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 Dynamical analysis and modified function projective synchronization (MFPS) of 

integer and fractional-order Morse jerk oscillator are investigated in this paper. Integer-

order Morse jerk oscillator generates periodic behaviors, periodic spiking and two 

different shapes of chaotic attractors. The periodic spiking and chaotic behaviors 

obtained during numerical simulations of integer-order Morse jerk oscillator is 

ascertained by using electronic implementation. The numerical simulations results 

qualitatively agree with the Orcad-PSpice results. Moreover, MFPS of identical and 

mismatched chaotic Morse jerk oscillators is numerically investigated. At last, the 

theoretical investigation of fractional-order Morse jerk oscillator reveals the existence 

of chaos in Morse jerk oscillator for order greater or equal to 2.85. 
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1. Introduction 

Chaotic systems are highly sensitive to petty 

perturbations [1]. Chaos can be observed in various 

physical systems [2-5] and it is useful in many fields [6, 

7]. The construction of chaotic oscillators with simple 

structures [8-14] is an interesting field of research. There 

is two types of simple chaotic oscillators: Non-

autonomous [9] and autonomous oscillators [10-14]. 

Sprott in [14] proposed various new chaotic jerk 

oscillators with diverse nonlinearities and easy electronic 

implementation. 

Following the idea of proposing new autonomous 

chaotic oscillators with easy electronic implementation, 

several research works have been conducted on new 

autonomous chaotic jerk oscillators [12-17]. The authors 

of [15-17] introduced autonomous chaotic jerk oscillators 

using Duffing and Van der Pol dynamics washed into a 

jerk system. The authors of [15, 16] proposed an 

autonomous chaotic Van der Pol jerk oscillator based on 

second-order-equation of Van der Pol oscillator. The 

authors of [17] proposed an autonomous chaotic Duffing 

jerk oscillator based on second-order-equation of Duffing 

oscillator.  Inspired by [12-17], Morse jerk oscillator is 

designed based on the second-order autonomous Morse 

oscillator in this paper. Then dynamical analysis, 

synchronization, circuit design of integer and fractional-
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order Morse jerk oscillator are studied. The fractional-

order of autonomous Morse jerk oscillator is analysed by 

using analytical [18] and numerical methods [19, 20]. 

Morse oscillator is used to describe molecular vibrations 

[21, 22]. The present work contributes to the dynamical 

analysis, the modified function projective 

synchronization (MFPS) of integer and fractional-order 

Morse jerk oscillator. Integer-order of this jerk oscillator 

generates periodic behaviors, periodic spiking and 

chaotic attractors. Investigations of fractional-order 

Morse jerk oscillator reveals the existence of chaos in 

Morse jerk oscillator for order less than three. 

This paper is organized as follows: In the Section 2, the 

Morse jerk oscillator is analysed and implemented on 

Orcad-PSpice software. The MFPS of identical and 

mismatched coupled chaotic Morse jerk oscillators is 

investigated in Section 3. Section 4 deals with the 

analysis of fractional-order Morse jerk oscillator. Section 

5 presents the conclusion. 

2. Dynamical Analysis of Morse Jerk Oscillator 

The two-dimensional Morse equation [22] can be 

transformed to a jerk oscillator: 

 

𝑥̇ = 𝑦, 

(1) 𝑦̇ = 𝛿𝑧, 

𝑧̇ = −𝛾𝑦 − 𝑧 − 𝛽[1 − 𝑒𝑥𝑝(−𝛼𝑥)] 𝑒𝑥𝑝(−𝛼𝑥) 

 

where 𝛼, 𝛾, 𝛽, 𝛿 are positive parameters, 𝑥̈(𝑡) =

𝑧(𝑡) and 𝑥̇(𝑡) = 𝑦(𝑡) . For 𝛿 = 𝛼 = 1, 𝛾 = 0.16 and by 

increasing the parameter  𝛽,  system (2) exhibits steady 

sate behaviour up to 𝛾 = 𝛽 = 0.16 where a Hopf 

bifurcation appears followed by limit cycle and periodic 

spiking oscillations as illustrated in Figure 1.  

