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Özet
Geçtiğimiz dönemde Türkiye ekonomisi iki önemli şok geçirdi. Bunlardan ilki, Ağustos 2018’de yaşanan 
kur şokuydu. İkinci şok ise, ilk şoktan çok daha yüksek etkiye sahip olan ve 2020 yılı başında başlayıp bu 
makalenin yazımı esnasında devam etmekte olan COVID-19 pandemisi şokudur. Bu iki şokun gözlendiği 
dönemde önemli ekonomik ve finansal değişkenlerde kayda değer değişimlerin yaşanıp yaşanmadığı, 
hem politika yapıcılar hem de piyasa katılımcıları açısından önemli bir sorudur. Bu çalışmada bu soruya, 
yeni bir panel GARCH modelleme tekniği kullanılarak, BIST 100 endeksini oluşturan hisselerin günlük 
getirilerinin volatilite analizi açısından yaklaşılmaktadır. Sonuçlarımız, iki şok dönemi boyunca hisse senedi 
volatilitesinde önemli bir yükseliş olduğunu göstermektedir. Daha da önemlisi, bu yükselişin pandemi 
döneminde çok daha güçlü ve kalıcı olduğu görünmektedir. İlaveten, sektörler bazında gerçekleştirilen 
analiz sonuçlarına göre, sektörlerin ortalama volatilitelerinin şoklardan önceki periyoda göre ciddi oranda 
yükseldiği tespit edilmektedir.
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Abstract
The Turkish economy has experienced two important shocks in the recent past. The first is a currency shock 
which occurred in August 2018. A second, substantially more impactful, shock is the COVID-19 pandemic, 
which began in early 2020 and is still in progress. An interesting question from the perspectives of both 
policy makers and practitioners is whether significant changes in key economic and financial variables 
have been observed in the period marked by these two shocks. We investigate this question for the volatility 
of the daily returns on BIST 100 constituent equities, using a novel panel GARCH modelling approach. 
We find that during the periods associated with the two shocks, the stock market volatility has increased 
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substantially. Importantly, this increase has been greater and more persistent during the pandemic period. 
Moreover, our analysis of sector-specific volatilities also reveals that this period of two shocks has witnessed 
a uniform increase in the average volatilities of all sectors, compared to the period before.
Keywords: BIST 100, COVID-19, GARCH, financial volatility
JEL Classification: C01, C14, C23, C58

1. Introduction

In the recent past, the Turkish economy has experienced two major shocks. Following a period of 
steady increase, between 13 and 14 August 2018 the TL/USD end-of-day exchange rate jumped 
from 5.94 to 6.88. After a period of increased volatility, the exchange rate became relatively more 
stable towards the end of 2018 (see Figure 1). Roughly 1.5 years after this currency shock, a global 
event of a much bigger proportion occurred: the COVID pandemic. On 30 January 2020, World 
Health Organization declared the outbreak a Public Health Emergency of International Concern. 
On 11 March 2020, Turkey announced its first confirmed coronavirus case. Shortly afterwards, 
the government started introducing widespread measures against COVID. More recently, many 
countries, including Turkey, have started to gradually relax these measures, while exercising a certain 
measure of caution (such as imposing social distancing rules and wearing of masks in public places). 
As things stand, it appears that the pandemic will have far reaching global economic and financial 
effects that will be felt for a long time.

An interesting question from the perspectives of both policy makers and practitioners is whether 
significant changes in key economic and financial variables have been observed in the period 
marked by these two shocks. In this article, we undertake an econometric analysis of stock market 
volatility during this period. In particular, we are interested in obtaining accurate estimates of the 
daily volatilities of BIST 100 index constituents throughout these two shock periods, at the level of 
both individual equities and sectors. Given the standard interpretation of volatility as a measure of 
risk, this analysis also allows us to understand the evolution of the risk structure in the stock market 
during this period.

Our econometric analysis is based on the generalised autoregressive conditional heteroskedasticity 
(GARCH) model.1 Since its inception in 1982 in a seminal paper by Robert Engle2, GARCH-type 
modelling has been one the most popular approaches for modelling the volatility of financial series, 
and especially that of stock market returns.3 Accurate estimation of the GARCH model (and other 
GARCH-type models in general) requires very large datasets as it is difficult to capture GARCH effects 
with few observations. In many cases, this requirement for large datasets is not a problem as there are 
many interesting financial variables for which years of daily data are available. In our case, however, 

1 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 51: 307-327.
2 Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom 

Inflation, Econometrica, 50: 987-1008.
3 Although the acronyms “ARCH” (autoregressive conditional heteroskedasticity) and “GARCH” refer to two particular 

models, it has become the convention to designate all the different models in this literature simply as GARCH-type 
models.
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this is an important issue. The period we analyse has witnessed two shocks of diverse nature, and it 
is very likely that the volatility dynamics of the period we investigate is different from the dynamics 
of the preceding period. In other words, it is very unlikely that the model parameters remain fixed 
throughout our period of interest. Therefore, basing estimation on, say, 1000 observations is not 
desirable because the model parameters are unlikely to remain the same for such a long time period 
(about four years). Doing so would put unnecessary weight on data from the distant past which are 
uninformative and possibly misleading about the current volatility process. We would instead prefer 
to estimate the model parameters for every individual trading day, using a rolling window based on 
the most recent data.

Figure 1. TL/USD Daily End-of-Day Exchange Rate between 2 January 2014 and 2 July 2020.

Source: Central Bank of the Republic of Turkey.

To achieve this aim, we utilise a recently developed approach, which is specifically aimed at estimating 
the GARCH model with as little as 150 observations per equity.4 As will be further explained in Section 
2, this method is based on a panel data approach and uses insights from the panel data literature to 
obtain estimators that are corrected for the bias arising from using a short time dimension.

The main contribution of this paper is the volatility analysis of BIST 100 index constituents in the 
period between January 2018 and July 2020. In particular, we investigate the following questions: (i) 
Has there been any change in the volatility characteristics of BIST 100 constituents before and after 
May 2018? (ii) What are the relative magnitudes of stock market volatility during the currency and 
COVID shock periods? (iii) Has the relative risk ranking of different sectors (as measured by their 
average volatilities) changed during the currency and COVID shock periods? To the best of our 

4 Pakel, C. (2019). Supplementary Appendix for Bias Reduction in Nonlinear and Dynamic Panels in the Presence of 
Cross-section Dependence, unpublished manuscript, 64-80.
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knowledge, this paper is the first study to employ a panel approach in the GARCH-type volatility 
analysis of BIST 100 constituents. Moreover, it is also one of the few studies that investigate the 
daily volatility of BIST 100 equities during the currency shock and COVID shock periods. For other 
studies that analyse the effect of the COVID pandemic on the stock market see, among others, the 
works by Kayral and Tandoğan5; Keleş6; Kılıç7; Özdemir8; Özkan9; Öztürk, Şişman, Uslu and Çıtak10.

We would like to underline at the outset that our analysis is not causal. In particular, we refrain 
from making any claims on the underlying mechanism between the shocks and stock market 
volatility, or the potential transmission links. While it may be tempting to reach quick conclusions 
about transmission mechanisms, this is not a straightforward task. To begin with, GARCH-type 
models are not causal, so they cannot yield any causal interpretations. Moreover, the dynamic nature 
of financial and macro variables requires appropriate macro-modelling approaches for a proper 
understanding of the complex links between them. For instance, in the case of the currency shock 
it is not immediately obvious whether currency volatility has a direct or indirect positive/negative 
effect on the stock market (or vice-versa). Therefore, while establishing causal links is certainly a very 
important research question, such an analysis is beyond the scope of our study.

Our study contributes to a sizeable literature on GARCH-type volatility analysis of Borsa Istanbul. 
One strand of this literature focusses on the comparison of different GARCH-type models on 
the basis of their out-of-sample predictive power; see, among others, the works by Sevütekin and 
Nargeleçekenler11, Köksal12, Alper et al.13, and Gulay and Emec14. This literature suggests that, in 
general, the standard GARCH model has superior forecasting abilities. There is also a large literature 
which uses GARCH-type models to analyse various aspects of the BIST 100 (or the Istanbul Stock 
Exchange) index, focussing on objectives such as testing the presence of a relationship between stock 

5 Kayral, İ. E., Tandoğan, N. Ş. (2020). BİST100, Döviz Kurları ve Altının Getiri ve Volatilitesinde COVID-19 Etkisi, 
Gaziantep University Journal of Social Sciences, 19: 687-701.

6 Keleş, E. (2020). COVID-19 ve BİST-30 Endeksi Üzerine Kısa Dönemli Etkileri, Marmara Üniversitesi İktisadi ve İdari 
Bilimler Dergisi, 42: 91-105.

7 Kılıç, Y. (2020). Borsa İstanbul’da COVID-19 (Koronavirüs) Etkisi, Journal of Emerging Economies and Policy, 5: 66-77.
8 Özdemir, L. (2020). COVID-19 Pandemisinin BIST Sektör Endeksleri Üzerine Asimetrik Etkisi, Finans Ekonomi ve 

Sosyal Araştırmalar Dergisi, 5: 546-556.
9 Özkan, O. (2020). Volatility Jump: The Effect of COVID-19 on Turkey Stock Market, Gaziantep University Journal of 

Social Sciences, 19: 386-397.
10 Öztürk, Ö., Şişman, M. Y., Uslu, H., Çıtak, F. (2020). Effects of COVID-19 Outbreak on Turkish Stock Market: A Sectoral-

Level Analysis, Hitit University Journal of Social Sciences Institute, 13: 56-68.
11 Sevütekin, M., Nargeleçekenler, M. (2004). İstanbul Menkul Kıymetler Borsasında Getiri Volatilitesinin Modellenmesi 

ve Önraporlanması, Ankara Üniversitesi SBF Dergisi, 61: 243-265.
12 Köksal, B. (2009). A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns, Journal of 

Economic and Social Research, 11: 1-29.
13 Alper, C. E. et al. (2012). MIDAS Volatility Forecast Performance under Market Stress: Evidence from Emerging Stock 

Markets, Economics Letters, 117: 528-532.
14 Gulay, E., Emec, H. (2018). Comparison of Forecasting Performances: Does Normalization and Variance Stabilization 

Method Beat GARCH(1,1)-type Models? Empirical Evidence from the Stock Markets, Journal of Forecasting, 37: 133-
150.
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dividends and company value15, uncovering the effects of price limits on daily equity volatilities16, 
investigating the presence of a long memory property for index returns17, investigating volatility 
spillovers18, and analysing how emerging stock market volatilities are affected by US macro 
announcements19.

