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Konut Piyasası Bölümlendirmesinde Kümelenme Analizi2 

Abstract 

Cluster analysis is often used to determine housing submarkets. However, commonly used 

methods cannot handle mixed-mode data when variables of different types and units are combined. 

We propose new similarity measures that handle both continuous and categorical variables using 

normalization and discretization steps and partial match criteria. These measures are used in 

agglomerative hierarchical clustering with a formulation where the optimal number of clusters is 

automatically determined without a priori information regarding the number of submarkets. The 

experiments using housing sales data show that the proposed measures perform better than the 

commonly used standardized Euclidean distance in identifying submarkets. 

Keywords : Housing Market Segmentation, Hierarchical Clustering, Mixed-Mode 

Data, Hedonic Price Model. 

JEL Classification Codes : R21, R31. 

Öz 

Kümeleme analizi, konutların bir dizi değişkene dayalı olarak benzerliklerine göre 

gruplandırıldığı alt pazarları belirlemek için kullanılan popüler bir yöntemdir. Ancak, yaygın olarak 

kullanılan yöntemler, farklı tür ve birimlerdeki değişkenlerin bir arada kullanıldığı verileri doğrudan 

işleyemez. Bu çalışmada, düzgeleme ve ayrıklaştırma adımlarını ve kısmî eşleşme kriterlerini 

kullanarak hem sürekli hem de kategorik değişkenleri aynı çerçevede ele alabilen yeni benzerlik 

ölçümleri öneriyoruz. Bu ölçümler, alt pazarların sayısına ilişkin ön bilgi olmadan optimum küme 

sayısının otomatik olarak belirlendiği bir formülasyon ile aglomeratif hiyerarşik kümelemede 

kullanılmaktadır. Konut satış verilerini kullanan deneylerde, önerilen benzerlik ölçümleri, alt 

pazarların belirlenmesinde yaygın olarak kullanılan standartlaştırılmış Öklid mesafesinden daha iyi 

performans göstermektedir. 

Anahtar Sözcükler : Konut Piyasası Bölümlendirmesi, Hiyerarşik Kümeleme, Karışık 

Veri, Hedonic Fiyat Modeli. 

 
1 This article was produced based on the Ph.D. Dissertation titled “The Influence of Water Quality on the Demand 

for Residential Development around Lake Erie”, submitted to the Department of Agricultural, Environmental 

and Development Economics, The Ohio State University. This paper is based upon work supported by the 

National Science Foundation Grant DEB-0410336 and the National Atmospheric and Oceanic Administration 
Ohio Sea Grant Program. 

2 Bu makale Ohio Eyalet Üniversitesi, Tarım, Çevre ve Kalkınma Ekonomisi Bölümü’ne sunulan “Su Kalitesinin 

Erie Gölü Çevresinde Konut Geliştirme Talebi Üzerindeki Etkisi” başlıklı doktora tezine dayanılarak 

hazırlanmıştır. 
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1. Introduction 

The determination of housing submarkets is critical for statistical inference, 

prediction and structural estimation of second-stage hedonic models that rely on variation 

across submarkets to identify a household’s demand for a particular locational good or 

service. While traditional approaches are largely adhoc, relying on pre-existing geographic 

boundaries or structural features to define boundaries, recent data-driven approaches seek to 

use the underlying structure of the raw data to uncover groups of homogeneous observations. 

Two primary methods have been advanced in the literature: spatial statistical modelling, in 

which the spatial autocorrelation among hedonic residuals is used to group houses (e.g. 

Gillen et al., 2001; Tu et al., 2007), and classification methods that group observations based 

on measures of similarity (e.g. Goetzmann & Wachter, 1995; Maclennan & Tu, 1996; Hoesli 

et al., 1997; Bourassa et al.,1999; Day, 2003; Kim & Park, 2005; Clapp & Wang, 2006; 

Bates, 2006). These data-driven methods are a significant improvement over traditional 

adhoc approaches but are also subject to their own limitations. For example, methods relying 

on spatial autocorrelations use residuals from a hedonic model in which price is regressed 

on a set of structural variables to reveal similarity in neighbourhood characteristics. The 

maintained assumption is that unobserved spatial autocorrelations are not spurious and 

instead reflect systematic variations in neighbourhood structure. On the other hand, 

classification methods rely on key assumptions about the input variables used to cluster 

observations and the specification of similarity measures used to gauge homogeneous 

grouping. This approach relies on observed features to group observations and thus 

unmeasured neighbourhood-specific effects are omitted. 

Because there is not a proven “best” data-driven method for identifying housing 

submarkets, the preferred method depends on the purpose of submarket determination as 

well as the characteristics of the study areas. For example, in regions in which local public 

goods are highly spatially heterogeneous and permit more extensive household sorting 

across local areas, it is reasonable to expect that housing submarkets can be estimated using 

observed variables that capture the primary variations in local public goods and services 

across the region. In such cases, a classification method that uses a parsimonious set of 

observed variables may be preferred as it avoids assumptions about the structure of the 

unobserved variation. Alternatively, in regions in which public goods do not vary widely 

across neighbourhoods or household sorting is limited for other reasons, identification of 

housing submarkets using observed variation may not be feasible and thus, an approach that 

backs out this information using spatially autocorrelated hedonic residuals may be more 

appropriate. In many settings in the U.S., public goods vary widely within a region due to 

the many forms of local government (e.g., school districts, townships, municipalities) that 

are present within a single region. Thus we argue that in such cases, a classification method 

that employs a set of variables to identify variation in local public goods and services and 

other major location features, such as location relative to the central city, is the preferred 

method for estimated housing submarkets in this case. 
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Cluster analysis is perhaps the most common of the classification methods and has 

become a popular method for determining submarkets (e.g., Goetzmann & Wachter, 1995; 

Hoesli et al., 1997; Bourassa et al., 1999; Day, 2003; Kim & Park, 2005; Bates, 2006). While 

a variety of clustering techniques exist, all are built on a similarity measure that is used to 

quantify the strength of similarity between observations and cluster observations into 

homogeneous groups. The choice of a similarity measure depends on the types (continuous, 

binary, or categorical) of variables and characteristics (if categorical, ordered or not; if 

continuous, units) of variables. The quantification of similarity is made more complicated if 

the set of variables contains both categorical and continuous variables (so-called mixed-

mode variables) and variables with vastly different units, since ordinal differences in the 

values of these variables are not comparable across variables. Binary and categorical 

variables are common in housing submarket studies, e.g., political jurisdiction, construction 

type, existence of a fireplace or air-conditioning are all commonly used variables, and thus 

the treatment of mixed-mode variables is an important methodological consideration in these 

studies. 

