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APPLlCATION OF KALMAN FILTER TO SYNTHETIC

SEISMIC TRACES

Kalman Sizgecinin Sismik Verilere Uygulanmasi

Ali SAYMAN*

ABSTRACT

In this paper, the application of the Kalman filter for
the seismic deconvolution problem is discussed. The beha-
viors of these feedback filters with different dimensions
are examined by applying them to different kind of
synthetic seismic traces. The outputs of discrete Kalman
filter for deconvolution are noisy as expected. For this rea-
son, optimal fixed interval smoothing filters are applied to
the outputs of these filters to attenuate high frequency
energy. From the outputs of the filters, it has been obser-
ved that the Kalman and the fixed-interval smoothing fil-
ters are successful in random noise suppression.

OZET

Bu yazida geri beslemeli bir siizge¢ tiirii olan Kal-

man siizgecinin sismik tersevrisim iglemlerine uygulanma-
st yapilarak, cesitli boyutlardaki slizgeglerin farkli nitelik-
teki sismik izler karsisindaki davramig tartigiimigtir.
Beklenildigi gibi, tersevrisim igin ayrik Kalman siizgeci-
nin ¢iktilan giiriittilidir. Bu siizgeglerin ¢iktilarina yiik-
sek sikliktaki enerjiyi sontimlemek icin, en iyi belirli ara-
lik yuvarlatma stizgeci uygulanmistir. Kalman ve belirli
aralik yuvarlatma siizgeclerinin ¢iktilari, bu siizgeglerin
giiriiltli bastirmada basarih olduklarint gostermistir.

INTRODUCTION

One of the major problems of exploration seismology is
the devonvolution of seismic traces. Most of the algorithms
use the Wiener filtering. In the present paper, we have at-
tempted to use the Kalman filtering. The first attempt to use
the Kalman filtering for seismic deconvolution has been made
by Bayless and Brigham (1970). Ott and Meder (1972) have
used the Kalman filtering and the associated state-space repre-
sentation to design a prediction error filter. Crump (1974) has
used the discrete Kalman filter for deconvolution of seismic
traces. Mendel (1976, 1977) has used the Kalman filtering to
obtain the optimal smoothing estimation for the reflection co-
efficient series. Mendel and Kormylo (1977, 1978) and Kor-
mylo and Mendel (1980) have developed a Kalman filtering
approach to obtain optimal estimation of the reflection coeffi-
cient sequence. Their approach is applicable to the time vary-
ing or time invariant processes along with stationary or non-
stationary noise processes. Mendel et al. (1981) have
demonstrated some examples of the use of the state-space rep-
resentation models in seismic applications. Aminzadeh and
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Mendel (1983) have studied the state-space representation of

normal incidence waves propagating in a multilayered dissipa-
tive medium.

In this paper, the discrete Kalman filters with different
dimensuons are applied to synthetic seismic traces for decon-
volution purpose. The optimum fixed-interval smoothing filter
with two different dimensions are also used to climinate the
high frequency energy. The RMS values of the filter outputs
are compared with those of the input signal

DISCRETE KALMAN FILTER

State and measurement equations for a single channel
data are given (Medich (1969) and Mendel (1979)) as
x(k+1) =@ x(k) + pouk) 8y
z(k)=h"x(k) + v(k) @)

In the state equation : X is the nx! state vector; ® is the

nxn state transition matris; g (k) is the input distribution vec-
tor (disturbance transition vector); W (k) is the scalar input
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noise value. In the measurement equation: z(k) is the scalar
measurement (observation) value; v(k) is the scalar measure-
ment (observation) noise value; h(k) is nx1 the measurement
vector and h"¢k) denotes transpose of h(k); and k=0, 1,2, 3, ...
is the discrete time index.

In this paper, I have made some assumptions about two
noise sequences (k) and v(k). These are:

a) )L(i) and v(i) are two zero mean sequences.

E[p@]1=0:i>0 3)
E[v(i)}=0:i>0

b) W(i) and v(i) are stationary white noise sequences.

c) The variance of (i) and v(i) are known and denoted
by q and r, respectively:

Elp@p G 1=q8ij @
E [ v() 1 G) ] =1 8ij

where 0ij is the Kronecker delta and defined as unity when

i =j, and zero othervise.

d) u() and v(i) are uncorrelated.
E[p®v(Ei=0 (5)
The Kalman filter can be applied to measurement se-
quence z(1), z(2), ..., z(k). For simplicity, I use "k" to indicate

the time index for the present time. Any time t ( t, and t) t, in-
dicate the past and future times, respectively.