The rest of the paper is organised as follows: in Section 2 we provide an overview of the GARCH 
methodology and, in particular, of the bias-corrected panel GARCH estimation method. The 
volatility analysis of BIST 100 equities is undertaken in Section 3, which is the main contribution of 
this paper. The last section concludes and discusses future research directions.

2. Methodology

In this part, we provide a brief overview of the standard GARCH model (Section 2.1) and discuss 
the specific approach used in our empirical analysis, the bias-corrected panel GARCH estimator 
(Section 2.2). Let 
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where 𝜇𝜇𝑡𝑡 is the (potentially) time-varying conditional mean of daily returns and 𝜀𝜀𝑡𝑡  is a time-
varying shock process. The standard assumption in the volatility literature is that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0 and 
𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡) = 𝜎𝜎2 for some finite 𝜎𝜎2. We also note that daily stock returns typically fluctuate around 
zero, implying 𝜇𝜇𝑡𝑡 ≈ 0.20 For that reason, we follow the standard convention and let 𝜇𝜇𝑡𝑡 = 0 in 
what follows, which yields 

𝑟𝑟𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

2.1 The GARCH Model 

Since their inception, GARCH-type models have proved to be very popular for modelling time-
varying volatility. The GARCH(1,1) model21 stands out in particular as the most popular and 
least complicated member of this large family of models.22 In particular, let the shock process 𝜀𝜀𝑡𝑡  
be such that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 0 and 𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 𝜎𝜎𝑡𝑡

2 where 𝐹𝐹𝑡𝑡 is the information set at time 𝑡𝑡. 
Then, the GARCH(1,1) model is given by 

𝜎𝜎𝑡𝑡
2 = 𝜆𝜆(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑡𝑡−1

2 + 𝛽𝛽𝜎𝜎𝑡𝑡−1
2 , (1) 

where 𝜆𝜆 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. These standard parameter restrictions guarantee that 
the resulting variance process 𝜎𝜎𝑡𝑡

2 will always be positive. Here 𝛼𝛼 measures the effect of 
yesterday’s shock on today’s conditional variance, whereas the effect of yesterday’s conditional 

                                                        
20 While it is common to use 𝜇𝜇𝑡𝑡 = 0 for daily equity returns, for other types of financial data a different 
approach for modelling 𝜇𝜇𝑡𝑡 may be appropriate. Two common options are to impose an AR structure (e.g. 
𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑟𝑟𝑡𝑡−1) or to employ a GARCH-in-means approach (e.g. 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝜎𝜎𝑡𝑡

2). For more information, see 
Chapter 7 of Kevin Sheppard’s lecture notes: Sheppard, K. (2020). Financial Econometrics Notes, 
https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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2.1 The GARCH Model 

Since their inception, GARCH-type models have proved to be very popular for modelling time-
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https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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variance is given by 𝛽𝛽. It can be shown by standard calculations that 𝜆𝜆 = 𝐸𝐸(𝜀𝜀𝑡𝑡
2), and so 𝜆𝜆 is 

equal to the unconditional (or long-run) variance of 𝜀𝜀𝑡𝑡 .23 The model is completed by specifying 
a conditional distribution for 𝜀𝜀𝑡𝑡 . A popular and analytically convenient option is the normal 
distribution24: 

𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑡𝑡
2). (2) 

Equations (1) and (2) together provide a complete structure which can be used to estimate the 
parameters (𝜆𝜆, 𝛼𝛼, 𝛽𝛽). Notice that the log-likelihood function for 𝑟𝑟𝑡𝑡  is given by 

ℓ𝑡𝑡(𝜆𝜆, 𝛼𝛼, 𝛽𝛽) = − 1
2 ln(2𝜋𝜋) − 1

2 ln(𝜎𝜎𝑡𝑡
2) − 1

2
𝑟𝑟𝑡𝑡

2

𝜎𝜎𝑡𝑡
2 . 

Although one can estimate all parameters by maximising the joint log-likelihood function 
ℓ𝑇𝑇(𝜆𝜆, 𝛼𝛼, 𝛽𝛽) = 𝑇𝑇−1 ∑ ℓ𝑡𝑡(𝜆𝜆, 𝛼𝛼, 𝛽𝛽)𝑇𝑇

𝑡𝑡=2 , a more convenient option is to estimate 𝜆𝜆 separately by the 
method of moments, using 𝜆𝜆 = 𝐸𝐸(𝜀𝜀𝑡𝑡

2). This approach, known as variance-tracking25, yields 

�̂�𝜆 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑡𝑡

2
𝑇𝑇

𝑡𝑡=1
    𝑎𝑎𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑎𝑎𝑚𝑚 𝛼𝛼,𝛽𝛽 ℓ𝑇𝑇(�̂�𝜆, 𝛼𝛼, 𝛽𝛽). (3) 

An important limitation, which applies to any GARCH-type model, is that accurate parameter 
estimation requires a large dataset, typically around 1000 daily observations, if not more, as it is 
difficult to capture GARCH effects with few observations. This is because of two key factors: 
first, these models are highly nonlinear and have a recursive structure, requiring numerical 
estimation methods and, therefore, a large number of observations for convergence to a solution. 
Second, macro and financial variables are typically characterised by serial dependence, which 
means that individual observations carry less information (compared to independently 
distributed variables) and therefore a larger dataset is required for asymptotic convergence to 
take effect. For standard financial variables, data are available in abundance. However, in cases 
(such as ours) where one wants to base estimation on a shorter history of data, the small-sample 
bias will be substantial enough to make standard GARCH estimation methods unreliable. 

                                                        
23 For a detailed textbook treatment of GARCH models and their theoretical background, see: Francq, C., 
Zakoïan, J. M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.  
24 Other typical options are the 𝑡𝑡 and skewed-𝑡𝑡 distributions. However, the well-known work of Bollerslev 
and Wooldridge shows that, as long as the conditional mean and variance are correctly specified, parameter 
estimators will remain consistent even if the normality assumption is violated: Bollerslev, T., Wooldridge, 
J. M. (1992). Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying 
Covariances, Econometric Reviews, 11: 143-172. 
25 Francq, C. et al. (2011). Merits and Drawbacks of Variance Targeting in GARCH Models, Journal of 
Financial Econometrics, 9: 619-656. 
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2 Methodology 

In this part, we provide a brief overview of the standard GARCH model (Section 2.1) and discuss 
the specific approach used in our empirical analysis, the bias-corrected panel GARCH estimator 
(Section 2.2). Let 𝑟𝑟𝑡𝑡  be some variable of interest where 𝑡𝑡 =  1, . . . , 𝑇𝑇 denotes time. In this study, 
𝑟𝑟𝑡𝑡  is the daily return on some equity (e.g. AKBANK, TURKCELL etc.) at time 𝑡𝑡. A standard 
generic structure for 𝑟𝑟𝑡𝑡  is 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡, 

where 𝜇𝜇𝑡𝑡 is the (potentially) time-varying conditional mean of daily returns and 𝜀𝜀𝑡𝑡  is a time-
varying shock process. The standard assumption in the volatility literature is that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0 and 
𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡) = 𝜎𝜎2 for some finite 𝜎𝜎2. We also note that daily stock returns typically fluctuate around 
zero, implying 𝜇𝜇𝑡𝑡 ≈ 0.20 For that reason, we follow the standard convention and let 𝜇𝜇𝑡𝑡 = 0 in 
what follows, which yields 

𝑟𝑟𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

2.1 The GARCH Model 

Since their inception, GARCH-type models have proved to be very popular for modelling time-
varying volatility. The GARCH(1,1) model21 stands out in particular as the most popular and 
least complicated member of this large family of models.22 In particular, let the shock process 𝜀𝜀𝑡𝑡  
be such that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 0 and 𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 𝜎𝜎𝑡𝑡

2 where 𝐹𝐹𝑡𝑡 is the information set at time 𝑡𝑡. 
Then, the GARCH(1,1) model is given by 

𝜎𝜎𝑡𝑡
2 = 𝜆𝜆(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑡𝑡−1

2 + 𝛽𝛽𝜎𝜎𝑡𝑡−1
2 , (1) 

where 𝜆𝜆 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. These standard parameter restrictions guarantee that 
the resulting variance process 𝜎𝜎𝑡𝑡

2 will always be positive. Here 𝛼𝛼 measures the effect of 
yesterday’s shock on today’s conditional variance, whereas the effect of yesterday’s conditional 

                                                        
20 While it is common to use 𝜇𝜇𝑡𝑡 = 0 for daily equity returns, for other types of financial data a different 
approach for modelling 𝜇𝜇𝑡𝑡 may be appropriate. Two common options are to impose an AR structure (e.g. 
𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑟𝑟𝑡𝑡−1) or to employ a GARCH-in-means approach (e.g. 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝜎𝜎𝑡𝑡

2). For more information, see 
Chapter 7 of Kevin Sheppard’s lecture notes: Sheppard, K. (2020). Financial Econometrics Notes, 
https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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accessed: 16.11.2020). 
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22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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2 Methodology 

In this part, we provide a brief overview of the standard GARCH model (Section 2.1) and discuss 
the specific approach used in our empirical analysis, the bias-corrected panel GARCH estimator 
(Section 2.2). Let 𝑟𝑟𝑡𝑡  be some variable of interest where 𝑡𝑡 =  1, . . . , 𝑇𝑇 denotes time. In this study, 
𝑟𝑟𝑡𝑡  is the daily return on some equity (e.g. AKBANK, TURKCELL etc.) at time 𝑡𝑡. A standard 
generic structure for 𝑟𝑟𝑡𝑡  is 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡, 

where 𝜇𝜇𝑡𝑡 is the (potentially) time-varying conditional mean of daily returns and 𝜀𝜀𝑡𝑡  is a time-
varying shock process. The standard assumption in the volatility literature is that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0 and 
𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡) = 𝜎𝜎2 for some finite 𝜎𝜎2. We also note that daily stock returns typically fluctuate around 
zero, implying 𝜇𝜇𝑡𝑡 ≈ 0.20 For that reason, we follow the standard convention and let 𝜇𝜇𝑡𝑡 = 0 in 
what follows, which yields 

𝑟𝑟𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

2.1 The GARCH Model 

Since their inception, GARCH-type models have proved to be very popular for modelling time-
varying volatility. The GARCH(1,1) model21 stands out in particular as the most popular and 
least complicated member of this large family of models.22 In particular, let the shock process 𝜀𝜀𝑡𝑡  
be such that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 0 and 𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 𝜎𝜎𝑡𝑡

2 where 𝐹𝐹𝑡𝑡 is the information set at time 𝑡𝑡. 
Then, the GARCH(1,1) model is given by 