 

Figure 1. Time traces (left panel) and phase portraits (right 

panel) for 𝛼 = 1, 𝛾 = 0.16 and 𝛽 = 0.5 and the initial 

conditions (𝒙(𝟎), 𝒚(𝟎), 𝒛(𝟎)) = (0.1,0.1,0.1) 

The periodic spiking oscillations aredepicted in Figure 

1. System (1) is dissipative and has single equilibrium 

point 𝑂(0,0,0) . The characteristic equation at the 

equilibrium point 𝑂 = (0,0,0) is: 

𝜆3 + 𝜆2 + 𝛾𝛿𝜆 + 𝛼𝛽𝛿 = 0. (2) 

 

Based on Routh-Hurwitz criteria, the single 

equilibrium point is stable if 𝛾 > 𝛼𝛽 and unstable for𝛾 <

𝛼𝛽because𝛿 > 0. 

Figure 2 presents the two parameters bifurcation diagram 

of system (1) for 𝛼 = 1and𝛾 = 0.16. 

System (1) exhibits periodic (grey color) and chaotic 

(black color) behaviors as depicted in Figure 2. Figure 3 

presents the phase portraits of chaotic behaviors for given 

values of 𝛽 and 𝛿. 

 

 

Figure 2. Two parameters (𝛿, 𝛽) bifurcation diagram for𝛼 =

1and𝛾 = 0.16. 

 

 

Figure 3. Phase portraits of system (1) for given values 

of 𝛿 and𝛽 :(a) 𝛽 = 0.6, 𝛿 = 18 and (b) 𝛽 = 0.345, 𝛿 = 12.85. 

The others parameters are 𝛼 = 1 and 𝛾 = 0.16. The initial 

conditions are (𝒙(𝟎), 𝒚(𝟎), 𝒛(𝟎))= (0.1,0.1,0.1) 
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From Figure 3, it emerges two different forms of 

chaotic attractors for given values of 𝛽 and 𝛿. The circuit 

of system (1) is depicted in Figure 4. This figure includes 

of analog multiplier device (ADJ633), operational 

amplifiers (TL084), capacitors, resistors and battery. The 

exponential black box is built by an operational amplifier 

associated with a resistor and a single diode. The phase 

portraits obtained from the Orcard-PSpice software are 

shown in Figure 5. 

The obtained PSpice results of Figure 5 are in 

agreement with the numerical results of the right panel of 

Figure 1 and Figure 3. 

 

3. Modified Function Projective Synchronization of 

Chaotic Morse Jerk Oscillators 

To achieve the MFPS [23, 24] of unidirectional 

coupled chaotic Morse jerk oscillators, the controllers are 

designed for MFPS of identical and mismatched Morse 

jerk oscillators. The numerical simulations are included 

in each case to ascertain the effectiveness of the control 

method. The chaotic drive and response systems are 

described by Equations (3) and (4), respectively. 
 

 
Figure 4. Circuit illustrating system (1) 

 

Figure 5. Phase portraits of periodic and chaotic attractors 

obtained on Orcard-PSPICE. Resistors and capacitor values 

are 𝐶 = 10𝑛𝐹, 𝑅1 = 𝑅 = 10𝑘𝛺, 𝑅3 = 20𝑘𝛺, 𝑅2 = 62.50𝑘𝛺 

(first line reproduces the right panel of Figure 1), 𝑅3 =
16.16𝑘𝛺, 𝑅 = 10𝑘𝛺, 𝑅1 = 555.5𝑘𝛺, 𝑅2 = 62.5𝑘𝛺, 𝐶 = 10𝑛𝐹 

(second line agrees with Figure 3(a)) and 𝑅 = 10𝑘𝛺, 𝑅1 =
778.21𝑘𝛺, 𝑅2 = 62.5𝑘𝛺, 𝑅3 = 28.98𝑘𝛺 (third line agrees with 

Figures 3(b)). 

𝑥̇ = 𝑓(𝑥) + 𝛥𝑓(𝑥) (3) 

𝑦̇ = 𝑓(𝑦) + 𝐷(𝑦, 𝑔̃) (4) 

where 𝑥,  𝑦 ∈ 𝑅𝑛 are the state vectors, 𝑓  is the 

differentiable vector function, 𝛥𝑓(𝑥) is the mismatched 

term and equal to zero for identical oscillators. The 

coupling function 𝐷(𝑦, 𝑔̃) is given by Equation (5). 

 

𝐷(𝑦, 𝑔̃) = 𝛬𝑖𝑚(𝑡)𝑥̇(𝑡) + 𝛬𝑖𝑚̇(𝑡)𝑥(𝑡) − 𝑓(𝑔̃)

+ (𝐻 − 𝐽𝐹(𝑔̃(𝑡)))(𝑦

− 𝛬𝑖𝑚(𝑡)𝑥(𝑡)) 

(5) 

where the constant diagonal matrix is 𝛬𝑖 = 𝑑𝑖𝑎𝑔(𝛬1,

𝛬2, … , 𝛬𝑛), 𝑚(𝑡) is a differentiable function with 𝑚(𝑡) ≠

0 for all t, 𝑔̃(𝑡) is the goal dynamics function which is 

defined by Equation (6). 