Despite the increasing application of cluster methods to identifying housing 

submarkets, many existing studies do not provide a clear rationale for the specification of 

the similarity measure. In addition, the literature has failed to adequately consider the 

complications that arise in combining disparate types of data that, if not done carefully, can 

introduce substantial bias into the cluster estimation. For example, existing studies treat both 

categorical and continuous variables in the same manner by using a standardized Euclidean 

distance measure for both types of variables. However, neither the rationale for doing so nor 

the potential bias that may be introduced if this approach is inappropriate has been clearly 

articulated in the literature. 

This paper considers the methodological issues involved in developing and applying 

a similarity measure for mixed-mode variables used in a cluster analysis to identify housing 

submarkets. The study region is comprised of 10,655 observations on housing sales between 

1985 and 1996 from four adjacent counties arrayed along the Lake Erie coast in Ohio, USA. 

These data include both continuous and categorical structural variables that are of 

importance to the estimation. We propose similarity measures that can treat both continuous 

and categorical variables together while minimizing the loss of the relative similarity 

information. These measures are applied to the data and used with a clustering technique, 

the agglomerative hierarchical method, in which the optimal number of clusters is 

automatically determined without a priori information regarding the number of submarkets. 

A comparison of the goodness of fit of the clusters generated using different similarity 

measures shows that the proposed similarity measures generate clusters that are significantly 

better in fit and substantially different in structure in comparison to the commonly used 

measure that is based on standardized Euclidean distance. 
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2. Cluster Analysis Methods and Applications to Housing Submarkets 

A popular cluster analysis algorithm used to iteratively group and regroup 

observations is the k-means algorithm. This method is initialized by assigning k cluster 

centroids and then proceeds to partition all observations with respect to their similarities to 

these centroids. The similarities are computed using the Euclidean distance between the 

attributes of the observations and the cluster centroids. The centroids are iteratively updated 

using the mean values of the observations assigned to each cluster, and the observations are 

regrouped according to their distances to the new cluster means. This procedure minimizes 

the sum-of-squared errors between the observations and the clusters that are represented 

using their centroids. The main drawbacks of the k-means algorithm are the requirement of 

a priori knowledge of the number of clusters (i.e., the number of submarkets) and the random 

initialization of the cluster centroids that may give different results in each run. An 

alternative approach is the agglomerative hierarchical clustering method, which produces 

multi-level groupings by initializing a separate cluster corresponding to each observation 

and then, at each successive iteration, merges two clusters that are determined to be the most 

similar. 

Existing studies typically include a single variable for the clustering analysis. For 

example, Goetzmann and Wachter (1995) use effective rents and vacancy rates of the U.S. 

office market in two separate clustering studies with the k-means algorithm and find the 

clusters characterized with bicoastal association and oil-related cities. Kim and Park (2005) 

conduct two cluster analyses, one with housing sales price and the other with housing price 

changes in Seoul and its five satellite towns. They find that the clusters generated from two 

variables were very different regardless of the absolute value of housing prices. Hoesli et al. 

(1997) include property returns in their clustering of UK commercial properties. Using two 

similarity measures (squared correlation coefficient and Euclidean distance) and both the 

hierarchical and k-means algorithms, they find that the dominant factor in their clustering is 

property type. 

2.1. Variable Aggregation: Principal Component Analysis 

When multiple variables are used in the cluster analysis, some means of aggregating 

the variables for comparison purposes is needed. Many studies in the housing market 

segmentation literature use principal components analysis (PCA) (Bishop, 2006) to reduce 

the original set of variables to a smaller set of factors (Maclennan & Tu, 1996; Bourassa et 

al., 1999; Day, 2003; Bates, 2006). PCA uses the eigenvectors of the covariance matrix of 

the data to obtain a new set of bases. The projection of the data onto a subset of the 

eigenvectors corresponding to the largest eigenvalues provides a data representation and 

summarization that are optimal in the least-squares sense. This projection corresponds to a 

linear transformation where the new representation (variables) is obtained as a linear 

combination of the existing variables. A potential problem with the use of PCA with housing 

data is the ambiguity of a linear combination of mixed-mode (continuous and categorical) 

variables. For example, how does one reasonably compute a weighted combination of 
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proximity to city centre (continuous), number of floors (categorical) and presence of a 

fireplace (binary)? Another important problem is that PCA ignores any information 

regarding the separability of the clusters (submarkets) as it only tries to find the linear 

projection that maximizes the variance of the projected data (Bishop, 2006). Therefore, the 

transformation to the new subspace may result in wrong or imprecise separation of the 

submarkets, as illustrated in Figure 1. If the principal components and the corresponding 

new variables are defined in such a potentially misleading manner, the cluster analysis 

performed using these variables may produce clusters that do not reveal the underlying group 

structure of observations. 

Unfortunately, many studies that use cluster analysis with multiple variables do not 

clearly discuss their choice of the clustering algorithm and the similarity measure. In cases 

in which a discussion of how the similarity between observations is evaluated, it is most 

likely that either the Euclidean distance or the standardized Euclidean distance - the default 

settings of most clustering software packages - are used. However, as we demonstrate in the 

next section, even standardized Euclidean distance is not appropriate in the case of mixed-

mode variables. 

Figure: 1 

Illustration of PCA for Two-Dimensional Synthetic Data with Two Known Clusters 

 
The principal component resulting from the application of PCA on the whole data set (collection of blue + and red 
points ○) is shown as the black line (left figure). When all points are projected onto this line, the separability of the 

points from two clusters actually decreases as shown in the histograms (right figure) even though the clusters are 

quite separable in the original two-dimensional space. 