𝜎𝜎𝑡𝑡
2 = 𝜆𝜆(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑡𝑡−1

2 + 𝛽𝛽𝜎𝜎𝑡𝑡−1
2 , (1) 

where 𝜆𝜆 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. These standard parameter restrictions guarantee that 
the resulting variance process 𝜎𝜎𝑡𝑡

2 will always be positive. Here 𝛼𝛼 measures the effect of 
yesterday’s shock on today’s conditional variance, whereas the effect of yesterday’s conditional 

                                                        
20 While it is common to use 𝜇𝜇𝑡𝑡 = 0 for daily equity returns, for other types of financial data a different 
approach for modelling 𝜇𝜇𝑡𝑡 may be appropriate. Two common options are to impose an AR structure (e.g. 
𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑟𝑟𝑡𝑡−1) or to employ a GARCH-in-means approach (e.g. 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝜎𝜎𝑡𝑡

2). For more information, see 
Chapter 7 of Kevin Sheppard’s lecture notes: Sheppard, K. (2020). Financial Econometrics Notes, 
https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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a conditional distribution for 𝜀𝜀𝑡𝑡 . A popular and analytically convenient option is the normal 
distribution24: 
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2). (2) 

Equations (1) and (2) together provide a complete structure which can be used to estimate the 
parameters (𝜆𝜆, 𝛼𝛼, 𝛽𝛽). Notice that the log-likelihood function for 𝑟𝑟𝑡𝑡  is given by 
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Although one can estimate all parameters by maximising the joint log-likelihood function 
ℓ𝑇𝑇(𝜆𝜆, 𝛼𝛼, 𝛽𝛽) = 𝑇𝑇−1 ∑ ℓ𝑡𝑡(𝜆𝜆, 𝛼𝛼, 𝛽𝛽)𝑇𝑇

𝑡𝑡=2 , a more convenient option is to estimate 𝜆𝜆 separately by the 
method of moments, using 𝜆𝜆 = 𝐸𝐸(𝜀𝜀𝑡𝑡

2). This approach, known as variance-tracking25, yields 
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    𝑎𝑎𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑎𝑎𝑚𝑚 𝛼𝛼,𝛽𝛽 ℓ𝑇𝑇(�̂�𝜆, 𝛼𝛼, 𝛽𝛽). (3) 

An important limitation, which applies to any GARCH-type model, is that accurate parameter 
estimation requires a large dataset, typically around 1000 daily observations, if not more, as it is 
difficult to capture GARCH effects with few observations. This is because of two key factors: 
first, these models are highly nonlinear and have a recursive structure, requiring numerical 
estimation methods and, therefore, a large number of observations for convergence to a solution. 
Second, macro and financial variables are typically characterised by serial dependence, which 
means that individual observations carry less information (compared to independently 
distributed variables) and therefore a larger dataset is required for asymptotic convergence to 
take effect. For standard financial variables, data are available in abundance. However, in cases 
(such as ours) where one wants to base estimation on a shorter history of data, the small-sample 
bias will be substantial enough to make standard GARCH estimation methods unreliable. 

                                                        
23 For a detailed textbook treatment of GARCH models and their theoretical background, see: Francq, C., 
Zakoïan, J. M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.  
24 Other typical options are the 𝑡𝑡 and skewed-𝑡𝑡 distributions. However, the well-known work of Bollerslev 
and Wooldridge shows that, as long as the conditional mean and variance are correctly specified, parameter 
estimators will remain consistent even if the normality assumption is violated: Bollerslev, T., Wooldridge, 
J. M. (1992). Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying 
Covariances, Econometric Reviews, 11: 143-172. 
25 Francq, C. et al. (2011). Merits and Drawbacks of Variance Targeting in GARCH Models, Journal of 
Financial Econometrics, 9: 619-656. 

(3)

21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 51: 307-327.
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and Threshold-ARCH 

models, to name just of few. Different variants of the GARCH-family are too numerous to cite and interested readers are 
referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). Glossary to ARCH (GARCH*). T. Bollerslev, 
J. Russell, and M. Watson (Eds.), Volatility and Time Series Econometrics: Essays in Honor of Robert Engle, Oxford 
University Press, 137-163.

23 For a detailed textbook treatment of GARCH models and their theoretical background, see: Francq, C., Zakoïan, J. M. 
(2010). GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.

24 Other typical options are the t and skewed-t distributions. However, the well-known work of Bollerslev and Wooldridge 
shows that, as long as the conditional mean and variance are correctly specified, parameter estimators will remain 
consistent even if the normality assumption is violated: Bollerslev, T., Wooldridge, J. M. (1992). Quasi-maximum 
Likelihood Estimation and Inference in Dynamic Models with Time-varying Covariances, Econometric Reviews, 11: 
143-172.

25 Francq, C. et al. (2011). Merits and Drawbacks of Variance Targeting in GARCH Models, Journal of Financial 
Econometrics, 9: 619-656.
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and financial variables are typically characterised by serial dependence, which means that individual 
observations carry less information (compared to independently distributed variables) and therefore 
a larger dataset is required for asymptotic convergence to take effect. For standard financial variables, 
data are available in abundance. However, in cases (such as ours) where one wants to base estimation 
on a shorter history of data, the small-sample bias will be substantial enough to make standard 
GARCH estimation methods unreliable.

2.2. Bias-corrected Panel GARCH Method

In order to make the GARCH model operational with a limited number of observations, Pakel et al. 
propose a panel GARCH approach which utilises both cross-sectional and time-series information.26 
In particular, let rit be the return on asset i (i=1,...,N) at time t, and let Fit be the information set for 
asset i at time t. Then, their panel GARCH model for ,
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where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
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estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 
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𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311.  8 
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26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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2 Methodology 

In this part, we provide a brief overview of the standard GARCH model (Section 2.1) and discuss 
the specific approach used in our empirical analysis, the bias-corrected panel GARCH estimator 
(Section 2.2). Let 𝑟𝑟𝑡𝑡  be some variable of interest where 𝑡𝑡 =  1, . . . , 𝑇𝑇 denotes time. In this study, 
𝑟𝑟𝑡𝑡  is the daily return on some equity (e.g. AKBANK, TURKCELL etc.) at time 𝑡𝑡. A standard 
generic structure for 𝑟𝑟𝑡𝑡  is 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡, 

where 𝜇𝜇𝑡𝑡 is the (potentially) time-varying conditional mean of daily returns and 𝜀𝜀𝑡𝑡  is a time-
varying shock process. The standard assumption in the volatility literature is that 𝐸𝐸(𝜀𝜀𝑡𝑡) = 0 and 
𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡) = 𝜎𝜎2 for some finite 𝜎𝜎2. We also note that daily stock returns typically fluctuate around 
zero, implying 𝜇𝜇𝑡𝑡 ≈ 0.20 For that reason, we follow the standard convention and let 𝜇𝜇𝑡𝑡 = 0 in 
what follows, which yields 

𝑟𝑟𝑡𝑡 = 𝜀𝜀𝑡𝑡. 

2.1 The GARCH Model 

Since their inception, GARCH-type models have proved to be very popular for modelling time-
varying volatility. The GARCH(1,1) model21 stands out in particular as the most popular and 
least complicated member of this large family of models.22 In particular, let the shock process 𝜀𝜀𝑡𝑡  
be such that 𝐸𝐸(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 0 and 𝑉𝑉𝑉𝑉𝑟𝑟(𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1) = 𝜎𝜎𝑡𝑡

2 where 𝐹𝐹𝑡𝑡 is the information set at time 𝑡𝑡. 
Then, the GARCH(1,1) model is given by 

𝜎𝜎𝑡𝑡
2 = 𝜆𝜆(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑡𝑡−1

2 + 𝛽𝛽𝜎𝜎𝑡𝑡−1
2 , (1) 

where 𝜆𝜆 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. These standard parameter restrictions guarantee that 
the resulting variance process 𝜎𝜎𝑡𝑡

2 will always be positive. Here 𝛼𝛼 measures the effect of 
yesterday’s shock on today’s conditional variance, whereas the effect of yesterday’s conditional 

                                                        
20 While it is common to use 𝜇𝜇𝑡𝑡 = 0 for daily equity returns, for other types of financial data a different 
approach for modelling 𝜇𝜇𝑡𝑡 may be appropriate. Two common options are to impose an AR structure (e.g. 
𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑟𝑟𝑡𝑡−1) or to employ a GARCH-in-means approach (e.g. 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝜎𝜎𝑡𝑡

2). For more information, see 
Chapter 7 of Kevin Sheppard’s lecture notes: Sheppard, K. (2020). Financial Econometrics Notes, 
https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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variance is given by 𝛽𝛽. It can be shown by standard calculations that 𝜆𝜆 = 𝐸𝐸(𝜀𝜀𝑡𝑡
2), and so 𝜆𝜆 is 

equal to the unconditional (or long-run) variance of 𝜀𝜀𝑡𝑡 .23 The model is completed by specifying 
a conditional distribution for 𝜀𝜀𝑡𝑡 . A popular and analytically convenient option is the normal 
distribution24: 

𝜀𝜀𝑡𝑡|𝐹𝐹𝑡𝑡−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑡𝑡
2). (2) 

Equations (1) and (2) together provide a complete structure which can be used to estimate the 
parameters (𝜆𝜆, 𝛼𝛼, 𝛽𝛽). Notice that the log-likelihood function for 𝑟𝑟𝑡𝑡  is given by 

ℓ𝑡𝑡(𝜆𝜆, 𝛼𝛼, 𝛽𝛽) = − 1
2 ln(2𝜋𝜋) − 1

2 ln(𝜎𝜎𝑡𝑡
2) − 1

2
𝑟𝑟𝑡𝑡

2

𝜎𝜎𝑡𝑡
2 . 

Although one can estimate all parameters by maximising the joint log-likelihood function 
ℓ𝑇𝑇(𝜆𝜆, 𝛼𝛼, 𝛽𝛽) = 𝑇𝑇−1 ∑ ℓ𝑡𝑡(𝜆𝜆, 𝛼𝛼, 𝛽𝛽)𝑇𝑇

𝑡𝑡=2 , a more convenient option is to estimate 𝜆𝜆 separately by the 
method of moments, using 𝜆𝜆 = 𝐸𝐸(𝜀𝜀𝑡𝑡

2). This approach, known as variance-tracking25, yields 

�̂�𝜆 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑡𝑡

2
𝑇𝑇

𝑡𝑡=1
    𝑎𝑎𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑎𝑎𝑚𝑚 𝛼𝛼,𝛽𝛽 ℓ𝑇𝑇(�̂�𝜆, 𝛼𝛼, 𝛽𝛽). (3) 

An important limitation, which applies to any GARCH-type model, is that accurate parameter 
estimation requires a large dataset, typically around 1000 daily observations, if not more, as it is 
difficult to capture GARCH effects with few observations. This is because of two key factors: 
first, these models are highly nonlinear and have a recursive structure, requiring numerical 
estimation methods and, therefore, a large number of observations for convergence to a solution. 
Second, macro and financial variables are typically characterised by serial dependence, which 
means that individual observations carry less information (compared to independently 
distributed variables) and therefore a larger dataset is required for asymptotic convergence to 
take effect. For standard financial variables, data are available in abundance. However, in cases 
(such as ours) where one wants to base estimation on a shorter history of data, the small-sample 
bias will be substantial enough to make standard GARCH estimation methods unreliable. 

