KIRILMA SİSMİĞİNDE VERİ-İŞLEME

Data Processing in Refraction Seismic

Oğuz SELVİ*

ÖZET

ABSTRACT
We introduce an adaptation of the generalized reciprocal method (GRM) using seismic data processing tools. According to the velocity analysis function, a velocity analysis section is produced crosscorrelation of all seismic trace pairs from forward and reverse profiles. Refractor velocity is estimated by the velocity analysis section. We then obtained the generalized time-depth section by making use of the convolution of seismic trace pairs from forward and reverse profiles. Unlike the conventional GRM, the technique described here uses refracted arrivals of seismic traces directly.

GİRİŞ
Bu çalışmada sismik veri-işlem tekniklerinin uygulamasıyla genelleştirilmiş resiprokal yöntemin bir uygulaması yapılmıştır. Bir hız modeli için, yapay sismik kırılma kesitinden hız analiz kesit ve zaman derinlik kesit oluşturulmuş ve değerlendirilmesi izleyen bölümde verilmiştir.

GENELLEŞTİRİLMİŞ RESİPROKAL YÖNTEM

$$t_v = \frac{1}{2} \left[t_{AY} - t_{BX} + t_{AB} \right]$$

Bu fonksiyon, resiprokal zaman (reciprocal time), t_{AB}, ile düz ve ters Ataşlara ait X ve Y alıcılarındaki her bir varş zaman çiğnili t_{AB} ve t_{e} için hesapılan. Sonuçta optimürlü XY analizi için hesaplanan hız analiz fonksiyonun uzaklığı sağlaçığı için çizilmesiyle olde edilendirilmiş olunun eğimi, kırıcı katmanın görüntü hızının tersini verir, Yani,

* TÜBİTAK Marmara Araştırma Merkezi, Temel Bilimler Enstitüsü, Yer Bilimleri Bölümü P K, 21, 41470 Gebze
Selvi

\[\frac{d}{dx} t_v = \frac{1}{V_n^2} \]

(2)

\[t_G = \frac{1}{2} \left[t_{AB} + t_{BX} - \left(t_{AB} + \frac{XY}{V_1} \right) \right] \]

(2)

KIRICI KATMANIN HIZ ANALIZ KESİTİ

Şekil 1: GRM'deki ışın yolları geometrisi.

Figure 1: Schematic of raypaths used in the GRM.

Görünür hız, \(V_n^1 \) uygulamada genellikle kırıcı katmanın gerçek hızı \(V_m \) olarak değerlendirilir. Görünür hız, \(V_n^1 \) nın de kullanılmastıyla GRM' in genelleştirilmiş zaman-derinlik fonksiyonu, ya da kısaca zaman-derinlik fonksiyonu, \(t_G \) yine Şekil 1'deki singelere uygun olarak

\[t_G = \frac{1}{2} \left[t_{AB} + t_{BX} - \left(t_{AB} + \frac{XY}{V_1} \right) \right] \]

biçiminde verilir. GRM'in sunduğu en iyi XY uzaklığına bağlı olarak bulunan kırıcı katman hız analiz fonksiyonu ve genelleştirilmiş zaman-derinliğinin sismik kesitler türünden gösterimi, izleyen bölümlerde verilmiştir.

Figure 2: a) Seismic velocity model with a plane horizontal ground surface and a highly irregular refractor. The vertical and horizontal scales are equal. b) Traveltime curves derived from the velocity model. (Adapted from Palmer, 1980).

Şekil 2b'deki ilk kırılma zamanlarına konulan dalgaçıklarla modellenen yapay sismik kırılma kesiti Şekil 3 ile verilmiştir. Bu kesitlerden kırıcı katman hızını bulunmaktadır amaçla elde edilmek istenen hız analiz kesiti, düz profilin ters profile olan çaprazlıkışından (crosscorrelation) elde edilir.

ŞEKIL 3: Yapay sismik kırılma kesiti. Dalgaçıkların konum. Şekil 2b'deki ilk varış zamanlarına denk. A ve B arasında düz ve ters profilin atış noktalarıdır.

Figure 3: Synthetic seismic refraction section. Wavelets positions are equal to the first break times in Fig 2b. A and B are shot points corresponding to the forward and reverse profiles respectively.

Şekil 4 bu işlemin birinci adımını gösterir. Bu örnekte ters profil \(-t_{AB}\) kadar kayma (lag) verilmiştir. Bu durumda karşı karşıya gelen sismik izler aynı alıcı noktasiında kaydedilmiş düz ve ters profilde ait (Şekil 4). Yani XY aralığı sıfırdır; çünkü, ters profilde X
Çaprazlıklık işlemi, ters profilin yatay yönde kaydırmaması ile değişik XY aralarını için yeniden tekrarlanabilir. Şekil 4'de karşılaştırı gelen iplerdeki çizgileri varsayıları gösteren dalgaçıklar arasındaki toplan zaman, t_{db}, başlangıç (1) ile verilen hız analiz fonksiyonunu sağlar. \((-t_{db}+t_{db})\) aralığındaki, kamaların çaprazlıkı çıkısını, kırıcı katmanın hız analiz kesitini oluşturur.

Şekil 4: Hz analiz kesitini oluşturmada, çaprazlıkı işleminde ilk adımı. Ters profil $-t_{db}$ kadar kaydırılır.

Figure 4: First step of cross-correlation to produce the velocity analysis section. The reverse profile is shifted by $-t_{db}$.

Çocukدير XY eğri için elde edilen hız analiz kesitlerinin zaman ekseninde kaydırılacak üst öste çizimi Şekil 5’e gösterilmiştir. En iyi XY aralığı için elde edilen hız analiz kesit ortadan olup, diğer isimine göre dalgaçıklar doğrusal bir dizilim göstermektedir.

