fnk (tnk+1 + s, x)− fnk (tnk+1 + s, y)‖

= sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖.

We distinguish two cases

(1) if −τ + tnk+1 ≤ tnk , we have

sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖ = sup
t∈[tnk ,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖

= sup
t∈[tnk ,t

n
k+1]

‖ t−t
n
k

µn
(x− y)‖

= ‖x− y‖.
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(2) if tnk ≤ −τ + tnk+1 ≤ tnk+1, we have

sup
t∈[−τ+tnk+1,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖ ≤ sup
t∈[tnk ,t

n
k+1]

‖fnk (t, x)− fnk (t, y)‖

= sup
t∈[tnk ,t

n
k+1]

‖ t−t
n
k

µn
(x− y)‖

= ‖x− y‖.

Similarly we can define Gnk on [tnk , t
n
k+1]× Rn with closed values of Rn by

Gnk (t, x) := F (t, T (tnk+1)fnk (·, x)) ∀(t, x) ∈ [tnk , t
n
k+1]× Rn

satisfying conditions of Theorem 3.1. Hence, there exists an absolutely continuous
solution vnk : [tk, tk+1] −→ Rn to

v̇nk (t) ∈ Gnk (t, vnk (t)) a.e. on [tnk , t
n
k+1];

vnk (t) = xn(tnk ) +
∫ t
tnk
v̇nk (s)ds ∀ t ∈ [tnk , t

n
k+1];

vnk (tnk ) = xn(tnk ).

So vnk is a solution of
v̇nk (t) ∈ F (t, T (tnk+1)fnk (·, x)) a.e. on [tnk , t

n
k+1];

vnk (t) = xn(tnk ) +
∫ t
tnk
v̇nk (s)ds ∀ t ∈ [tnk , t

n
k+1];

vnk (tnk ) = xn(tnk ).

Putting xn(t) = vnk (t) on [tnk , t
n
k+1], we obtain

xn(t) =



vn0 (t) = ϕ(0) +
∫ t
0
ẋn(s)ds if t ∈ [0, tn1 ];

vn1 (t) = xn(tn1 ) +
∫ t
tn1
ẋn(s)ds if t ∈ [tn1 , t

n
2 ];

· · ·

vnk (t) = xn(tnk ) +
∫ t
tnk
ẋn(s)ds if t ∈ [tnk , t

n
k+1].

For every t ∈ [0, 1], we set θn(t) = tni , δn(t) = tni+1, ∀ t ∈]tni , t
n
i+1] and θn(0) = 0

and define fnµnδn(t)−1 ∈ CRn([−τ,δn(t)]) by

fnµnδn(t)−1(t, x) =

{
xn(t) if t ∈ [−τ, θn(t)];

xn(θn(t)) + t−θn(t)
µn

(x− xn(θn(t))) if t ∈]θn(t), δn(t)].

Clearly xn is continuous on [−τ, 1], absolutely continuous on [0, 1] and satisfies
ẋn(t) ∈ F (t, T (δn(t))fnµnδn(t)−1(·, xn(t))) a. e. on [0, 1];

xn(t) = ϕ(0) +
∫ t
0
ẋn(s)ds ∀ t ∈ [0, 1];

xn(t) = ϕ(t) ∀ t ∈ [−τ, 0].

(3.2)

Step 2 Uniform convergence.
By the condition iii) of Theorem 3.1 and (3.2), for almost t ∈ [0, 1], one has

ẋn(t) ∈ F (t, T (δn(t))fnµnδn(t)−1(·, xn(t))),

with T (δn(t))fnµnδn(t)−1(·, xn(t))(0) = xn(t) and

‖F (t, T (δn(t))fnµnδn(t)−1(·, xn(t)))‖ ≤ ( 1 + ‖xn(t)‖ ) ρ(t).
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Further, since xn is absolutely continuous on [0, 1], we have

‖xn(t)− ϕ(0)‖ ≤
∫ t
0
‖ẋn(s)‖ ds

≤
∫ t
0
( 1 + ‖xn(s)‖ ) ρ(s)ds

≤
∫ t
0
( 1 + ‖xn(s)‖ρ(s) ) ds

=
∫ t
0
ρ(s)ds+

∫ t
0
ρ(s)‖xn(s)‖ ds, ∀t ∈ [0, 1].

Then, ‖xn(t)‖ ≤ ‖ϕ(0)‖+
∫ t
0
ρ(s)ds+

∫ t
0
ρ(s)‖xn(s)‖ ds, ∀t ∈ [0, 1]. Using Lemma

2.1, we obtain for all t ∈ [0, 1],

‖xn(t)‖ ≤ (‖ϕ(0)‖+

∫ t

0

ρ(s)ds) exp(

∫ t

0

ρ(s)ds).