2.2. Similarity Measures: Euclidean Distance 

Similarity between two observations can be measured using distance metrics in the 

attribute space in which an increasing order of distance is assumed to correspond to a 

decreasing order of similarity. In such an approach, the Euclidean distance implicitly assigns 

more weighting to variables with large ranges than those with small ranges. Furthermore, 

adding the difference of one variable to the one from another variable is ambiguous and 

unintuitive when the variables have different units. To overcome the latter problem, 
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standardized Euclidean distance �̃� is calculated either by using linear scaling to unit 

variance, 

�̃� =
𝑥−𝜇

𝜎
 (1) 

where 𝜇 and 𝜎 are the sample mean and the sample standard deviation of 𝑥, respectively, 

and �̃� is the normalized value, or by using linear scaling to unit range as 

�̃� =
𝑥−𝑙

𝑢−𝑙
 (2) 

where 𝑙 and 𝑢 are the lower and upper bounds (minimum and maximum values) of 𝑥 

respectively. 

This normalization procedure transforms the variables so that they are unitless and 

approximately equalizes the ranges of the variables and make them have approximately the 

same effect in the computation of similarity (Aksoy, 2001). However, standardization does 

not solve the ambiguity that arises in combining continuous and categorical variables when 

the Euclidean distance is used because normalization of categorical or binary variables using 

these methods can produce undefined (or impossible) values. In addition, standardization by 

linear scaling to unit variance implicitly assumes a normal distribution, an assumption that 

may or may not be appropriate depending on the data. 

To our knowledge, there is no existing housing market segmentation study which 

treats multiple variables with different characteristics by taking into account the limitation 

of the use of (standardized) Euclidean distance as discussed above. 

2.3. Clustering Algorithms: Agglomerative Hierarchical Clustering 

Agglomerative hierarchical clustering is one of the most widely used algorithms in 

the area of market segmentation. Hierarchical clustering tries to capture multi-level 

groupings using hierarchical representations rather than flat partitions as used by the k-

means clustering algorithm. One of the main advantages of hierarchical clustering over the 

k-means algorithm is that it does not require a priori knowledge of the number of clusters. 

Furthermore, its input consists of the pairwise similarity values of all observations, so it can 

use any similarity measure, including the ones proposed in this paper, unlike the fixed 

Euclidean distance in k-means. 

The agglomerative hierarchical clustering algorithm produces a dendrogram where 

each level corresponds to grouping into a different number of clusters. Boberg and Salakoski 

(1993) propose a method to automatically determine the optimal number of clusters. This 

method defines a self-similarity measure 

ℎ(𝐶) = max{1 − 𝑠𝑖𝑗  | 𝑖, 𝑗 ∈ 𝐶} (3) 
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that quantifies the dissimilarity between the observations of the same cluster 𝐶 (Everitt et 

al., 2001). Then, the optimal number of clusters is found at level 𝑡 when the following 

condition is met: 

∃𝐶𝑛 ∈ 𝑅𝑡+1 ∶  ℎ(𝐶𝑛) > 𝜃 (4) 

where 𝐶𝑛 is the 𝑛’th cluster in the 𝑅𝑡+1 level with 𝑡 + 1 clusters and 𝜃 is a threshold. The 

threshold 𝜃 can be defined as 

𝜃 = 𝜇 + 𝛼𝜎 (5) 

where 𝜇 is the average and 𝜎 is the standard deviation of dissimilarity between any pairs 

among all observations and 𝛼 is a user-defined parameter. The threshold can be selected by 

utilizing the distribution of ℎ where a significant ℎ value is defined as the one that lies in the 

upper tail of this distribution. The 𝛼 parameter in equation (5) is selected to define a 5% 

significance level for ℎ using a Gaussian distribution assumption in the experiments in 

Section 5. Given this parameter, when the condition in equation (4) is met at the 𝑅𝑡+1 level, 

the 𝑡 clusters at level 𝑅𝑡 are used as the defined clusters. 

3. Developing Similarity Measures for Mixed-mode Variables 

We seek a method for constructing a similarity measure for mixed-mode data that 

permits aggregation of different types, scales and distributions of data such that the resulting 

measure of similarity is unbiased. One possibility is to dichotomize all variables and use a 

similarity measure for binary data (Everitt et al., 2001). However, dichotomization causes a 

significant loss of information. Instead, we adopt Gower’s (1971) definition of similarity 

that provides a more general measure as 

𝑠𝑖𝑗 =
1

𝐾
∑ 𝑠𝑖𝑗𝑘

𝑚𝐾
𝑘=1  (6) 

where 𝑠𝑖𝑗𝑘
𝑚  is the similarity between the 𝑖’th and 𝑗’th observations according to the 𝑘’th 

variable and 𝐾 is the number of variables. The superscript 𝑚 represents the similarity 

measure used. The individual similarities 𝑠𝑖𝑗𝑘
𝑚  can be defined differently for different types 

of variables as long as the resulting value is between zero and one so that the combined 

similarity measure 𝑠𝑖𝑗  is also in the [0,1] range. 

We adapt the so-called Hamming distance for categorical variables. This similarity 

measure is defined over [0,1] as: 

𝑠𝑖𝑗𝑘
1 = {

1, if exact match

0, otherwise
 (7) 

where 𝑠𝑖𝑗𝑘
1  is set to one or zero depending on whether the two observations 𝑖 and 𝑗 are the 

same or different, respectively, on the 𝑘’th variable. 
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In handling continuous variables, we first normalize the values using an approach 

that does not rely on any distributional assumptions and then discretize the data by assigning 

a certain number of bins using uniform quantization. The non-parametric normalization step 

described below, and the following quantization of the normalized values correspond to 

equal-frequency discretization that is shown to yield good results compared to methods that 

make parametric density assumptions about the attribute values (Witten & Frank, 2005). 

Furthermore, the resulting ordinal data allow the use of well-defined similarity measures for 

categorical variables and a straightforward combination of the similarities from all variables 

in equation (6). 