X(kl j) indicates the optimal filtered estimate of x (k)
based on all measurements of z(1), z(2), ..., z(k). According to
this representation, for j=k, the estimate of x(k) is the optimal
filtered estimate; for j<k, the estimate of x(k) is the optimal
predicted estimate; for j>k, the estimate of x(k) is the optimal
smoothed estimate.

The Kalman filter algorithm for a single channe! data
can be represented by the following prediction and correction
equations.

Prediction equation
Kk+1 [ =@, X kK ©6)
P+ k) =@ Pkl O+ pqe )

Correction equations
X (k+1 1k+1) =X (k+1 k) + Kk+D){z(k+1) -h% k+1 1K) (8)
Kk+1) = P(k+1 |k+1) h [h"P (k+1 |k)h + 1]t )]
Pk+1 | k+1) = [1- K(k+1) ' 1P (k+1]k) (10)

In these equations: 2 (k+1 |k+1) is the nx1 optimal fil-
tered estimate; X (k+1 |k) is the nx1 optimal predicted esti-
mate; X(k+1 |k+1) is the nxn filtered error covarience matrix;
P(k+1 | k) is the nxn predicted error covariance matrix; K(k+1)
is the nxn Kalman gain matrix; I is the nxn identity matrix.
Additionally, P(010) = P(0) and X 010) =% (0) are taken as
initial conditions.

In the calculation of ®, g, and h, the Laplace transform

method which was discussed in detail in Mendel and Kormylo
(1978) is used.

OPTIMAL FIXED INTERVAL SMOOTHING
FILTER

The Kalman filter with k(j) is used for the smoothing
process which was explained in the previous section. The state
space representation of the smoothed estimates was given by
eq. (1). In that equation’i k | N), k=0, 1, 2, ..., N-1, N is called
the the fixed-interval smoothed estimate; 2 k| i) j=k1,k2,
..., N is called the fixed-point estimate;/_)z k l k+N),k=0,1, 2,
..1, N is the fixed-lag smoothed estimate. In this section, |
will be interested in the fixed-interval smoothing estimate.

The optimal fixed-interval smoothing estimate for sin-
gle channel data is given in the following equations:

R (I N) =K (k1K) + Adk) TR+ Ny - & (k+11K)) (1)
A(K) = P(k | k) ®"(k+1,k) PI(k+1 | k) (12)

P(k|N) = P(k| k) + AK) [P(+1 | N) - Pk+1 | K)IA(K)  (13)

In these equations: /L\ (klN) is the nx1 fixed-interval
smoothed estimate vector; A(k) is the nxn smoothing filter
gain matrix; P(kIN) is the nxn smoothing error covarience
matrix; K = N-1, N-2, .., 1, O is the discrete time index. All
values of R (k |K), & (k+11k), Ptk | k), P(k+1 | k) as input for
algorithm of optimal fixed-interval smoothed estimates are re-
qurithm for each k in the Kalman filter. Initial conditions or
boundary conditions, 2 (N l N) and P(N | N) the last value of /_\)g
(k I k) and P(k | k)fork=0,1,2, ..., N are taken from Kalman
filter. These initial values are the first values of the fixed-
interval filtered estimate for k = N-1, N-2, ..., 0.

SEISMIC TRACE

Robinson (1967) showed that a simple synthetic seis-
mogram can be obtained from the deconvolution of the source
wavelet with the reflection coefficient sequence. This process
can be shown as:

k
y(k) = X [k, 9) p(O)]+vk), k=1,2,3, ... (14)
V=N

where y(k) is the seismic signal; w(k,8) is the time varying
seismic wavelet; u(9) is the reflection coefficient sequence; v
(k) is measurement noise; k is the sampling number; N is the
index that is defined by N=1 for k<L and N=k-1+1 for k=L
where L is the wavelet length in number of sample periods.
The term w(k, ) represents the (k-0+1) th sample of the
wavelet model corresponding to the time of k sample periods.

TIME VARYING SINGLE CHANNEL DISCRETE
KALMAN FILTER

The state-space representation is obtained incorporating
the base (transition) matrix into the discrete Kalman filter in
Crumpt (1974). Let us look at again equation (14). A change
ink is defined by i = k-0+1. This transforms the equation (14)
to:

i
y(k) = X [wik.k-i+1 ) pk-i+1)]+v(k), k=1,2, ... 15

i=1
where J=k for k<L and J=L for k2L.
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h (k) takes the wavelet values as h’(k) = w(kk-i+1). Then the
equation (15) can be written as:
i

y(k) = X [h"(k) plk-i+1))+v(k) (16)

i=1
According to this defination, measurement vector can be writ-
ten as
y(k) = h'(k) x (k) + v(k) 17
The state vector can also be defined as

uck)
u(k-1)
xK)q o (18)
u(k-L+1)
The reflection coefficient sequence is assumed as:
k
pk+1) = 2 [bi(k ) pky}+u(k) (19
i=1

where u(k) is the white random process and b(k) is a vector in

which the reflectivity function is expected to change with
depth.