                                                        
23 For a detailed textbook treatment of GARCH models and their theoretical background, see: Francq, C., 
Zakoïan, J. M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.  
24 Other typical options are the 𝑡𝑡 and skewed-𝑡𝑡 distributions. However, the well-known work of Bollerslev 
and Wooldridge shows that, as long as the conditional mean and variance are correctly specified, parameter 
estimators will remain consistent even if the normality assumption is violated: Bollerslev, T., Wooldridge, 
J. M. (1992). Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying 
Covariances, Econometric Reviews, 11: 143-172. 
25 Francq, C. et al. (2011). Merits and Drawbacks of Variance Targeting in GARCH Models, Journal of 
Financial Econometrics, 9: 619-656. 
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2 Methodology 

In this part, we provide a brief overview of the standard GARCH model (Section 2.1) and discuss 
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𝜎𝜎𝑡𝑡
2 = 𝜆𝜆(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑡𝑡−1

2 + 𝛽𝛽𝜎𝜎𝑡𝑡−1
2 , (1) 
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20 While it is common to use 𝜇𝜇𝑡𝑡 = 0 for daily equity returns, for other types of financial data a different 
approach for modelling 𝜇𝜇𝑡𝑡 may be appropriate. Two common options are to impose an AR structure (e.g. 
𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑟𝑟𝑡𝑡−1) or to employ a GARCH-in-means approach (e.g. 𝜇𝜇𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝜎𝜎𝑡𝑡

2). For more information, see 
Chapter 7 of Kevin Sheppard’s lecture notes: Sheppard, K. (2020). Financial Econometrics Notes, 
https://www.kevinsheppard.com/files/teaching/mfe/notes/financial-econometrics-2020-2021.pdf, (Last 
accessed: 16.11.2020). 
21 Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of 
Econometrics, 51: 307-327. 
22 Other well-known examples of models in this vein are the exponential GARCH, GJR-GARCH and 
Threshold-ARCH models, to name just of few. Different variants of the GARCH-family are too numerous 
to cite and interested readers are referred to the “glossary-type” survey of Bollerslev: Bollerslev, T. (2010). 
Glossary to ARCH (GARCH*). T. Bollerslev, J. Russell, and M. Watson (Eds.), Volatility and Time Series 
Econometrics: Essays in Honor of Robert Engle, Oxford University Press, 137-163. 
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2

𝜎𝜎𝑡𝑡
2 . 
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23 For a detailed textbook treatment of GARCH models and their theoretical background, see: Francq, C., 
Zakoïan, J. M. (2010). GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.  
24 Other typical options are the 𝑡𝑡 and skewed-𝑡𝑡 distributions. However, the well-known work of Bollerslev 
and Wooldridge shows that, as long as the conditional mean and variance are correctly specified, parameter 
estimators will remain consistent even if the normality assumption is violated: Bollerslev, T., Wooldridge, 
J. M. (1992). Quasi-maximum Likelihood Estimation and Inference in Dynamic Models with Time-varying 
Covariances, Econometric Reviews, 11: 143-172. 
25 Francq, C. et al. (2011). Merits and Drawbacks of Variance Targeting in GARCH Models, Journal of 
Financial Econometrics, 9: 619-656. 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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28 Pakel et al., 2011, 311.
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have already been proposed in that literature.29 Using this insight, in recent work Pakel proposes a 
bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 
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been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
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and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
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30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
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Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 
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where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 
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𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
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𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 

(8)

under the restriction 
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26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

>0. The intuition here is that, the likelihood function 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

 since it is based on the bias-corrected 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 

, with the consequence that 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
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2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖
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where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

.

Importantly, the simulation analysis in Section S4.1 of Pakel’s work reveals that 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 

 provides an 
accurate estimator of 
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29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 

 even with 150-200 time-series observations33. Moreover, the analysis of 
predictive ability in Section S4.2 of the same work also confirms that the estimator in (8) leads 
to superior predictive ability compared to other methods34. In light of this information, the bias-
corrected panel GARCH estimator stands out as the appropriate method for our purposes. Our 
empirical analysis will, therefore, be based on this method.

2.3. Details of Estimation

In obtaining 
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29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 

, we follow the same recipe outlined in Section S4.4 of Pakel’s paper, and full details 
of estimation can be found there.35 The first-step consists of estimation of 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

 by maximising the 
integrated likelihood function in equation (6). This integral is quite complicated and does not yield 
a closed-form solution. As such, the econometrician first has to calculate the integral numerically 
and then optimise the resulting integrated likelihood function by numerical methods. Notice that 
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𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 
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, the whole 
set of possible values for 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

, which is computationally not feasible. Instead, we focus on a grid of 15 
equally-spaced values for 
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; the upper/lower bounds of this grid are chosen to be 1.20/0.80 times the 
maximum/minimum squared return across the sample used for estimation. The resulting integrated 
likelihood function is then optimised numerically with respect to 
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ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 
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of a substantial literature in panel data econometrics — however, the focus of this literature is 
almost exclusively confined to microeconometric applications and volatility modelling has not 
been a subject of interest. Importantly for our purposes, methods for removing the small-𝑇𝑇 bias 
of (𝛼𝛼, 𝛽𝛽) have already been proposed in that literature.29 Using this insight, in recent work Pakel 
proposes a bias-corrected version of the panel GARCH estimator.30 Let, for brevity, 𝜃𝜃 = (𝛼𝛼, 𝛽𝛽). 
The proposed estimator is an integrated likelihood estimator given by 

𝜃𝜃𝐼𝐼𝐼𝐼 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃
1
𝑁𝑁𝑁𝑁

∑ ln∫ exp(𝑇𝑇ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃))Λ
𝑁𝑁
𝑖𝑖=1 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖)𝑑𝑑𝜆𝜆𝑖𝑖, (6) 

where 

𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) = {𝐸𝐸[−𝜕𝜕2ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]}1/2 exp (
𝑁𝑁
2
𝐸𝐸[(𝜕𝜕ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖)2]
𝐸𝐸[𝜕𝜕2ℓ𝑖𝑖𝑖𝑖(𝜆𝜆𝑖𝑖,𝜃𝜃)/𝜕𝜕𝜆𝜆𝑖𝑖2]

), (7) 

and Λ is the set of possible values for 𝜆𝜆𝑖𝑖. This particular choice of 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) guarantees that the 
small-sample bias of 𝜃𝜃𝐼𝐼𝐼𝐼 will be of order1/𝑇𝑇2, as opposed to the estimator in (5) which is not 
bias-corrected and so has a small-sample bias of order 1/𝑇𝑇. In other words, the integrated 
likelihood estimator has a diminished small-sample bias, making it accurate even when 𝑇𝑇 is very 
small.31 We underline that the bias-corrected estimator of equation (6) is not a different volatility 
model, but an alternative method (which is robust to small sample sizes) for estimating the 
parameters of the panel GARCH model in (4). In connection with this point, this approach also 
imposes the parameter restrictions 𝛼𝛼 ≥ 0,𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1. 

Even though 𝜃𝜃𝐼𝐼𝐼𝐼  is an accurate estimator, one still has to estimate 𝜆𝜆𝑖𝑖 in order to fully model 𝜎𝜎𝑖𝑖𝑖𝑖2 . 
Unfortunately, a bias-corrected estimator for 𝜆𝜆𝑖𝑖 does not exist. However, Pakel32 proposes 

�̃�𝜆𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆𝑖𝑖 ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼), (8) 

under the restriction 𝜆𝜆𝑖𝑖 > 0. The intuition here is that, the likelihood function ℓ𝑖𝑖𝑁𝑁(𝜆𝜆𝑖𝑖, 𝜃𝜃𝐼𝐼𝐼𝐼) will 
be more informative about 𝜆𝜆𝑖𝑖 since it is based on the bias-corrected 𝜃𝜃𝐼𝐼𝐼𝐼, with the consequence 
that  �̃�𝜆𝑖𝑖 is a more accurate estimator compared to �̂�𝜆𝑖𝑖. 

                                                        
29 For a comprehensive survey of this literature along with the standard correction methods, see: Fernández-
Val, I., Weidner, M. (2018). Fixed Effects Estimation of Large-T Panel Data Models, Annual Review of 
Economics, 10: 109-138. 
30 Pakel, 2019, 64-80. 
31 For the original use of the integrated likelihood method in the panel data literature and the derivation of 
the bias correcting weight function 𝜋𝜋𝑖𝑖(𝜆𝜆𝑖𝑖) see: Arellano, M., Bonhomme, S. (2009). Robust Priors in 
Nonlinear Panel Data Models, Econometrica, 77: 489-536. 
32 Pakel, 2019, 69. 
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to the recursive structure of GARCH. Hence, 
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2.2 Bias-corrected Panel GARCH Method 

In order to make the GARCH model operational with a limited number of observations, Pakel et 
al. propose a panel GARCH approach which utilises both cross-sectional and time-series 
information.26 In particular, let 𝑟𝑟𝑖𝑖𝑖𝑖  be the return on asset 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁) at time 𝑡𝑡, and let 𝐹𝐹𝑖𝑖𝑖𝑖 be 
the information set for asset 𝑖𝑖 at time 𝑡𝑡. Then, their panel GARCH model for σ𝑖𝑖𝑖𝑖

2 =
𝑉𝑉𝑉𝑉𝑟𝑟(𝑟𝑟𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1), the conditional variance of asset 𝑖𝑖, is given by 

𝜎𝜎𝑖𝑖𝑖𝑖
2 = 𝜆𝜆𝑖𝑖(1 − 𝛼𝛼 − 𝛽𝛽) + 𝛼𝛼𝜀𝜀𝑖𝑖𝑖𝑖−1

2 + 𝛽𝛽𝜎𝜎𝑖𝑖𝑖𝑖−1
2 ,          𝜀𝜀𝑖𝑖𝑖𝑖|𝐹𝐹𝑖𝑖𝑖𝑖−1 ∼ 𝑁𝑁(0, 𝜎𝜎𝑖𝑖𝑖𝑖

2 ), (4) 

where we again assume that the shock process 𝜀𝜀𝑖𝑖𝑖𝑖  is conditionally normal. Estimation is again 
based on the standard restrictions 𝜆𝜆𝑖𝑖 > 0, 𝛼𝛼 ≥ 0, 𝛽𝛽 ≥ 0 and 𝛼𝛼 + 𝛽𝛽 < 1, as for the GARCH(1,1) 
model. The model in (4) imposes that (𝛼𝛼, 𝛽𝛽) be the same across all assets while leaving 𝜆𝜆𝑖𝑖 to be 
heterogenous across assets. This is motivated by the general observation that, for equity returns, 
estimates of 𝛼𝛼 and 𝛽𝛽 tend to cluster around similar values27 (for 𝛼𝛼 this is around 0 whereas 𝛽𝛽 is 
usually around 1). Leaving 𝜆𝜆𝑖𝑖 to be asset-specific allows each asset to have a different long-run 
variance, and provides flexibility. 