Our first step in handling the continuous data is to normalize these variables using a 

method based on the cumulative distribution function (CDF), which can be estimated from 

the data in a non-parametric way with no density assumption requirement. Given a random 

variable 𝑥 with a cumulative distribution function 𝐹𝑥(𝑥), the random variable �̃� resulting 

from the transformation �̃� = 𝐹𝑥(𝑥) is uniformly distributed in the [0,1] range. The concept 

of this transformation can be visualized in Figure 2. Even though this transformation 

modifies the distribution of the original values, the motivation behind transforming the 

variable to have a uniform distribution in the [0,1] range is to make the values spread as 

much as possible in that range so that the discrimination ability of that attribute is increased. 

The choice for the uniform distribution as a target for the transformed range comes 

from the fact that the uniform distribution on an interval is the maximum entropy distribution 

among all continuous distributions which are supported in that interval. Entropy is the 

amount of information contained in a random variable. An ideal attribute for identifying the 

similarity between observations is the one that has different values for different observations 

and similar values for similar observations. If there is no prior information about the 

distribution of the similarity, it is important to select attributes with lots of variation among 

items in order to distinguish different items better. For example, in order to define 

dissimilarity among multiple people, the attribute gender gives very little information about 

distinguishing one from the other. This kind of variable with very similar values for the items 

has very low entropy. On the other hand, the attributes such as height, weight, and age have 

higher entropy. Having maximum entropy is important because it ensures to describe the 

differences between observations as much as possible. If the range of the value [𝑎, 𝑏] is the 

only information given, the uniform distribution is the one that has the maximum entropy 

(Theodoridis & Koutroumbas, 2006). Furthermore, we observed that most of our variables 

do not have a normal distribution. Given the fact that the CDF transformation does not 

assume any distributional form, this transformation is preferred over the normalization in 

equation (1) used in the standardized Euclidean distance. 
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Figure: 2 

Illustration of the CDF Transformation 

 
The blue curve is the probability density function. The red curve is the corresponding cumulative distribution. The 

points a and b are mapped to F(a) and F(b), respectively, using this transformation. 

The second step in the handling of the continuous data is to discretize the variables 

into a certain number of bins using uniform quantization. We experiment with three 

definitions of the similarity measure that differ in how the discretization (or binning as it is 

also called) is performed. The first is the application of the strict measure of Hamming 

distance, in which 𝑠𝑖𝑗𝑘
1  is set to one or zero for an exact match or no match, respectively. 

However, this clearly ignores the fact that those observations that have values in 

neighbouring bins are more similar to each other than the ones with values in more distant 

bins and thus the strict application of Hamming distance will result in a substantial loss of 

information. By giving a partial score to the “not an exact match, but close” case, we attempt 

to include more information regarding the similarity between two observations from a 

continuous variable which otherwise could have been lost in the simple match-mismatch 

setting. We define two alternative measures that incorporate partial matches as 

𝑠𝑖𝑗𝑘
2 = {

1, if exact match

0.5, if one-mismatch

0, otherwise
 (8) 

in which the one-mismatch is applied to the cases where the attribute of two observations 

fall into neighbouring bins, or 

𝑠𝑖𝑗𝑘
3 = {

1, if exact match

0.6, if one-mismatch

0.3, if two-mismatch

0, otherwise

 (9) 

in which the two-mismatch is counted when observation 𝑖 is found to be two bins away from 

where observation 𝑗 is. The similarity measures 𝑠𝑖𝑗𝑘
2  and 𝑠𝑖𝑗𝑘

3 defined in equations (8) and (9) 

are referred to as modified Hamming 1 and modified Hamming 2, respectively, in the rest 
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of the paper. An example case with five bins using modified Hamming 2 is illustrated in 

Table 1. These measures are designed to reduce the sensitivity to the exact bin locations used 

in the quantization. Together with the non-parametric normalization step, the resulting 

equal-frequency discretization process is proposed as an alternative to the Euclidean or 

standardized Euclidean distance-based similarity computation that implicitly uses a 

Gaussian density assumption for the attribute values. 

Finally, because the exact geographic location is a consideration in defining housing 

submarkets, we define a similarity measure for these variables as 

𝑠𝑖𝑗𝑘
4 = 1 −

|𝑥𝑖𝑘−𝑥𝑗𝑘|

𝑟𝑘
 (10) 

where 𝑟𝑘 is the range of observations for the 𝑘’th variable, defined for continuous variables 

in (Everitt et al., 2001). This measure uses the normalization by linear scaling to unit range 

as in equation (2). The CDF normalization is not used for these two variables because the 

absolute difference in geographical location between two observations matters. 

Table: 1 

Match Scores for the Modified Hamming 2 Measure 

  Observation 𝑖 
 Bin I II III IV V 

Observation 𝑗 

I 1 0.6 0.3 0 0 

II 0.6 1 0.6 0.3 0 

III 0.3 0.6 1 0.6 0.3 

IV 0 0.3 0.6 1 0.6 

V 0 0 0.3 0.6 1 

For example, for the attribute 𝒌, if observation 𝒊’s value is found in bin III, and observation 𝒋 is in bin V, the score 

for two-mismatch (0.3) is applied. 

4. Comparison and Evaluation of Methods 

Given the similarity measures for categorical and continuous data defined by 

𝑠𝑖𝑗𝑘
1 ,…, 𝑠𝑖𝑗𝑘

4 , we compute the overall similarity measure defined in (6) using 𝑠1 for 

categorical variables, using one of 𝑠1, 𝑠2 or 𝑠3 for continuous variables, and using 𝑠4 for 

geographical locations. This yields three different overall similarity measures that differ by 

the binning procedure used to compute the similarity of the continuous variables (𝑠1, 𝑠2 or 

𝑠3). We then use the agglomerative hierarchical clustering algorithm to perform the cluster 

analysis for each of these three similarity measures. The average linkage criterion is used as 

the inter-cluster similarity measure in which the distance between two clusters is measured 

as the average of the distance between all pairs of observations that are made up of one 

observation from each cluster (Everitt et al., 2001). This criterion is chosen because it is 

relatively more robust than other criteria such as the Ward’s method, that is commonly used 

in the housing market segmentation literature, which tends to find same size, spherically 

shaped clusters, uses the squared error, and is sensitive to outliers (Everitt et al., 2001). The 

number of clusters is automatically determined using the procedure described in Section 2.3. 
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To determine which similarity measure fits the data best, we adopt the method used 

by Bourassa et al. (1999) and compute the weighted mean squared error (WMSE) based on 

the estimated hedonic pricing equation to compare each clustering outcome. Given the 

hedonic model estimates, the WMSE for a particular clustering outcome is calculated as 

follows: 