Let α(t) = (‖ϕ(0)‖+
∫ t
0
ρ(s)ds) exp(

∫ t
0
ρ(s)ds). Hence for almost every t ∈ [0, 1],

‖ẋn(t)‖ ≤ ( 1 + α(t)) ρ(t). (3.3)

By (3.3), (ẋn(t))n is relatively compact in L1
Rn([0, 1]). By extracting a subsequence,

we may assume that (ẋn)n converges σ(L1, L∞) to some y ∈ L1
Rn([0, 1]). On the

other hand, by (3.3) again, (xn)n is equi-continuous, Ascoli’s Theorem yields that
(xn)n converges uniformly in [0, 1] to x and

x(t) = ϕ(0) +

∫ t

0

y(s)ds, ∀t ∈ [0, 1],

hence ẋ(t) = y(t) almost everywhere. Now, let show that

‖T (δn(t))fnµnδn(t)−1(·, xn(t))− T (t)x‖ −→ 0, when n −→∞.

sup
s∈[−τ,0]

‖T (δn(t))fnµnδn(t)−1(s, xn(t))− T (t)x(s)‖C0 =

sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(s+ t)‖

= sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s) + x(δn(t) + s)− x(s+ t)‖

≤ sup
s∈[−τ,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖+

sup
s∈[−τ,0]

‖x(δn(t) + s)− x(s+ t)‖.

firstly,
sup

s∈[−τ,0]
‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

≤ sup
s∈[−τ,−µn]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

+ sup
s∈[−µn,0]

‖fnµnδn(t)−1(δn(t) + s, xn(t))− x(δn(t) + s)‖

= sup
s∈[−τ,−µn]

‖xn(δn(t) + s)− x(δn(t) + s)‖+

sup
s∈[−µn,0]

‖xn(θn(t)) +
δn(t) + s− θn(t)

µn
(xn(t)− xn(θn(t))− x(δn(t) + s))‖

= sup
s∈[−τ,−µn]

‖xn(δn(t) + s)− x(δn(t) + s)‖

+ sup
s∈[−µn,0]

‖ s
µn

(xn(t)− xn(θn(t))) + xn(t)− x(δn(t) + s)‖

= ‖xn(θn(t))− x(θn(t))‖+ ‖xn(t)− xn(δn(t))‖.
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On the other hand

sup
s∈[−τ,0]

‖x(δn(t) + s)− x(s+ t)‖ ≤ sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖

+ sup
s∈[−µn,0]

‖x(δn(t) + s)− x(s+ t)‖

= sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖

+‖x(δn(t))− x(t)‖.
Then

sup
s∈[−τ,0]

‖T (δn(t))fnµnδn(t)−1(s, xn(t))− T (t)x(s)‖C0 ≤

‖xn(θn(t))− x(θn(t))‖+ ‖xn(t)− xn(δn(t))‖+
sup

s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖+ ‖x(δn(t))− x(t)‖.

As |θn(t)− t| ≤ µn and |δn(t)− t| ≤ µn, ∀t ∈ [0, 1] then θn(t) −→ t and δn(t) −→ t
for n large enough. Furthermore, (xn)n converges uniformly to x, ‖x(δn(t)) −
x(t)‖ −→ 0, ‖ xn(δn(t)) − xn(t)‖ −→ 0 and ‖xn(θn(t)) − x(θn(t))‖ −→ 0. As x is
uniformly continuous, there is λ > 0 such that |s− t| ≤ λ implies ‖x(s)−x(t)‖ ≤ ε.
But we have |δn(t) + s− (s+ t)| ≤ µn for all s ∈ [−τ, µn]. Hence

sup
s∈[−τ,−µn]

‖x(δn(t) + s)− x(s+ t)‖ ≤ ε for λ ≤ µn.

We can conclude that T (δn(t))fnµnδn(t)−1(·, xn(t)) −→ T (t)x in C0.
Finally, since T (δn(t))fnµnδn(t)−1(·, xn(t)) −→ T (t)x in C0, (ẋn)n converges σ(L1, L∞)

to ẋ ∈ L1
Rn([0, 1]) and the set-valued mapping F (t, ·) is lsc with closed values on

C0, then ẋ(t) ∈ F (t, T (t)x) (see [9]). So, x satisfies
ẋ(t) ∈ F (t, T (t)x) a.e. on [0, T ];

x(t) = ϕ(0) +
∫ t
0
ẋ(s)ds ∀ t ∈ [0, T ];

x(t) = ϕ(t) ∀ t ∈ [−τ, 0].

The proof is then complete. �

4. Conclusion

In this paper, an existence result is obtained for first order functional differential
inclusions with nonconvex right hand side. The approach used is an adaptation
of a reduction method which consists of replacing the problem with delay with a
problem without delay and applying the known results in this case.
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