The main insight in this approach is that when (𝛼𝛼, 𝛽𝛽) is the same across assets, the 
econometrician can use the bigger information pool provided by the time and cross-section 
dimensions (as opposed to using the information in a single time-series to estimate (𝛼𝛼, 𝛽𝛽) 
separately for each asset). The motivation here is to dampen the effect of the small-𝑇𝑇 bias by 
using the extra information coming from the cross-section dimension. 

The original estimation approach used by Pakel et al.28 is the natural extension of the estimator 
in (3): 

�̂�𝜆𝑖𝑖 = 1
𝑇𝑇 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖

2
𝑇𝑇

𝑖𝑖=1
    𝑉𝑉𝑎𝑎𝑎𝑎    (�̂�𝛼, �̂�𝛽) = arg 𝑚𝑚𝑉𝑉𝑚𝑚 𝛼𝛼,𝛽𝛽

1
𝑁𝑁 ∑ ℓ𝑖𝑖𝑇𝑇(�̂�𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽)

𝑁𝑁

𝑖𝑖=1
, (5) 

where 

ℓ𝑖𝑖𝑇𝑇(𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) = 1
𝑇𝑇 ∑ (− 1

2 ln(2𝜋𝜋) − 1
2 ln(𝜎𝜎𝑖𝑖𝑖𝑖

2 ) − 1
2

𝑟𝑟𝑖𝑖𝑖𝑖
2

𝜎𝜎𝑖𝑖𝑖𝑖
2 ) .

𝑇𝑇

𝑖𝑖=2
 

However, a more interesting estimation approach has recently been suggested, based on the 
observation that the model in (4) is essentially a member of the general class of nonlinear and 
dynamic panel models with individual-specific parameters. This class of models is the subject 

                                                        
26 Pakel, C. et al. (2011). Nuisance Parameters, Composite Likelihoods and a Panel of GARCH Models, 
Statistica Sinica, 21: 307-329. 
27 Brownlees, C. T. (2019). Hierarchical GARCH, Journal of Empirical Finance, 51, p.17. 
28 Pakel et al., 2011, 311. 

 is also obtained by numerical optimisation. All 
computations were done on MATLAB.

32 Pakel, 2019, 69.
33 Pakel, 2019, 66-67.
34 Pakel, 2019, 68-69.
35 Pakel, 2019, 71-72.
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3. Volatility Analysis of BIST 100 Index Constituents

Our dataset consists of the daily returns on all BIST 100 index constituents that were continuously 
traded between 27 May 2013 and 2 July 2020, which corresponds to 1783 observations per equity.36 
This corresponds to 90 firms. We also consider a sector-level analysis of BIST 100 constituents where 
we focus on the sectors industrials, financials and services which consist of 43, 30 and 13 equities, 
respectively.37 These are the sectors with the largest number of firms in them, and together they 
cover 86 of the 90 equities analysed here (we note that each firm belongs to a single sector only). 
The remaining four firms belong to the sector technology; however, we omit this sector from our 
analysis, since the panel approach would be unreliable with only four firms. A full list of all the firms 
considered in this study is provided in Table 1.

Table 1. BIST 100 Constituent Equities Considered in the Empirical Analysis, and Their Sector 
Information.

BIST 100 
Const. Company Name Sector BIST 100 

Const. Company Name Sector

AEFES ANADOLU EFES INDUSTRIALS KARSN KARSAN OTOMOTIV INDUSTRIALS

AGHOL ANADOLU GRUBU 
HOLDING FINANCIALS KARTN KARTONSAN INDUSTRIALS

AKBNK AKBANK FINANCIALS KCHOL KOC HOLDING FINANCIALS
AKCNS AKCANSA INDUSTRIALS KERVT KEREVITAS GIDA INDUSTRIALS
AKGRT AKSIGORTA FINANCIALS KLMSN KLIMASAN KLIMA INDUSTRIALS

AKSA AKSA INDUSTRIALS KORDS KORDSA TEKNIK 
TEKSTIL INDUSTRIALS

AKSEN AKSA ENERJI SERVICES KOZAA KOZA MADENCILIK INDUSTRIALS
ALARK ALARKO HOLDING FINANCIALS KOZAL KOZA ALTIN INDUSTRIALS
ALBRK ALBARAKA TURK FINANCIALS KRDMD KARDEMIR (D) INDUSTRIALS
ALGYO ALARKO GMYO FINANCIALS LOGO LOGO YAZILIM TECHNOLOGY
ALKIM ALKIM KIMYA INDUSTRIALS MGROS MIGROS TICARET SERVICES

ANACM ANADOLU CAM INDUSTRIALS NETAS NETAS TELEKOM. TECHNOLOGY
ARCLK ARCELIK INDUSTRIALS NTHOL NET HOLDING FINANCIALS
ASELS ASELSAN TECHNOLOGY OTKAR OTOKAR INDUSTRIALS

AYGAZ AYGAZ INDUSTRIALS OYAKC OYAK CIMENTO INDUSTRIALS
BAGFS BAGFAS INDUSTRIALS PETKM PETKIM INDUSTRIALS
BIMAS BIM MAGAZALAR SERVICES SAHOL SABANCI HOLDING FINANCIALS
BIZIM BIZIM MAGAZALARI SERVICES SASA SASA POLYESTER INDUSTRIALS

BRISA BRISA INDUSTRIALS SELEC SELCUK ECZA 
DEPOSU SERVICES

BRSAN BORUSAN 
MANNESMANN INDUSTRIALS SISE SISE CAM FINANCIALS

36 Our analysis spans the period between 2 January 2014 and 2 July 2020. However, since estimation for each day requires 
150 observations, our estimation sample starts from 27 May 2013.

37 Sector information for BIST 100 constituents, as of the third quarter of 2020, is obtained from https://www.borsaistanbul.com/en/
sayfa/3542/bist-stock-indices (last accessed on 7 August 2020). This list also contains weights of each equity in their sector index.
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BUCIM BURSA CIMENTO INDUSTRIALS SKBNK SEKERBANK FINANCIALS
CCOLA COCA COLA ICECEK INDUSTRIALS SODA SODA SANAYII INDUSTRIALS
CEMTS CEMTAS INDUSTRIALS TATGD TAT GIDA INDUSTRIALS

CIMSA CIMSA INDUSTRIALS TAVHL TAV 
HAVALIMANLARI FINANCIALS

CLEBI CELEBI SERVICES TCELL TURKCELL SERVICES
DEVA DEVA HOLDING INDUSTRIALS THYAO TURK HAVA YOLLARI SERVICES
DOAS DOGUS OTOMOTIV SERVICES TKFEN TEKFEN HOLDING FINANCIALS
DOCO DO-CO SERVICES TOASO TOFAS OTO. FAB. INDUSTRIALS

DOHOL DOGAN HOLDING FINANCIALS TRGYO TORUNLAR GMYO FINANCIALS
ECILC ECZACIBASI ILAC FINANCIALS TRKCM TRAKYA CAM INDUSTRIALS
EGEEN EGE ENDUSTRI INDUSTRIALS TSKB T.S.K.B. FINANCIALS

EKGYO EMLAK KONUT 
GMYO FINANCIALS TTKOM TURK TELEKOM SERVICES

ENKAI ENKA INSAAT SERVICES TTRAK TURK TRAKTOR INDUSTRIALS
EREGL EREGLI DEMIR CELIK INDUSTRIALS TUPRS TUPRAS INDUSTRIALS
FROTO FORD OTOSAN INDUSTRIALS ULKER ULKER BISKUVI INDUSTRIALS
GARAN GARANTI BANKASI FINANCIALS VAKBN VAKIFLAR BANKASI FINANCIALS

GLYHO GLOBAL YAT. 
HOLDING FINANCIALS VESTL VESTEL INDUSTRIALS

GOODY GOOD-YEAR INDUSTRIALS YATAS YATAS INDUSTRIALS

GOZDE GOZDE GIRISIM FINANCIALS YKBNK YAPI VE KREDI 
BANK. FINANCIALS

GSDHO GSD HOLDING FINANCIALS ZOREN ZORLU ENERJI SERVICES
GUBRF GUBRE FABRIK. INDUSTRIALS
GUSGR GUNES SIGORTA FINANCIALS
HALKB T. HALK BANKASI FINANCIALS
HEKTS HEKTAS INDUSTRIALS
IPEKE IPEK DOGAL ENERJI INDUSTRIALS
ISCTR IS BANKASI FINANCIALS
ISFIN IS FIN.KIR. FINANCIALS
ISGYO IS GMYO FINANCIALS
ISMEN IS Y. MEN. DEG. FINANCIALS
KAREL KAREL ELEKTRONIK TECHNOLOGY

Table 2. Cross-Section Dependence and Panel Unit Root Test Results

Panel Cross-Section Dependence Test Result
Test Type Test Statistic p-Value
Pesaran 843.607 0.00

Friedman 50938.228 0.00
Frees 9.356 0.00

CADF Panel Unit Root Test Results
Test statistic Approximate critical values



Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi • Cilt: 42 • Sayı: 2 • Aralık 2020, ISSN: 2587-2672, ss/pp.  340-360

351

1% 5% 10%
-6.42 -2.65 -2.57 -2.52

Note: Results of the panel cross-section dependence and panel unit root tests for the panel of returns used in this paper, 
which contains 1783 time observations on 90 equities. The top panel reports the cross-section dependence test results for 
Pesaran’s, Friedman’s and Frees’ tests. The bottom panel reports the results for the panel unit root test of Pesaran38. Critical 
values have been obtained from Table II(c) of Pesaran’s original paper for the case T=200 and N=100.