WMSE =
∑ (𝑛𝑖−𝑚−1)SE𝑖

2𝑡
𝑖=1

∑ (𝑛𝑖−𝑚−1)𝑡
𝑖=1

 (11) 

where 𝑛𝑖 is the number of observations in the 𝑖’th cluster, 𝑡 is the number of clusters, 𝑚 is 

the number of independent variables in the hedonic equation, and SE𝑖
2 is the variance based 

on the estimation of hedonic equation for the 𝑖’th cluster (Bourassa et al., 1999). The smaller 

the WMSE value, the better the clustering method. However, as stated in Bourassa et al. 

(1999), the WMSE value decreases as the number of clusters increases. Therefore, we use 

this value to compare clustering outcomes for the same number of clusters. 

We also compare the results from different methods using the adjusted Rand index 

(Everitt et al., 2001). This index measures the agreement between two cluster structures 

according to the proportion of pairs of observations that agree in the cluster labels. 

Agreement occurs if two observations that belong to the same cluster in one method are put 

into the same cluster by the other method, or two observations that belong to different 

clusters in one method are also put into different clusters by the other method. The index has 

the advantage of allowing the comparison of two sets of clustering outcomes with different 

numbers of clusters. It is computed as 

ARI =
∑ ∑ (𝑛𝑢𝑣

2 )−[∑ (𝑛𝑢∙
2 ) ∑ (𝑛∙𝑣

2 )𝑉
𝑣=1

𝑈
𝑢=1 ] (𝑁

2)⁄𝑉
𝑣=1

𝑈
𝑢=1

[∑ (𝑛𝑢∙
2 )+∑ (𝑛∙𝑣

2 )𝑉
𝑣=1

𝑈
𝑢=1 ] 2⁄ −[∑ (𝑛𝑢∙

2 ) ∑ (𝑛∙𝑣
2 )𝑉

𝑣=1
𝑈
𝑢=1 ] (𝑁

2)⁄
 (12) 

where 𝑛𝑢𝑣 denote the number of observations in cluster 𝑢 of the first method and cluster 𝑣 

of the second method, 𝑛𝑢∙ = ∑ 𝑛𝑢𝑣
𝑉
𝑣=1  denote the number of observations in cluster 𝑢 of the 

first method, 𝑛∙𝑣 = ∑ 𝑛𝑢𝑣
𝑈
𝑢=1  denote the number of observations in cluster 𝑣 of the second 

method, 𝑈 is the number of clusters obtained by the first method, 𝑉 is the number of clusters 

obtained by the second method, and 𝑁 is the total number of observations. The index has a 

maximum value of one, meaning perfect agreement between two clustering outputs, and an 

expected value of zero (Milligan & Cooper, 1986; Everitt et al., 2001). We use the adjusted 

Rand index to quantify the significance of the difference between the outcomes of different 

clustering methods with small WMSE values and also use it to compare the results of the 

proposed similarity measures to those of the commonly used standardized Euclidean 

distance. 

Finally, we use a Chow test to derive housing market submarkets from the 

neighbourhoods produced by the clustering analysis. As Galster (2003) and Tu et al. (2007) 

point out, a neighbourhood is defined as a cluster of housing units which share the similar 

set of housing attributes, including housing structures, neighbourhoods, political and 

environmental characteristics. A neighbourhood acts as a building block of a submarket and 
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thus a submarket may be composed of one or more neighbourhoods. Thus, a method of 

aggregating similar neighbourhoods into one submarket is necessary. Following others in 

the literature, (e.g. Bourassa et al., 1999; Day, 2003; Goodman & Thibodeau, 2003) we use 

a Chow test. However, unlike these previous studies, we apply a spatial Chow test that allows 

for the presence of spatial error autocorrelation in the hedonic model, which, if unaccounted, 

will invalidate the test results (Anselin, 1988, 1990). The spatial Chow test statistics for the 

model specification with spatial error autocorrelation is expressed as 

𝐶𝑆𝑃 = [𝒆𝑅
′ (𝑰 − 𝜆𝑾)′(𝑰 − 𝜆𝑾)𝒆𝑅 − 𝒆𝑈

′ (𝑰 − 𝜆𝑾)′(𝑰 − 𝜆𝑾)𝒆𝑈]/𝜎2 ~𝜒𝐾
2  (13) 

where 𝒆𝑅 and 𝒆𝑈 are the consistent estimates of the restricted and unrestricted residuals, I is 

an identity matrix of dimension K by K where K is the number of restrictions, λ is the 

coefficient of spatial error autoregression, W is the spatial weight matrix and 𝜎2 is the 

estimate for the error variance for the restricted model (Lagrange Multiplier (LM) test), the 

unrestricted model (Wald test), or both (Likelihood Ratio (LR) test). 

5. Experiments and Results 

5.1. Data 

Data on arms-length transactions of single-family occupancy houses from 1985 to 

1996 from four Ohio counties arrayed along the Lake Erie coastline (Erie, Lorain, Ottawa 

and Sandusky counties) yield a total of 10,655 observations3. These houses are characterized 

with the average sales price of 111,503 dollars (1996$) and the average age (the year of sales 

- the year built) of 30 years. The observations are located both in urban and rural areas, and 

the major cities within the study area include Lorain (71,245 (population from the 1990 

census)), Sandusky (29,764) and Elyria city (56,746). A distinguishing feature of this study 

region is that these counties are adjacent to Lake Erie, one of the five Great Lakes and whose 

presence has a substantial influence on the regional housing market. 