Simdi sıra kırıcı katmanın hızını kestirmektedir. Bunun için sismik yansıması hız spektrasi elde edилиndede olduğu gibi, uygunluk ölçübü (covariance measure) için semblans (semblance) veya kovaryans ölçübü (covariance measure) kullanabilir (Neidell ve Taner, 1971; Gülünay, 1991, 1992). Burada kovaryans ölçübü kullanılarak yapılan uygunluk ölçübü ile elde edilen hız spektrasi Şekil 6’da verilmiştir. Bu işlemden sonra, hız analiz kesiti üzerinde her bir kesme zamanında (intercept time) her bir hiza karşılık gelen doğrular boyunca kovaryans ölçübüne bakmaktadır. Şekil 5’de bu işlem 3000 m/s’den başlayıp, 100 m/s lik artırmalarla 6000 m/s hızına kadar ve bu hızlara karşılık gelen doğrular boyunca yapılmış ve sonuçlar Şekil 6’da verilmiştir. Şekil 6 dan elde edilen 4000 m/s ve 5000 m/s lik kırıcı katman hızları, hız analiz kesitinin eğimleri farklı iki doğrudan oluşturulmuş göstermektedir. Şekil 2’a’daki hız modelinde verildiği gibi kırıcı katmandan bulunan düşey fayın iki yakasındaki hızlar kestirimliştir. Hız spektrotrada hizlar ve onlar karşılık gelen kesme zamanlarını kullanarak her iki hız tersiyile tanımlanan doğruların kestiği ortak nokta hesaplandığında fayın yeri de kestirimliyor olur. Şekil 6’daki değerler, fayun, modelin orta noktası olduğu göstermiştir. Hız spektrotrada en büyük kovaryans ölçübü veren hız analiz kesitine ait olan XY aralığı en iyi XY aralığı olarak alınır. En iyi XY aralığını arapmak: 1) Aynı zamanda kırıcı katman hızını daha doğru kestirebilecek, 2) izleyen bölümde verildiği gibi, arayüzeye ait zaman derinlik kesitinin daha doğru bulunması demektir.

Şekil 5: Uç farklı XY aralığı için üst üstü çizilmiş hız analiz kesitleri.

Figure 5: The velocity analysis sections superposed with respect to three different XY distances.

GENELLEŞTİRİLİMİŞ ZAMAN-DERINLIK KESİTİ

Şekil 3’de görülen düz ve ters profilerden ters profile ait sismik kırmızı kesiti, zaman ekseninde ters çevrilip resiprokal zamanı, t_{db}, kadar kaydırılırsa Şekil 7’deki görünüm oluşur. Bu durumda Şekil 7, düz ve ters yönlü profilerdeki karşılıklı gelen sismik izlerin evrişiminde (convolution), t_{db} zaman adımındaki her iki profile ait sismik kesitlerin konumunu gösterir. Şekil 7’de kırmızı varlıkların gösteren dalgaçıklar arasındaki zaman, $2t_{db}$, GRM’in zamanderinlik bağlantısını sağlar (başlangıç (2)). Bundan sonraki zaman adımları için, evrişimin işlemine devam edilirse elde edilen çizgi, zaman-derinlik kesitini verir.
HIZ (km/s)

Şekil 6: Şekil 5’deki hız analizi kestirildenden edilen hız spektromunu.
Figure 6: Velocity spectra obtained from the velocity analysis section of Fig. 5.

Şekil 7: Zaman-derinlik kestirimi oluşturmada, evrişimindeki ilk konum.
Ters profil -1/3 kadar kaydırılmış ve ters çevrilmştir.
Figure 7: The first step of convolution to produce the time-depth section. The reverse profile is reversed and then shifted by -1/3.

Şekil 7’deki gösterimde XY aralığı sıfırdır. Üç değişik XY aralıkları için, edilen zaman-derinlik kesitlerinin, düşey eksende kaydırılanlar üst üst toplanmış biçimini Şekil 8’de verilmiştir. En iyi XY aralığı için elde edilen Şekil 8’dede ortada gösterilen zaman-derinlik kesiti aranan sonuç olup. Şekil 2’a’daki kırıcı arayüzeyi ayrıntılarıyla tensil etmektedir.

Şekil 8: Üç farklı XY aralığı için üst üst çizilmiş zaman-derinlik kesitleri.
Figure 8: The time-depth section superposed with respect to three different XY distances.

SONUÇLAR
Grafik yöntemlerle değerlendirilmesi yapılan GRM’in veri-işlem tekniklerinin yanında değişik bir uygulanması gösterilmiştir. GRM’deki hız analizi fonksiyonu yine hız analizi kesiti oluşturulmuş ve onun üzerine uygulanan kovaryans ölçüsü ile hız spektrasi elde edilmiştir. Hz spesirasından kırıcı katmanının hızı kesirlebilirliği gibi, yanal hız değişimleri de kesirlebilmiştir. Uygulama modelindeki kırıcı katmanda bulunan fayın yeri de doğru olarak bulunmuştur. En büyük kovaryans ölçüsünün veren XY aralığı için edilen zaman derinlik kesiti, modeldeki kırıcı katmanı ait arayüzeyi ayrıntılarıyla tanımlanmıştır. Bu yaklaşım sizimizin için kendisini kullandığı için, yansıma sismik indeksini oluşturan bir gizi yığın (stack) ve göc işlemlerine de olanak verebilecektir.

KAYNAKLAR

Selvi, O. 1990. Imaging of more than one reflector by reverse-time migration. 52th European Association of Exploration Geophysicists Meeting, Copenhagen, Abstracts, pp. 68-69.