In generating the returns series for each equity, we follow the standard practice and use 
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Note: Results of the panel cross-section dependence and panel unit root tests for the panel of 
returns used in this paper, which contains 1783 time observations on 90 equities. The top panel 
reports the cross-section dependence test results for Pesaran’s, Friedman’s and Frees’ tests. The 
bottom panel reports the results for the panel unit root test of Pesaran38. Critical values have been 
obtained from Table II(c) of Pesaran’s original paper for the case T=200 and N=100. 

In generating the returns series for each equity, we follow the standard practice and use 𝑟𝑟𝑖𝑖𝑖𝑖 =
100 ∗ ln (𝑃𝑃𝑖𝑖𝑖𝑖/𝑃𝑃𝑖𝑖𝑖𝑖−1) where 𝑃𝑃𝑖𝑖𝑖𝑖  is the closing price of equity 𝑖𝑖 at date 𝑡𝑡. Before starting our main 
analysis, we investigate our dataset for the presence of cross-section dependence and non-
stationarity. To test the former, we employ the diagnostic test for cross-sectional dependence in 
panels, developed by Pesaran39. We also consider the more classical Friedman’s40 and Frees’41 
tests. The test results are presented in the top panel of Table 2. All three tests reject the null 
hypothesis of cross-section independence with a p-value of 0.00, strongly suggesting the 
presence of cross-section dependence. This is not a surprising result for financial panels; nor is 
it a problem since Pakel’s method is specifically designed to be robust against cross-section 
dependence in panels42. We also test for non-stationarity using the panel unit root test developed 

                                                        
38 Pesaran, M. H. (2007). A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence, 
Journal of Applied Econometrics, 22: 279-281. 
39 Pesaran, M. H. (2004). General Diagnostic Tests for Cross Section Dependence in Panels, IZA 
Discussion Paper Series, No 1240: 1-39. 
40 Friedman, M. (1937). The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis 
of Variance, Journal of the American Statistical Association, 32: 675-701. 
41 Frees, E. W. (1995). Assessing Cross-Sectional Correlation in Panel Data, Journal of Econometrics, 69: 
393-414. 
42 Pakel, 2019, 64-80. 

 13 
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by Pesaran43. This test allows for cross-section dependence and so it is suitable for our case. The 
result of this test is presented in the bottom panel of Table 2. The null hypothesis of this test is 
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that all series in our panel are non-stationary at 1%, 5% and 10% levels of significance.46 

We now turn to the main contribution of our paper, which is volatility analysis of BIST 100 
constituents. All our results are based on the panel GARCH model in (4) which we estimate 
using the bias-corrected estimator outlined in equations (6)-(8). As explained in Section 2.2, the 
integrated likelihood estimator 𝜃𝜃𝐼𝐼𝐼𝐼 = (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) is obtained for the whole panel of assets, whereas 
�̃�𝜆1,… , �̃�𝜆𝑁𝑁 are asset specific. For instance, the analysis of BIST 100 constituents obtains (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) 
by constructing the integrated likelihood function in (6) using the panel of all 90 assets under 
consideration. The analysis for, e.g., financials, on the other hand, obtains (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) using the 
panel of the 30 assets that belong to the sector financials only. Finally, for any given (�̃�𝜆𝑖𝑖, �̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼), 
predicted daily volatilities for asset 𝑖𝑖 are calculated by replacing (𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) in equation (4) by 
(�̃�𝜆𝑖𝑖, �̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼). 
3.1 General Comparison between 2014-2018 and 2018-2020 

In this part, we undertake an exploratory analysis and estimate the panel GARCH model of 
equation (4) for the periods January 2014-April 2018 and May 2018-July 2020.47 Our aim here 
is to have a broad comparison of the two periods before delving into the more detailed analysis 
of Sections 3.2 and 3.3. In particular, as opposed to our analysis in Sections 3.2 and 3.3, in this 
part we estimate a single set of parameters (α, β) for each period, using the whole panel of 
observations for that period. We do this both for BIST 100 constituents and the sectors 
industrials, financials and services. 
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46 We also ran individual augmented Dickey-Fuller tests to check non-stationarity of individual series 
separately. However, none of the series were found to have a unit root. 
47 We start the first period in January 2014 mainly to have a long enough period of comparison, and not 
because the period between January 2014 and April 2018 is thought to be a homogenous period for the 
stock market. As for starting the second period in May 2018, we note that although the currency shock 
occurs in August 2018, the TL/USD exchange rate begins to exhibit fluctuations around May 2018 (see 
Figure 1). Therefore, we choose to start the second period in May 2018.  
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Financials 0.12 0.88 0.19 0.79 30 

Services 0.08 0.92 0.18 0.80 13 
 

Our results, presented in Table 3, suggest a general shift in the parameters (𝛼𝛼, 𝛽𝛽) — or, 
equivalently, in volatility dynamics — between the two periods. For BIST 100 constituents as a 
whole, although the shift in α is minimal, there is a sizeable change in 𝛽𝛽 from 0.9 to 0.8. Results 
for sector-specific parameters reveal substantial changes in both parameters between the two 
periods. For financials and services, we observe an increase in 𝛼𝛼, paired with a decrease in 𝛽𝛽. 
For industrials, we observe the opposite. A further observation is that there is considerable 
heterogeneity across sectors in terms of their volatility parameters. This is especially evident in 
the first period. Interestingly, in the second period the estimated parameters for financials and 
services are almost identical. From a technical point, an increase in α means that the effect of the 
lagged shock process (𝜀𝜀𝑖𝑖𝑖𝑖−1

2 ) on current volatility is greater, which usually leads to a noisier 
volatility process. An increase in 𝛽𝛽, on the other hand, implies that the effect of lagged volatility 
on current volatility is higher, resulting in a smoother volatility behaviour. However, we again 
note that the results of this part provide a very broad overview, and therefore we refrain from 
reaching an overall conclusion. The analysis presented in the following parts will provide a much 
clearer picture of the behaviour of volatility. 

3.2 Analysis of Daily Volatilities Between 2018-2020 

In this part, we study the daily volatility process throughout the period from January 2018 to 
July 2020. Calculation of the daily volatility for a particular equity 𝑖𝑖 requires the parameter 
estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽). To ensure that our results are as robust as possible to potential changes in 
the parameters (𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽), we obtain a new set of estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) for every date in our sample 
(using an estimation window of the 150 most recent data points). This approach, made possible 
by the bias-corrected panel GARCH method of Section 2.2, ensures that our results reflect only 
the most recent history at any given point in time (as opposed to using information from several 
years of data, as would be the case with standard GARCH estimation methods). The estimates 
(�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) obtained for date 𝑡𝑡 are used to construct  �̂�𝜎𝑖𝑖𝑖𝑖

2 , the estimated volatility for equity 𝑖𝑖 at that 
date. The (weighted) average volatility for BIST 100 at date 𝑡𝑡 is then given by ∑ 𝑤𝑤𝑖𝑖 �̂�𝜎𝑖𝑖𝑖𝑖
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by Pesaran43. This test allows for cross-section dependence and so it is suitable for our case. The 
result of this test is presented in the bottom panel of Table 2. The null hypothesis of this test is 
the presence of a unit root in all series in the panel, against the alternative that at least one series 
is stationary. We note that this test has a non-standard distribution; as a result, its critical values, 
as presented in Pesaran’s original paper, are based on simulation results.44 Unfortunately, critical 
values for our sample size (T=1783, N=90) are not available. However, a quick glance at Table 
II(c) in Pesaran’s paper45 reveals that the critical values become stable as T increases. For this 
reason, we take the critical values for T=200, N=100 as approximate critical values for our case. 
Clearly, our test statistic of -6.42 is sufficiently large in absolute value to reject the hypothesis 
that all series in our panel are non-stationary at 1%, 5% and 10% levels of significance.46 

We now turn to the main contribution of our paper, which is volatility analysis of BIST 100 
constituents. All our results are based on the panel GARCH model in (4) which we estimate 
using the bias-corrected estimator outlined in equations (6)-(8). As explained in Section 2.2, the 
integrated likelihood estimator 𝜃𝜃𝐼𝐼𝐼𝐼 = (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) is obtained for the whole panel of assets, whereas 
�̃�𝜆1,… , �̃�𝜆𝑁𝑁 are asset specific. For instance, the analysis of BIST 100 constituents obtains (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) 
by constructing the integrated likelihood function in (6) using the panel of all 90 assets under 
consideration. The analysis for, e.g., financials, on the other hand, obtains (�̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼) using the 
panel of the 30 assets that belong to the sector financials only. Finally, for any given (�̃�𝜆𝑖𝑖, �̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼), 
predicted daily volatilities for asset 𝑖𝑖 are calculated by replacing (𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽) in equation (4) by 
(�̃�𝜆𝑖𝑖, �̂�𝛼𝐼𝐼𝐼𝐼, �̂�𝛽𝐼𝐼𝐼𝐼). 
3.1 General Comparison between 2014-2018 and 2018-2020 

In this part, we undertake an exploratory analysis and estimate the panel GARCH model of 
equation (4) for the periods January 2014-April 2018 and May 2018-July 2020.47 Our aim here 
is to have a broad comparison of the two periods before delving into the more detailed analysis 
of Sections 3.2 and 3.3. In particular, as opposed to our analysis in Sections 3.2 and 3.3, in this 
part we estimate a single set of parameters (α, β) for each period, using the whole panel of 
observations for that period. We do this both for BIST 100 constituents and the sectors 
industrials, financials and services. 
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46 We also ran individual augmented Dickey-Fuller tests to check non-stationarity of individual series 
separately. However, none of the series were found to have a unit root. 
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because the period between January 2014 and April 2018 is thought to be a homogenous period for the 
stock market. As for starting the second period in May 2018, we note that although the currency shock 
occurs in August 2018, the TL/USD exchange rate begins to exhibit fluctuations around May 2018 (see 
Figure 1). Therefore, we choose to start the second period in May 2018.  
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Table 3. GARCH Parameter Estimates for 2014-2018 and 2018-2020. 

Sectors 01/2014-04/2018 05/2018-07/2020   

(period-1) (period-2)  

𝜶𝜶 𝜷𝜷 𝜶𝜶 𝜷𝜷 Number of 
Equities 

BIST 100 0.10 0.90 0.11 0.80 90 

Industrials 0.17 0.82 0.13 0.85 43 

Financials 0.12 0.88 0.19 0.79 30 

Services 0.08 0.92 0.18 0.80 13 
 

Our results, presented in Table 3, suggest a general shift in the parameters (𝛼𝛼, 𝛽𝛽) — or, 
equivalently, in volatility dynamics — between the two periods. For BIST 100 constituents as a 
whole, although the shift in α is minimal, there is a sizeable change in 𝛽𝛽 from 0.9 to 0.8. Results 
for sector-specific parameters reveal substantial changes in both parameters between the two 
periods. For financials and services, we observe an increase in 𝛼𝛼, paired with a decrease in 𝛽𝛽. 
For industrials, we observe the opposite. A further observation is that there is considerable 
heterogeneity across sectors in terms of their volatility parameters. This is especially evident in 
the first period. Interestingly, in the second period the estimated parameters for financials and 
services are almost identical. From a technical point, an increase in α means that the effect of the 
lagged shock process (𝜀𝜀𝑖𝑖𝑖𝑖−1

2 ) on current volatility is greater, which usually leads to a noisier 
volatility process. An increase in 𝛽𝛽, on the other hand, implies that the effect of lagged volatility 
on current volatility is higher, resulting in a smoother volatility behaviour. However, we again 
note that the results of this part provide a very broad overview, and therefore we refrain from 
reaching an overall conclusion. The analysis presented in the following parts will provide a much 
clearer picture of the behaviour of volatility. 