5.2. Implementation of Cluster Analysis 

Cluster analysis is implemented using the agglomerative hierarchical clustering 

algorithm with the average linkage criterion. MATLAB is used for all experimentation. The 

six attributes included in cluster analysis are median household income, distance to the 

closest city, distance to the closest lake coastline, municipality, and the geographical 

coordinates (latitude and longitude). Five different specifications are considered for the 

similarity measurement. The first specification uses the standardized Euclidean distance as 

the baseline similarity method. The second specification uses the CDF-based normalization 

as a straightforward alternative to the normalization in the standardized Euclidean. These 

two specifications do not involve any discretization of the continuous variables. 

 
3 The data were obtained from the Center for Urban and Regional Analysis at the Ohio State University. 
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The remaining three specifications use the proposed similarity measures (equations 

7- 9). These specifications differ according to how the continuous variables are handled. The 

continuous variables of median household income, distance to the closest city and distance 

to the coast line are normalized using the CDF transformation and discretized using six 

different cases for the number of bins (5, 10, 20, 30, 40, 50) to study the effects of 

discretization. The similarity for these variables is computed using the Hamming, modified 

Hamming 1, and modified Hamming 2 measures defined in equations (7), (8) and (9), 

respectively. In all three specifications, the categorical municipality variable has values from 

1 through 211 and the similarity is coded using the Hamming distance in which the code is 

set to one if the observations are in the same municipality and zero otherwise (equation 7). 

The geographic coordinates are normalized by scaling to unit range without changing the 

distribution of the original (raw) values as in equation (2) and similarity is measured using 

equation (10). 

Variables used in clustering should reflect households’ decision-making process as 

well as the formation of submarkets. Although one may think that including as many 

variables as possible for clustering may help determine more realistic submarkets, it is not 

necessarily the case for two reasons. First, because as the number of attributes increases in 

clustering, the more “noise” is introduced in the clustering process. Furthermore, the 

distance computed between objects starts becoming more ambiguous because many 

dissimilar objects could have very similar distances in a high-dimensional attribute space as 

adding large differences in a few variables and adding small differences in many variables 

may produce the same results. This is a commonly known problem, called “the curse of 

dimensionality” in the pattern recognition and machine learning literature (Theodoridis & 

Koutroumbas, 2006). Second, variables that are used in both the cluster analysis and hedonic 

model estimation are subject to reduced variance within each cluster and potential bias. For 

example, if we use school district ranking as our clustering variable, the variation of this 

variable within each cluster is smaller than the case of not including it in the clustering. 

Therefore, if we include school district ranking in both clustering and the estimation of the 

hedonic price function, both the magnitude and the variance of the coefficient estimated are 

affected. This can result in insignificant estimates or structural change in the estimates across 

submarkets. However, it is also true that the variables which determine the submarkets are 

attributes considered in the housing purchase decisions as well. Thus, it is important to 

choose the variables that best represent the market segmentation. If the market is truly 

segmented by a particular variable, then it is reasonable that this variable may affect housing 

prices differently across submarkets and thus any structural change in the estimated 

coefficient reflects true structural change. However, if the market is not segmented by a 

variable, but the variable is inadvertently included in the cluster analysis, then its inclusion 

in the hedonic model is likely to result in insignificant or biased estimates due to the spurious 

reduction in variance and grouping of similar values within each cluster. 

We address these issues by using a parsimonious set of variables in the cluster 

analysis that is mutually exclusive from the set used in the hedonic model. As discussed 

previously, this approach is sensible in our case because of the substantial spatial 
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heterogeneity in neighbourhood characteristics that exist at a local scale, which enables 

greater household sorting across local areas and thus makes it feasible to reasonably estimate 

neighbourhood boundaries based on observed features. In Ohio, the provision of local public 

goods and services varies by township, a highly localized scale. There are 211 

distinguishable municipalities (townships, cities, villages) in our dataset and each 

observation is assigned to one of 211 municipalities. To capture potential distinctions within 

municipalities, we also include the following variables: median household income 

(calculated at the census block group level), distance to the closest city and distance to the 

Lake Erie coastline. Distance to the closest city is computed by using the major roads 

network from individual houses. Distance to the lake coastline is measured as the straight-

line distance to the closest coastline. Lastly, the latitude and longitude of the house is 

included to account for highly localized similarities in geographic location. 

5.3. Cluster Analysis Results 

In the rest of the discussion, the five settings for similarity computation are 

abbreviated as SED, CDF, H, MH1, and MH2 for the standardized Euclidean, CDF 

normalization, Hamming, modified Hamming 1 and modified Hamming 2, respectively, and 

a specific case is expressed as [method, number of bins, number of clusters]. For example, 

the case with the modified Hamming 2 method with five bins and 11 clusters is written as 

[MH2, 5, 11]. Figure 3 shows an example dendrogram generated for the case of modified 

Hamming 2 with five bins. 

The method described in Section 2.3 is used to find the optimal number of clusters 

for each setting from the corresponding dendrogram. The range for the number of clusters 

evaluated is varied from two to 20 clusters. The results are given in Table 2. Except SED, 

the optimal number of clusters for all settings are less than or equal to 11. 

Figure: 3 

An Example Dendrogram for the Case of Modified Hamming 2 with Five Bins 
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Table: 2 

Optimal Number of Clusters for Each Method 

Method Bins Number of Clusters 

SED   14 

CDF   11 

Hamming 

5 5 

10 5 

20 2 

30 10 

40 11 

50 3 

MH1 

5 8 

10 4 

20 4 

30 11 

40 4 

50 5 

MH2 

5 11 

10 8 

20 8 

30 3 

40 8 

50 4 

Table 3 shows the settings that result in the minimum WMSE for a given number of 

clusters. We observe that modified Hamming 2 with 5 bins gives the minimum WMSE for 

most of the cases with the number of clusters varying from four to 13. When the number of 

clusters is increased further, WMSE cannot be computed for certain cases due either to the 

generation of a cluster with a very small number of observations or because of all 

observations in a cluster having the same value for at least one variable. 