𝑔̃(𝑡) = [𝑔1(𝑡), 𝑔2(𝑡), … , 𝑔𝑛(𝑡)]𝑇

= [𝛬1𝑚(𝑡)𝑥1(𝑡), 𝛬2𝑚(𝑡)𝑥2(𝑡), … , 𝛬𝑛𝑚(𝑡)𝑥𝑛(𝑡)]𝑇 

(6) 

 

where 𝐻 is an arbitrary constant Hurwitz matrix (𝑛 × 𝑛) 

whose eigenvalues all have negative real parts and 
𝐽=𝜕

𝜕𝑔̃
 is 

the Jacobian matrix of the dynamical system. The error 

state vector of MFPS is given by Equation (7). 

𝑒(𝑡) = 𝑦(𝑡) − 𝑔̃(𝑡) (7) 

The challenge is to build the response jerk oscillator in 

order its synchronize with the drive jerk oscillator for 

given scaling diagonal matrix and m(t): 

𝑙𝑖𝑚
𝑡→∞

‖𝑦(𝑡) − 𝛬𝑖𝑚(𝑡)(𝑡)𝑥(𝑡)‖ = 0 (8) 

 

3.1 MFPS of Unidirectional Coupled Identical Chaotic 

Morse Jerk Oscillators 
 

The drive chaotic Morse jerk oscillator is described by 

Equation (9). 

𝑥̇1 = 𝑥2, 
(9) 

 
𝑥̇2 = 𝛿𝑥3, 

𝑥̇3 = −𝛾𝑥2 − 𝑥3 − 𝛽[1 − 𝑒𝑥𝑝(−𝛼𝑥1)] 𝑒𝑥𝑝(−𝛼𝑥1). 

 

By applying the OPCL coupling, the response 

oscillator is given by Equation (10). 

 

𝑦̇1 = 𝑦2 + 𝑚(𝑡)(𝛬1 − 𝛬2)𝑥2 + 𝛬1𝑚̇(𝑡)𝑥1 − 𝑒1 − 𝑒2,   

 

(10) 

 

 

𝑦̇2 = 𝛿𝑦3 + 𝑚(𝑡)(𝛬2 − 𝛬3)𝛿𝑥3 + 𝛬2𝑚̇(𝑡)𝑥2 − 𝑒2

− 𝛿𝑒3, 

𝑦̇3 = −𝑦3 − 𝛾𝑦2 − 𝛽[1 − 𝑒𝑥𝑝(−𝛼𝑦1)] 𝑒𝑥𝑝(−𝛼𝑦1)

+ 𝑚(𝑡)(𝛬2 − 𝛬3)𝛾𝑥2 + 𝛬3𝑚̇(𝑡)𝑥3 

    𝛬3𝑚(𝑡)𝛽[1 − 𝑒𝑥𝑝(−𝛼𝑥1)] 𝑒𝑥𝑝(−𝛼𝑥1)

+ 𝛽[1 − 𝑒𝑥𝑝(−𝛼𝛬1𝑚(𝑡)𝑥1)] 𝑒𝑥𝑝(−𝛼𝛬1𝑚(𝑡)𝑥1) 

  −𝑏𝑒1 + 𝛾𝑒2. 



 

 
where 𝑎 = 𝛼𝛽[1 − 2 𝑒𝑥𝑝(−𝛼𝑥1)] 𝑒𝑥𝑝(−𝛼𝑥1) and 𝑏 =

𝛼𝛽[1 − 2 𝑒𝑥𝑝(−𝛼𝛬1𝑚(𝑡)𝑥1)] 𝑒𝑥𝑝(−𝛼𝛬1𝑚(𝑡)𝑥1) . The 

parameter values using during numerical simulations of 

the drive and response jerk oscillator are those of Figure 

3 (a) for which the oscillator presents a chaotic behavior. 