3.2 Analysis of Daily Volatilities Between 2018-2020 

In this part, we study the daily volatility process throughout the period from January 2018 to 
July 2020. Calculation of the daily volatility for a particular equity 𝑖𝑖 requires the parameter 
estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽). To ensure that our results are as robust as possible to potential changes in 
the parameters (𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽), we obtain a new set of estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) for every date in our sample 
(using an estimation window of the 150 most recent data points). This approach, made possible 
by the bias-corrected panel GARCH method of Section 2.2, ensures that our results reflect only 
the most recent history at any given point in time (as opposed to using information from several 
years of data, as would be the case with standard GARCH estimation methods). The estimates 
(�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) obtained for date 𝑡𝑡 are used to construct  �̂�𝜎𝑖𝑖𝑖𝑖
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date. The (weighted) average volatility for BIST 100 at date 𝑡𝑡 is then given by ∑ 𝑤𝑤𝑖𝑖 �̂�𝜎𝑖𝑖𝑖𝑖
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between January 2014 and April 2018 is thought to be a homogenous period for the stock market. As for starting the 
second period in May 2018, we note that although the currency shock occurs in August 2018, the TL/USD exchange rate 
begins to exhibit fluctuations around May 2018 (see Figure 1). Therefore, we choose to start the second period in May 
2018.
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the other hand, implies that the effect of lagged volatility on current volatility is higher, resulting 
in a smoother volatility behaviour. However, we again note that the results of this part provide a 
very broad overview, and therefore we refrain from reaching an overall conclusion. The analysis 
presented in the following parts will provide a much clearer picture of the behaviour of volatility.

3.2. Analysis of Daily Volatilities Between 2018-2020

In this part, we study the daily volatility process throughout the period from January 2018 to 
July 2020. Calculation of the daily volatility for a particular equity i requires the parameter 
estimates 
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43 Pesaran, 2007, 265-312. 
44 Pesaran, 2007, 279-281. 
45 Pesaran, 2007, 281. 
46 We also ran individual augmented Dickey-Fuller tests to check non-stationarity of individual series 
separately. However, none of the series were found to have a unit root. 
47 We start the first period in January 2014 mainly to have a long enough period of comparison, and not 
because the period between January 2014 and April 2018 is thought to be a homogenous period for the 
stock market. As for starting the second period in May 2018, we note that although the currency shock 
occurs in August 2018, the TL/USD exchange rate begins to exhibit fluctuations around May 2018 (see 
Figure 1). Therefore, we choose to start the second period in May 2018.  
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Table 3. GARCH Parameter Estimates for 2014-2018 and 2018-2020. 

Sectors 01/2014-04/2018 05/2018-07/2020   

(period-1) (period-2)  

𝜶𝜶 𝜷𝜷 𝜶𝜶 𝜷𝜷 Number of 
Equities 

BIST 100 0.10 0.90 0.11 0.80 90 

Industrials 0.17 0.82 0.13 0.85 43 

Financials 0.12 0.88 0.19 0.79 30 

Services 0.08 0.92 0.18 0.80 13 
 

Our results, presented in Table 3, suggest a general shift in the parameters (𝛼𝛼, 𝛽𝛽) — or, 
equivalently, in volatility dynamics — between the two periods. For BIST 100 constituents as a 
whole, although the shift in α is minimal, there is a sizeable change in 𝛽𝛽 from 0.9 to 0.8. Results 
for sector-specific parameters reveal substantial changes in both parameters between the two 
periods. For financials and services, we observe an increase in 𝛼𝛼, paired with a decrease in 𝛽𝛽. 
For industrials, we observe the opposite. A further observation is that there is considerable 
heterogeneity across sectors in terms of their volatility parameters. This is especially evident in 
the first period. Interestingly, in the second period the estimated parameters for financials and 
services are almost identical. From a technical point, an increase in α means that the effect of the 
lagged shock process (𝜀𝜀𝑖𝑖𝑖𝑖−1

2 ) on current volatility is greater, which usually leads to a noisier 
volatility process. An increase in 𝛽𝛽, on the other hand, implies that the effect of lagged volatility 
on current volatility is higher, resulting in a smoother volatility behaviour. However, we again 
note that the results of this part provide a very broad overview, and therefore we refrain from 
reaching an overall conclusion. The analysis presented in the following parts will provide a much 
clearer picture of the behaviour of volatility. 

3.2 Analysis of Daily Volatilities Between 2018-2020 

In this part, we study the daily volatility process throughout the period from January 2018 to 
July 2020. Calculation of the daily volatility for a particular equity 𝑖𝑖 requires the parameter 
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(using an estimation window of the 150 most recent data points). This approach, made possible 
by the bias-corrected panel GARCH method of Section 2.2, ensures that our results reflect only 
the most recent history at any given point in time (as opposed to using information from several 
years of data, as would be the case with standard GARCH estimation methods). The estimates 
(�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) obtained for date 𝑡𝑡 are used to construct  �̂�𝜎𝑖𝑖𝑖𝑖
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100 constituents, the weights are normalised so that ∑ 𝑤𝑤𝑖𝑖 = 190
𝑖𝑖=1 ). In calculating the average 

volatilities for sectors, we use the weights for the corresponding sector index, which we also 
normalise to add up to one.48 

Figure 2. Behaviour of Daily Volatility for BIST 100 Constituent Equities 
between 2 January 2018 and 2 July 2020. 

 
Note: The upper panel presents the daily (weighted) average volatility across the 90 BIST 100 
constituent equities included in the analysis. The lower panel shows the 10th, 50th (median), and 
90th percentiles of daily volatility across the same equities at each point in time. Daily volatility 
is modelled using the panel GARCH model of equation (4). The in-sample size for each date is 
equal to 150. For more details, see Section 3.2. 

The upper panel of Figure 2 provides the daily average predicted volatility over all the index 
constituents considered in our analysis. The lower panel of this figure, on the other hand, presents 
the 10th, 50th (median) and 90th percentiles of daily volatility across all assets. This provides a 
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Figure 2. Behaviour of Daily Volatility for BIST 100 Constituent Equities between 2 January 2018 
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Note: The upper panel presents the daily (weighted) average volatility across the 90 BIST 100 constituent equi-
ties included in the analysis. The lower panel shows the 10th, 50th (median), and 90th percentiles of daily vola-
tility across the same equities at each point in time. Daily volatility is modelled using the panel GARCH model 
of equation (4). The in-sample size for each date is equal to 150. For more details, see Section 3.2.

48 This normalisation is necessary since our sector analysis is also restricted to firms that are among BIST 100 constituents. 
For example, the sector industrials contains 163 firms. However, only 43 of these are among BIST 100 constituents. 
Hence, their sector index weights do not add up to one without normalisation.
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The upper panel of Figure 2 provides the daily average predicted volatility over all the index 
constituents considered in our analysis. The lower panel of this figure, on the other hand, presents 
the 10th, 50th (median) and 90th percentiles of daily volatility across all assets. This provides a 
general snapshot of the sample distribution of volatility across assets on a daily basis.

The upper panel of Figure 2 reveals that the average volatility of BIST 100 has increased by a substantial 
amount during both shock periods. However, it is striking that the volatility increase during the 
COVID shock period is far greater and a lot less transitory: the jump in volatility in August 2018 is 
high, but it quickly returns to pre-shock levels; the jump following COVID in March 2020, on the 
other hand, takes longer to subside. Given that the COVID pandemic is widely considered to be far 
from over, it is possible that similar significant volatility movements will be observed in the future as 
the pandemic runs its course. On the other hand, it is also possible that due to the experience gained 
in the fight against the pandemic (especially in healthcare) since March 2020, future COVID waves 
will not be accompanied by significant volatility movements.

Turning to the sample distribution of volatility, presented in the lower panel, a much stronger shift 
in the volatility distribution following the COVID shock is apparent. Not surprisingly, the 10th 
percentile and median are quite close, while the 90th percentile is farther away from the median. 
This asymmetric distribution of volatility is quite standard. The variation in the size of the right tail 
is still important, as an increase in the skewness of the distribution is a sign of higher tail risk. We see 
that the distribution becomes more skewed during both the currency and COVID shocks. However, 
it is revealing that the jump in the size of the right tail during the COVID pandemic is of a much 
greater magnitude compared to the currency shock period. In other words, the pandemic period has 
witnessed a higher amount of tail risk in the stock market.

Figure 3 provides the corresponding pictures for the sectors industrials, financials and services. The 
average daily volatilities and the sample distributions of volatility are calculated in the same way as 
before, except that model parameters are estimated by using the assets that belong to a given sector 
only. The general observation from the left panel of this figure is that the average volatility across all 
sectors increased significantly during both the currency and COVID shock periods. However, we 
see some heterogeneity across sectors. For example, similar to BIST 100, the sectors industrials and 
services exhibit a lot more sensitivity during the COVID pandemic. On the other hand, the increase 
in volatility for financials during the currency and COVID shocks are of similar magnitudes. A 
further pattern observed for financials is the presence of intermittent volatility spikes following 
the currency shock. This sector also exhibits volatility jumps in the period leading to the currency 
shock. What is common to all sectors is something we have also observed for BIST 100: the volatility 
increase during the currency shock is more of a transitory nature, whereas the volatility jump during 
the COVID pandemic appears to take some time to go back to pre-COVID levels. Distribution of 
daily volatility within different sectors, presented on the right panel of Figure 3 provides a better 
understanding of the behaviour of volatility across sectors. As before, the skewness of the right tail 
varies across time, and all sectors exhibit a widening of the right tail around shock periods. However, 
there is some variation in individual behaviour. For example, the size of the right tail decreases for 
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financials following the initial COVID shock. For industrials this is not the case and, in general, 
the tail size remains relatively large in the following period. For services the 90th percentile actually 
shows wide fluctuations. Services does stand out in terms of its behaviour following the currency 
shock, as well: in the months after the currency shock we observe several wide swings of the right tail, 
suggesting that the tail risk of this sector remains significant.