Table: 3 

The Settings that Result in the Minimum WMSE for a Given Number of Clusters 

Number of Clusters Method Number of Bins Min(WMSE) 

2 Ham 50 0.0579 

3 Ham 40 0.0573 

4 MH2 5 0.0543 

5 MH2 5 0.0536 

6 MH2 30 0.0510 

7 MH1 30 0.0509 

8 MH2 5 0.0499 

9 MH2 5 0.0496 

10 MH2 5 0.0489 

11 MH2 5 0.0488 

12 MH2 5 0.0487 

13 MH2 5 0.0487 

14 Ham 10 0.0485 

15 Ham 10 0.0484 

Table 4 shows different similarity measures and the corresponding optimal number 

of clusters sorted in increasing order of WMSE values. Although it is not possible to directly 

compare WMSE values for different number of clusters, modified Hamming 2 with five bins 

and 11 clusters has the smallest WMSE compared to other methods with 11 clusters as the 

optimal number of clusters, such as CDF, [MH1,30], and [H,40]. Furthermore, given that 

WMSE decreases as the number of clusters increases, it is obvious that the [MH2,5] setting 

with 11 clusters produces a better clustering than the commonly used standardized Euclidean 
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distance even when the latter uses 14 clusters as its optimal setting. Together with the fact 

that the [MH2,5] method results in the smallest WMSE value for a large range of clusters 

(Table 3) and its WMSE value for 11 clusters having the smallest WMSE among others 

(Table 4), we select the best similarity measure as the modified Hamming 2 method with 

five bins and the optimal number of clusters as 11 for our housing data. 

Table: 4 

WMSE for Different Similarity Measures and the Corresponding Optimal Number of 

Clusters 

Method Optimal Number of Clusters WMSE 

[MH2,5] 11 0.0488 

CDF 11 0.0493 

SED 14 0.0495 

[MH1,30] 11 0.0502 

[H,30] 10 0.0504 

[H,40] 11 0.0508 

[MH1,5] 8 0.0512 

[MH2,40] 8 0.0525 

[MH2,20] 8 0.0528 

[MH2,10] 8 0.0533 

[MH1,10] 4 0.0546 

[H,5] 5 0.0550 

[H,10] 5 0.0553 

[MH1,50] 5 0.0569 

[MH1,20] 4 0.0570 

[MH2,30] 3 0.0576 

[MH2,50] 4 0.0576 

[MH1,40] 4 0.0576 

[H,50] 3 0.0577 

[H,20] 2 0.0580 

The settings are sorted in increasing order of WMSE. 

Table: 5 

Adjusted Rand Index Values Computed Pairwise for Settings That Give the Lowest 

WMSE Values 

  [SED,14] [MH2,5,11] [CDF,11] [MH1,30,11] [H,30,10] 

[SED,14]*   0.254 0.408 0.248 0.199 

[MH2,5,11]     0.751 0.972 0.629 

[CDF,11]       0.742 0.535 

[MH1,30,11]         0.629 

[H,30,10]           

Upper bound for the index is one (perfect agreement) and the lower bound is less than but close to zero (perfect 
disagreement). 

* Adjusted Rand index (ARI) value does not change significantly for the case of [SED,11]. e.g., for the comparison 

between [SED,11] and [MH2,5,11], ARI = 0.2531. 

The adjusted Rand index is also computed to measure the significance of the 

differences in the cluster structure produced by the commonly used standardized Euclidean 

distance and the cluster structures produced by the similarity measures proposed in this 

paper. The adjusted Rand index values for [SED,14], [MH2,5,11] and several other methods 

with low WMSE are listed in Table 5. We can conclude that the cluster structure obtained 

with the standardized Euclidean distance differs significantly from the structure from other 

methods, especially from the discretized similarity measures. We can also observe that the 

cluster structures from [MH1,30] and [MH2,5] have a very high agreement rate. The 
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experiments show that, although the standardized Euclidean distance is commonly used in 

the cluster analysis and housing market segmentation studies, other similarity measures that 

rely on a more intuitive and effective combination of continuous and categorical variables 

produce results that are significantly better in terms of fit and markedly different in terms of 

their cluster structures. 

The produced clusters and the houses located in each cluster are shown in Figure 4 

for the selected [MH2,5,11] case. We can identify five close-to-coastline clusters [Cluster 3, 

4, 7, 8, 10]. Clusters 2, 4, 5, and 7 are formed with one distinguishable geographical area, 

clusters 1, 3, 6, 8 and 10 are grouped into two or more distinct areas, while cluster 9 and 11 

are spread over a larger spatial extent. The clusters generated by the [SED,14] case are 

shown in Figure 5 for comparison purposes. Although some clusters look similar to the 

selected case, many clusters, especially the ones located on the east side of the map are 

formed quite differently. 

Figure 6 illustrates the descriptive statistics for selected variables for each cluster 

produced by the [MH2,5,11] method. The most distinguishable cluster is cluster 7 which is 

located very close to the coastline and is characterized with the highest median household 

income, the highest housing price and the newest housings. 

5.4. Spatial Chow Test Results 

In order to group clusters into submarkets, the spatial Chow test (equation 13) is used. 

The test statistics for all possible combinations of clusters are computed by using generalized 

method of moments (GMM) estimates (Anselin, 1988; Kelejian & Prucha, 1998). All three 

test statistics [LM, Wald, LR] are computed by using error variance for restricted model, 

unrestricted model and both, respectively from estimated GLS procedure. The relative 

magnitude of the test statistics for all cases are found to be LM > Wald > LR. The most 

conservative statistics in our case, LR test statistics, are reported in Table 6. The test result 

suggests that clusters 1 and 2, clusters 4 and 5 and clusters 3, 8, 10 and 11 can be combined 

to form separate submarkets4. Therefore, we reduce eleven clusters into six submarkets. 

The result of the regular Chow test suggests combining only clusters 3 and 11, and 

for all other combinations the structural instabilities are found at least at 1 percent statistical 

significance level. Thus, we find that the use of the spatial Chow test is less likely to return 

the result of rejecting the null hypothesis (structural stability between two clusters) 

compared to the case of the uncorrected Chow test. 