The constant diagonal matrix is taken arbitrary as 𝛬 =

𝑑𝑖𝑎𝑔(0.1,  0.2,  0.3) whereas the differentiable function 

is 𝑚(𝑡) = 3 + 1.5 𝑠𝑖𝑛( 2𝜋𝑡/10) . The numerical 

simulations results are presented in Figure 6. Figure 6 (a) 

presents the time traces of the state vector 𝑥1 (solid line 

for the drive jerk) and 𝑦1 (dashed line the response jerk 

oscillator) respectively for the drive and the response 

oscillators. Figure 6 (b) shows the time traces of MFPS 

errors 𝑒𝑖(𝑡)𝑖 = 1,2,3  tending to zero asymptotically 

showing the achievement of MFPS between drive and 

response systems. Figure 6 (c) shows that
‖𝑦‖

‖𝑥‖
tends to the 

differentiable function𝑚(𝑡) indicating MFPS. 

 

3.2 MFPS of Two Mismatched Chaotic Morse Jerk 

Oscillators 

For 𝛼 = 1, the mismatched chaotic Morse jerk oscillator 

is defined by Equation (11). 

 
Figure 6. MFPS of identical chaotic Morse jerk 

oscillators: (a) Time traces of the state vector 𝑥1 (solid 

line) and 𝑦1 (dashed line), (b) evolution errors and  

(c) ratio
‖𝑦‖

‖𝑥‖
. The initial conditions are 

(𝑦1(0), 𝑦2(0), 𝑦3(0)) = (0.1,0.1,0.1) 

and (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (0.1,0.1,0.1). 

 

 

𝑥̇1 = 𝑥2, 

(11) 

𝑥̇2 = 𝛿𝑥3 + 𝛥𝛿𝑥3, 

𝑥̇3 = −𝑥3 − 𝛾𝑥2 − 𝛽[1 − 𝑒𝑥𝑝(−𝑥1)] 𝑒𝑥𝑝(−𝑥1)

− 𝛥𝛾𝑥2

− 𝛥𝛽[1 − 𝑒𝑥𝑝(−𝑥1)] 𝑒𝑥𝑝(−𝑥1). 
 

System (11) is still chaotic for𝛽 = 0.6,𝛥𝛽 = 0.3,𝛾 =

0.16,𝛥𝛾 = 0.1, 𝛿 = 18and𝛥𝛿 = 3. Considering (11) as 

the drive jerk, the response jerk is given by Equation 12. 

𝑦̇1 = 𝑦2 + 𝑚(𝑡)(𝛬1 − 𝛬2)𝑥2 + 𝛬1𝑚̇(𝑡)𝑥1 − 𝑒1 − 𝑒2, 

(12) 

𝑦̇2 = 𝛿𝑦3 + 𝛥𝛿𝑦3 + 𝑚(𝑡)(𝛬2 − 𝛬3)𝛿𝑥3 +

𝑚(𝑡)(𝛬2 − 𝛬3)𝛥𝛿𝑥3 + 𝛬2𝑚̇(𝑡)𝑥2 − 𝑒2 − 𝛿𝑒3, 

𝑦̇3 = −𝑦3 − 𝛾𝑦2 − 𝛽 𝑒𝑥𝑝(−𝑦1) [1 − 𝑒𝑥𝑝(−𝑦1)]

− 𝛥𝛾𝑦2

− 𝛥𝛽 𝑒𝑥𝑝(−𝑦1) [1 − 𝑒𝑥𝑝(−𝑦1)] 

    +𝑚(𝑡)(𝛬2 − 𝛬3)𝛾𝑥2 + 𝛬3𝑚̇(𝑡)𝑥3

− 𝛬3𝑚(𝑡)(𝛽 + 𝛥𝛽)[1

− 𝑒𝑥𝑝(−𝑥1)] 𝑒𝑥𝑝(−𝑥1) 

    +𝑚(𝑡)(𝛬2 − 𝛬3)𝛥𝛾𝑥2

+ (𝛽 + 𝛥𝛽)[1

− 𝑒𝑥𝑝(−𝛬1𝑚(𝑡)𝑥1)] 𝑒𝑥𝑝(−𝛬1𝑚(𝑡)𝑥1) 

  −𝑐𝑒1 + 𝛾𝑒2, 

𝑐 = 𝛽[1 − 2 𝑒𝑥𝑝(−𝛬1𝑚(𝑡)𝑥1)] 𝑒𝑥𝑝(−𝛬1𝑚(𝑡)𝑥1).  
 

The parameter values using during numerical 

simulations of the drive and response jerks are those of 

Figure 3 (a). The mismatch parameters are chosen 

as𝛥𝛿 = 1, 𝛥𝛾 = 0.1and𝛥𝛽 = 0.2. The constant diagonal 

matrix is taken arbitrary as 𝛬 = 𝑑𝑖𝑎𝑔(0.3,  0.2,  0.1) 

while the differentiable function as 𝑚(𝑡) = 5 +

2 𝑠𝑖𝑛( 2𝜋𝑡/10). Sample numerical simulations results are 

presented in Figure 7. 