Figure 3. Behaviour of Daily Volatility for the Sectors Industrials, Financials and Services between 
2 January 2018 and 2 July 2020.
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Figure 3. Behaviour of Daily Volatility for the Sectors Industrials, Financials and 
Services between 2 January 2018 and 2 July 2020. 

 
Note: The number of equities in each sector is given in parentheses. The left panel presents the 
daily (weighted) average volatility across equities belonging to each sector. The right panel 
shows the 10th, 50th (median), and 90th percentiles of daily volatility for the corresponding 
sector. For more details, see the caption to Figure 2.

Note: The number of equities in each sector is given in parentheses. The left panel presents the daily (weighted) average 
volatility across equities belonging to each sector. The right panel shows the 10th, 50th (median), and 90th percentiles of 
daily volatility for the corresponding sector. For more details, see the caption to Figure 2.
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3.3. Volatility Ranking of Sectors

In this last part, we look at the average volatilities of BIST 100 constituents and the three sectors 
under consideration across different sub-periods. Given the risk interpretation of volatility, the main 
motivation of this part is to analyse the general risk ranking of sectors. In particular, we are interested 
in looking at whether the general level of riskiness changes between periods, whether all sectors 
uniformly become riskier during a certain period, and whether the risk ranking between sectors 
changes across different periods. We use average volatility to measure the level of risk within a given 
time period. This is calculated as follows: let 
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𝑖𝑖=1 . The same quantity for a particular 
sector is obtained by using the equity weights for that sector’s index. 

Our analysis considers the following four sub-periods: (i) the period before the two shocks (2 
January 2014 - 30 April 2018), (ii) the period of the two shocks (2 May 2018 - 2 July 2020), (iii) 
the period around the currency shock (2 May 2018 - 30 December 2018), and (iv) the period 
around the COVID shock (30 January 2020 - 2 July 2020).49  

Figure 4. Average Volatility of BIST 100 Constituents and Individual Sectors for 
2014-2018 and 2018-2020. 

 
Note: See Section 3.3  for details of calculation of average volatilities. The number of equities 
contained in each sector is given in parentheses. 

                                                        
49 We choose 30 January 2020 as the starting date of the COVID shock, which is when the World Health 
Organization declared the outbreak a Public Health Emergency of International Concern.  
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Table 3. GARCH Parameter Estimates for 2014-2018 and 2018-2020. 

Sectors 01/2014-04/2018 05/2018-07/2020   

(period-1) (period-2)  

𝜶𝜶 𝜷𝜷 𝜶𝜶 𝜷𝜷 Number of 
Equities 

BIST 100 0.10 0.90 0.11 0.80 90 

Industrials 0.17 0.82 0.13 0.85 43 

Financials 0.12 0.88 0.19 0.79 30 

Services 0.08 0.92 0.18 0.80 13 
 

Our results, presented in Table 3, suggest a general shift in the parameters (𝛼𝛼, 𝛽𝛽) — or, 
equivalently, in volatility dynamics — between the two periods. For BIST 100 constituents as a 
whole, although the shift in α is minimal, there is a sizeable change in 𝛽𝛽 from 0.9 to 0.8. Results 
for sector-specific parameters reveal substantial changes in both parameters between the two 
periods. For financials and services, we observe an increase in 𝛼𝛼, paired with a decrease in 𝛽𝛽. 
For industrials, we observe the opposite. A further observation is that there is considerable 
heterogeneity across sectors in terms of their volatility parameters. This is especially evident in 
the first period. Interestingly, in the second period the estimated parameters for financials and 
services are almost identical. From a technical point, an increase in α means that the effect of the 
lagged shock process (𝜀𝜀𝑖𝑖𝑖𝑖−1

2 ) on current volatility is greater, which usually leads to a noisier 
volatility process. An increase in 𝛽𝛽, on the other hand, implies that the effect of lagged volatility 
on current volatility is higher, resulting in a smoother volatility behaviour. However, we again 
note that the results of this part provide a very broad overview, and therefore we refrain from 
reaching an overall conclusion. The analysis presented in the following parts will provide a much 
clearer picture of the behaviour of volatility. 

3.2 Analysis of Daily Volatilities Between 2018-2020 

In this part, we study the daily volatility process throughout the period from January 2018 to 
July 2020. Calculation of the daily volatility for a particular equity 𝑖𝑖 requires the parameter 
estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽). To ensure that our results are as robust as possible to potential changes in 
the parameters (𝜆𝜆𝑖𝑖, 𝛼𝛼, 𝛽𝛽), we obtain a new set of estimates (�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) for every date in our sample 
(using an estimation window of the 150 most recent data points). This approach, made possible 
by the bias-corrected panel GARCH method of Section 2.2, ensures that our results reflect only 
the most recent history at any given point in time (as opposed to using information from several 
years of data, as would be the case with standard GARCH estimation methods). The estimates 
(�̃�𝜆𝑖𝑖, �̂�𝛼, �̂�𝛽) obtained for date 𝑡𝑡 are used to construct  �̂�𝜎𝑖𝑖𝑖𝑖

2 , the estimated volatility for equity 𝑖𝑖 at that 
date. The (weighted) average volatility for BIST 100 at date 𝑡𝑡 is then given by ∑ 𝑤𝑤𝑖𝑖 �̂�𝜎𝑖𝑖𝑖𝑖

290
𝑖𝑖=1 , where 

𝑤𝑤𝑖𝑖 is the weight of equity 𝑖𝑖 in the BIST 100 index (since we consider 90 out of the 100 BIST  and 
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interested in looking at whether the general level of riskiness changes between periods, whether 
all sectors uniformly become riskier during a certain period, and whether the risk ranking 
between sectors changes across different periods. We use average volatility to measure the level 
of risk within a given time period. This is calculated as follows: let �̅�𝑇 be the number of trading 
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Our analysis considers the following four sub-periods: (i) the period before the two shocks (2 
January 2014 - 30 April 2018), (ii) the period of the two shocks (2 May 2018 - 2 July 2020), (iii) 
the period around the currency shock (2 May 2018 - 30 December 2018), and (iv) the period 
around the COVID shock (30 January 2020 - 2 July 2020).49  
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declared the outbreak a Public Health Emergency of International Concern.
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Our first set of results, provided in Figure 4, compares average volatilities across sectors for the 
periods January 2014-April 2018 and May 2018-July 2020, and reveals a striking result: the lowest 
average volatility for May 2018-July 2020 (services) is only marginally below the highest average 
volatility for January 2014-April 2018 (industrials). More importantly, the risk level across sectors has 
increased uniformly in the second period. For services, this increase is enormous in relative terms, 
as the average volatility almost doubles. Financials also exhibits a significant jump, so much that it 
actually overtakes industrials and becomes the sector with highest average volatility. The results for 
BIST 100 yield a similar picture; in particular, the average volatility increases by around 50%. Clearly, 
and not surprisingly, the general level of riskiness (as measured by average volatility) has increased 
in the second period.

Figure 5. Average Volatility of BIST 100 Constituents and Individual Sectors for the Currency 
Shock Period (summer18) and the COVID Pandemic Period (covid19).

Note: See Section 3.3 for details of calculation of average volatilities. The number of equities contained in each 
sector is given in parentheses.

While it is evident that the period of the two shocks between May 2018-July 2020 has witnessed 
substantial movements in the stock market volatility, it is also clear that the two shocks are not of the 
same nature: in particular, the COVID pandemic is a global shock of an unprecedented magnitude 
that emerged outside the global economic and financial systems. For this reason, we next look at 
the two shock periods separately. The results of this analysis are presented in Figure 5. We note that 
the average volatility of all assets in BIST 100 during the COVID period is higher compared to the 
currency shock period. This is also reflected in the behaviour of individual sectors, although the 
difference between the two periods is not huge. Services is an exception whose average volatility 
jumps up in the COVID period. We also observe a mild increase for industrials. Financials, on the 
other hand, declines marginally. One final observation is that the dispersion of average volatility 
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across sectors is almost negligible during the COVID period, compared to the same during May 
2018-December 2018. In other words, all sectors are equally volatile during the COVID period. 
In comparison, average volatilities during the currency shock period seem to be somewhat more 
heterogeneous; in particular, services is much less risky compared to other sectors.

4. Conclusion

This paper has undertaken the volatility analysis of BIST 100 index constituents between May 
2018-July 2020. Our results reveal increased stock market volatility during this period, both across 
individual equities, as well as sectors. In particular, we observe that the general level of risk (as 
measured by average volatility) across sectors has increased substantially in the period May 2018-
July 2020.

More importantly, it appears that the volatility increase during the COVID pandemic has been more 
substantial and less transitory, pervading all sectors equally. It is possible to interpret this observation 
in different ways. One interpretation is that further possible waves of COVID will be accompanied 
by the same type of reaction in the stock markets. Currently, the general view is that the pandemic 
has still not run its course; consequently, the possibility of further waves is not ruled out. This puts 
things into a rather grim perspective. However, it is possible that this interpretation is an overly 
pessimistic one. One can also argue that the first wave of COVID was so sudden and unexpected that 
it caught governments around the world entirely off guard. Although it is clear that it will take some 
time for the world to develop effective final measures against COVID, it is also evident that much has 
been learned and much experience has been gained in the fight against COVID. Consequently, it is 
possible that further waves will witness less seismic movements in the stock markets. As things stand, 
one thing is certain: it is difficult to make an accurate prediction of the future effects of the COVID 
pandemic before we observe the development of the disease. We therefore consider it an important 
future project to update our results as the disease runs its course and more results become available.

As explained earlier, we underline that our analysis was not causal. In particular, we refrain from 
making any claims as to whether there exists a direct causal link between individual shocks and 
volatility. Undertaking a causal analysis of the underlying transition mechanisms between the 
volatility movements and shock processes remains a challenging but interesting future task.

Another interesting extension of our analysis would be to consider other examples of the GARCH 
family, such as the EGARCH or GJR-GARCH models. We refrained from doing so as bias-corrected 
estimation methods for these models is not yet available. It is likely that the integrated likelihood 
method can directly be applied to any GARCH-type model by using the appropriate likelihood 
function in calculating the integrated likelihood in equation (6). However, given that the integrated 
likelihood estimator is obtained via numerical methods, it is not immediately obvious whether 
application of this method to more complicated models such as EGARCH would be numerically 
straightforward. Given that GARCH is the least complicated member of this family, we expect 
difficulties to arise with other models. For instance, a possible consequence would be the need for 
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larger datasets (compared to what we considered here). We leave the investigation of this interesting 
problem to future work.
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