Using these definations, the state equation can be writ-
ten as

x (k+1) = @ (k+1, k) x (k) +qu(k) (20)
where

b,(K) b, (k) by(k) ... by_,(K) by (K)

1 o 0 .. 0 0

Dk+1.k) = 0 1 0 .. O 0 (21
0 0 O 1 0

and

q=[1 0 0 0 .. O (22)

Transition matrix or base matrix can be given in this states-
pace representation as

O(k+1,k) = Dk+1,k)¥ (23)

Here, transition matrix is time-variant, therefore discrete Kal-

man filter becomes a time-variant filter (Cazdow and Martens,
1970).

APPLICATIONS:

As 1 have mentioned before, the Kalman filter has been
applied to synthetic seismograms. In calculating these synthet-
ics, I have used the actual sonic log taken by the Turkish Pe-
troleum Company. These data are assumed to represent the re-
flection coefficient series. Using Robinson's approach, which
was explained above, I convolved them with a source wavelet.

Two different source wavelets have been used. These are de-
fined by

w(t) = exp(-100t) sin (100t) (24)
and

w(t) = -1360t exp(-500t) +0.5 exp(-15.3t) sin (2 © /0.06) (25)

The source wavelet calculated using (24), the sonic log
and the synthetic seismogram are given in Figure 1. As it is

seen in Figure 1 (b), the sonic log contains a certain level of
noise. Due to this, the synthetic seismogram given in Figure 1
(c) is slightly noisy. However, in order to see the operation of
the Kalman filter on noisy signals, I have added additional
Gaussian noise onto the synthetic seismogram. The signal to
noise ratio calculated from

M
1M Y, si(k)
S k=1 (26)
N g 2
M

is taken as unity, where s(k) is the noise free discrete synthetic
seismic trace; M is the number of sample, 0'M2 is the variance
of the Gaussian (normal) noise.

The result of the 2x2 dimensional discrete Kalman filter
are shown in Figure 2. Figure 2 (a) and (b) are the synthetic
and noisy synthetic traces. The output of the Kalman filter is
given in Figure 2(c). As it is seen in Figure 2(b), the signals
are masked by the noise. Though the noise is suppressed in
certain amount by the Kalman filter, as it is observed from
Figure 2(c), the S/N ratio is still close to 1. On the other hand
the fixed-interval smoothing filter is more successful in elimi-
nating the random noise as is seen in Figure 2(d).

The same data have been filtered using a 26x26 dimen-
sional Kalman filter. The result is given in Figure 2(e). Com-
paring the output of this filter with that of 2x2 Kalman filter
given in Figure 2(c), we can see that the 26x26 dimensional
filter is better. However, due to the large matrices, it takes
more CPU time in numerical calculations. In addition, much
more memory space is needed to run the computer program.

The other data set used in numerical calculations was
obtained using the source wavelet given in equation (25). The
wavelet along with the reflection coefficient sequence and
synthetic seismogram are given in Figure 3. These data have
been filtered using 4x4 and 40x40 dimensional Kalman filters.
Figure 4 shows the result of the 4x4 dimensional Kalman filter
and that of the fixed-interval smoothing filter. The results of
the 40x40 Kalman filter are given in Figure 4(e).

ERRORS IN THE OUTPUTS OF THE DISCRETE
KALMAN AND SMOOTHING FILTERS

Information about the quality of the filtering can be ac-
quire by showing the integral-square-errors of the outputs of
discrete Kalman filter and optimal fixed-interval smoothing
filter which have been applied to noisy synthetic seismic trace.
The square errors between noiseless and noisy seismogram,

output of the Kalman filter and fixed-interval smoothing filter
can be defined respectively as:

e’ = [z(k) - y(OP
= [h'R (k+1 [k+1) - y(K)]2 27
=Xk IN) - ydP

DN -

(<

W

where y(k) is the noiseless seismic trace, z(k) is the noisy seis-
mic trace, h'x(k+1 [ k+1) is the output of the discrete Kalman

filter, h'x (K| N) is the output of the optimal fixed-interval
smoothing filter.
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Fig. 1. The source seismic wavelet (a), the reflection coefficient sequence (b),and the noise free synthetic seismic trace (c).
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Fig. 2. The application of 2x2 (¢) and 26x26 (e) dimensional discrete Kalman filter and 2x2 (d) dimensional fixed interval

smoothing filter. Synthetic seismic trace (a, b), (S/N=1).