Figure 7 (a) presents the time traces of the state vector 𝑥1 

(solid line) and 𝑦1 (dashed line). Figure 7 (b) shows that 

the time traces of MFPS errors 𝑒𝑖(𝑡)𝑖 = 1,2,3  tend to 

zero asymptotically indicating MFPS between drive and 

response oscillators in presence of mismatch parameters. 

Figure 7 (c) shows that
‖𝑦‖

‖𝑥‖
tends to 𝑚(𝑡)  confirming 

MFPS. 

4. Fractional-Order of Chaotic Morse Jerk 

Oscillator 
 

The rate-equations describing of the fractional order of 

system (1) is given by Equation (13). 

𝑑𝑞1𝑥

𝑑𝑡𝑞1
= 𝑦, 

(13) 
𝑑𝑞2𝑦

𝑑𝑡𝑞2
= 𝛿𝑧, 

𝑑𝑞3𝑧

𝑑𝑡𝑞3
= −𝛾𝑦 − 𝑧 − 𝛽 𝑒𝑥𝑝(−𝛼𝑥) [1 − 𝑒𝑥𝑝(−𝛼𝑥)]. 
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Figure 7. MFPS of mismatched chaotic Morse jerk oscillators. 

(a) Time traces of the state vector 𝑥1 (solid line) and 𝑦1 (dashed 

line) and in presence of mismatch parameters, (b) evolution 

errors and (c) ratio
‖𝑦‖

‖𝑥‖
.The initial conditions are 

(𝑥1(0), 𝑥2(0), 𝑥3(0)) =

(0.1,0.1,0.1)and(𝑦1(0), 𝑦2(0), 𝑦3(0)) = (0.1,0.1,0.1). 

 

 
Figure 8. Bifurcation diagram of𝑥 (a) and LLE (b) of system 

(13) as function of the parameter𝑞with𝛼 = 1, 𝛾 = 0.16, 𝛿 =
18and𝛽 = 0.6. 

 

 

Figure 9. Phase portraits of fractional order system (13) for 

specific values of parameter𝑞: (a) 𝑞 = 0.83, (b) 𝑞 = 0.91, 

(c) 𝑞 = 0.93, (d)𝑞 = 0.941, (e)𝑞 = 0.95and (f)𝑞 = 0.99. 

 

where  𝑞1 = 𝑞2 = 𝑞3 = 𝑞(0 < 𝑞 < 1) is the 

commensurate fractional order. For  𝛼 = 1, 𝛾 = 0.16,

𝛿 = 18and𝛽 = 0.6,the eigenvalues of equilibrium point 

𝑂(0,0,0) are given as 𝜆1 = −2.091656729, : 𝜆2,3 =

0.5458283647 ± 2.205774816𝑗. Based on Eq. (17) in 

[21], the fractional-order system (13) exhibits chaos if 

3𝑞0 ≥ 2.536703964 . The bifurcation diagram 

representing the local maxima of𝑥(𝑡)and LLE versus of 

parameter q are plotted in Figure 8. 

In Figure 8, system (13) exhibits limit cycle and 

period-doubling route to chaos incrusted with periodic 

windows. So, system (13) exhibits chaos for3𝑞0 ≈ 2.85. 

Figure 9 depicts the phase portraits of system (13) for 

given value of parameter𝑞. 

Figure 9 exhibits steady state behavior at𝑞 = 0.83 (see 

Figure 9 (a)), limit cycle at 𝑞 = 0.941 (see Figure 9 (b)), 

period doubling attractors (see Figures 9 (c) and (d)) to 

chaotic attractors (see Figures 9 (e) and (f)). 

 

5. Conclusions 
 

This paper investigated the dynamics and modified 

function projective synchronization of integer and 

fractional-order Morse jerk oscillator. Interesting 

dynamics such as periodic oscillations, periodic spiking 

and two different shapes of chaotic attractors emerged by 

tuning the parameters. The designed circuit of 

autonomous Morse jerk oscillator was realized on the 

Orcad-PSpice software to ascertain the numerical 

simulations results. Next, numerical simulations of 

identical and mismatched chaotic Morse jerk oscillators 

were done to denote the effectiveness of the modified 

function projective synchronization. At last, the 

theoretical investigation of fractional-order Morse jerk 
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oscillator revealed the existence of chaos in Morse jerk 

oscillator for order greater or equal to 2.85. 
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