The square error of 2x2 and 26x26 dimensional Kalman
and fixed-interval smoothing filters are shown in Figure 5.
Figure 5 (a) shows the square error between the original and
noisy seismograms. Figure 5 (b), (c) and (d) display the nor-
malized square errors between original seismogram and the
output of 2x2 dimensional Kalman filter, 2x2 dimensional
fixed-interval smoothing filter and the output of 26x26 dimen-
sional Kalman filter. Comparing these with the Kalman filter
outputs given in Figure 2, we can see that the square errors
shown in Figure 5 (b) and (c) are large in those parts of seis-
mogram that the seismic wavelet exist while the square errors
are small in the outputs corresponding to random noise. On the
other hand, the same feature does not exist in 26x26 dimen-
sional Kalman filter output as it is observed in Figure 5 (d).

The same comparison has been made for 4x4 and 40x40
dimensional filters. The results are given in Figure 6 (a), (b),
(c), (d). These are also normalized to their maximum values. [f
we compare these outputs with those given in Figure S, we
may conclude that the performance of 4x4 dimensional filter is
better than that of 2x2 filter. If we compare the large dimen-
sional filters, we may again say that 40x40 dimensional filter
is more efficient than 26x26 dimensional filter.

The sequence of the square error is not a good criterion
for determination of the filter achievement. Indeed, when 1
compared only the square erros, I concluded above that 4x4

Kalman filter was better than 2x2 Kalman filter. On the other
hand, the performance of the filter is best examined by calcu-
lating the integral-square-error of each trace. The total integral
square error for 2x2, 4x4, 26x26, 40x40 dimensional Kalman
filters calculated are: 0.1001, 0.2576, 0.1513, 0.0277, respec-
tively. Obviously, the best filter is the one with the smallest-
integral-square-error. In the present case, 40x40 filter has the
smallest-integral-square-error. On the other hand, this filter is
too large dimensional filter, consequently it is not economical.
The second least-integral-square-error filter is the 2x2 filter
with 0.1001 total error. Thus, we may conclude that the most

economical and reliable filter is the 2x2 dimensional Kalman
filter for the present data set.

CONCLUSION

In this study, the application of the Kalman filter to
seismic deconvolution is discussed. The behaviors of these
feedback filters with different dimensions are examined by ap-
plying them to different kind of seismic traces. It works in the
time domain, and one of the most significant features of the
Kalman filter is its feedback. This feature makes the comput-
ing easy on digital computers. However, large dimensional
Kalman filters need too much computing time in application.
The experiments showed that the noise reduction is not too
sensitive to the filter length.



(43

‘/\/ WAVELET

REFLECTION COEFFICIENTS

uewAeg

SYNTHETIC SEISMIC TRACE

i 1 i i I J i i ] [ I }
L) L) . L i LJ T J L] i

| i
L ) L) T T
0.218 Q.290 9.363 9.u3s 9.508 2.580 2.653 9.725 2.798 9.8790 9.9u3

TIME (Second)

0.9000 2.973 9.145

Fig. 3. The source seismic wavelet (a), the reflection coefficient sequence (b), and the noise free synthetic seismic trace (c).
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Fig. 4. The application of 4x4 (c) and 40x40 (e) dimensional discrete Kalman filter and 4x4 (d) dimensional fixed interval
smoothing filter. Synthetic seismic trace (a,b), (S/N=1).
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The value of square error obtained from the synthetic seismogram (a), 2x2 (b) and 26x26 (d) dimensional discrete Kal-
man filter and 2x2 (c) dimensional optimal fixed interval smoothing filter (S/N=1).
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Fig. 6. The value of square error obtained from the synthe

tic seismogram (a), 4x4 (b) and 40x40 (d) dimensional interval Kal-

man filter and 4x4 (c) dimensional optimal fixed interval smoothing filter (S/N=1).

When I compare the integral-square-errors of the Kal-
man filters with different dimension, 1 obtained that 40x40 di-
mensional one is the best. On the other hand, due to the large
dimension, this filter is not economical. During the same anal-
ysis, [ have arrived at the point that 2x2 dimensional Kalman
filter is the second least-integral-square-error filter. Its total er-
ror is even smaller than that of 26x26 dimensional Kalman fil-
ter. As a result, 2x2 dimensional Kalman filter is more effi-
cient on seismic records with S/N=1.
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