 
4 The result of the LM test shows that the structural instability could not be observed for clusters 3-8 and 3-11 at 

the 1% significant level. For the Wald test, the structural instability was not observed for clusters 1-2, 1-3, 1-8, 

2-3, 3-8, 3-11 and 4-5 at the 1% level. 
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Table: 6 

Spatial Chow Test Statistics [LR test] for Individual and Merged Clusters 

  1 2 3 4 5 6 7 8 9 10 11 1 & 2 4 & 5 
3&8& 

10&11 

1   8.0 9.1 17.3 24.0 38.9 39.9 8.7 18.1 19.7 17.3   23.7 12.7 

2     8.5 23.9 42.6 74.9 72.2 17.7 35.9 31.6 21.9   43.9 18.7 

3       20.5 29.1 45.2 47.5 5.2 17.5 15.2 4.8 9.4 38.9   

4         8.3 26.9 118.8 32.0 31.1 40.3 43.5 26.7   38.5 

5           21.2 112.5 40.6 13.8 25.1 48.9 48.7   46.6 

6             120.6 61.3 21.8 22.9 67.5 82.7 31.2 71.9 

7               50.4 111.3 53.5 102.2 77.7 172.3 119.3 

8                 34.3 20.5 16.1 18.3 69.6   

9                   25.8 23.0 40.7 27.0 42.7 

10                     20.2 35.6 41.8   

11                       28.5 57.8   

1 & 2                         52.0 24.6 

4 & 5                           73.5 

3&8& 

10&11 
                            

*Cut-off values of Chi-squared distribution with 11 restrictions are 19.68 for p = 0.05 and 24.73 for p = 0.01. 
** The values below 5% and 1% cut-off points are in bold and italic, respectively. 

6. Conclusions 

This paper presents new methods for computing similarity measures, a critical 

component of cluster analysis, to determine housing submarkets using individual housing 

sales data. These methods focus on handling mixed-mode variables, in which some variables 

are continuous and others categorical. Commonly used similarity measures such as the 

standardized Euclidean and attribute combination and reduction methods such as the 

principal components analysis cannot directly handle mixed-mode data with variables of 

different types and units. Our proposed measures are innovative because they use both 

normalization and discretization techniques that permit all the variables to be handled in the 

same framework. 

In applying these methods to our data, we find that similarity measures that rely on a 

more intuitive and effective combination of continuous and categorical variables produce 

markedly different cluster structures than the commonly used methods for housing market 

segmentation. To compare the various similarity measures, we calculate a goodness of fit 

measure for the cluster structure produced by each measure and use the adjusted Rand index 

to quantify significant differences in the results. The experiments show that the proposed 

similarity measure based on a moderated form of discretization (match, partial match, and 

no match scores) produces the best results. In comparing these results with those produced 

by standardized Euclidean distance, which is the default settings of most clustering software 

packages, we find that the proposed measure produces results that are significantly better in 

fit and substantially different in terms of the resulting cluster structure. 
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Figure: 4 

11 Clusters Produced by the Modified Hamming 2 Method 

 

Figure: 5 

14 Clusters Produced by the Standardized Euclidean Distance Method 

 



Ara-Aksoy, S. & E. Irwin (2021), “Cluster Analysis for 

Housing Market Segmentation”, Sosyoekonomi, 29(49), 11-32. 

 

30 

 

Figure: 6 

Descriptive Statistics (Box and Whisker Plots) of Selected Variables for Each Cluster 

Produced by the [MH2,5,11] Case 

 
The boxes have lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending 

from each end of the boxes to show the extent of the rest of the data. 



Ara-Aksoy, S. & E. Irwin (2021), “Cluster Analysis for 

Housing Market Segmentation”, Sosyoekonomi, 29(49), 11-32. 

 

31 

 

 

References 

Aksoy, S. & R.M. Haralick (2001), “Feature normalization and likelihood-based similarity measures 

for image retrieval”, Pattern Recognition Letters, 22(5), 563-582. 

Anselin, L. (1988), Spatial Econometrics: Methods and Models, Dordrecht: Kluwer Academic 

Publishers. 

Anselin, L. (1990), “Spatial dependence and spatial structural instability in applied regression 

analysis”, Journal of Regional Science, 30(2), 185-209. 

Bates, L.K. (2006), “Does Neighborhood Really Matter? Comparing historically Defined 

neighborhood boundaries with housing submarkets”, Journal of Planning Education and 

Research, 26, 5-17. 

Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer, New York, USA. 

Boberg, J. & T. Salakoski (1993), “General formulation and evaluation of agglomerative clustering 

methods with metric and non-metric distances”, Pattern Recognition, 26(9), 1395-1406. 

Bourassa, S.C. & F. Hamelink & M. Hoesli & B.D. MacGregor (1999), “Defining housing 

submarkets”, Journal of Housing Economics, 8, 160-183. 

Clapp, J.M. & Y. Wang (2006), “Defining neighborhood boundaries: Are census tracts obsolete?”, 

Journal of Urban Economics, 59, 259-284. 

Day, B. (2003), “Submarket identification in property markets: A hedonic housing price model for 

Glasgow”, Technical Report, The Centre for Social and Economic Research on the 

Global Environment, School of Environmental Sciences, University of East Anglia, 

Norwich, UK. 

Everitt, B.S. & S. Landau & M. Leese (2001), Cluster Analysis, Fourth Edition. Arnold, London, 

UK. 

Galster, G.G. (2003), “Neighborhood dynamics and housing markets”, in: T. O’Sullivan & K. Gibb 

(eds), Housing Economics and Public Policy, Oxford: Blackwell. 

Gillen, K. & T.G. Thibodeau & S. Wachter (2001), “Anisotropic autocorrelation in house prices”, 

Journal of Real Estate Finance and Economics, 23(1), 5-30. 

Goetzmann, W.N. & S.M. Wachter (1995), “Clustering methods for real estate portfolios”, Real 

Estate Economics, 23(3), 271-310. 

Goodman, A.C. & T.G. Thibodeau (2003), “Housing market segmentation and hedonic prediction 

accuracy”, Journal of Housing Economics, 12, 181-201. 

Gower, J.C. (1971), “A general coefficient of similarity and some of its properties”, Biometrics, 27, 

857-872. 

Hoesli, M. & C. Lizieri & B. MacGregor (1997), “The spatial dimensions of the investment 

performance of UK commercial property”, Urban Studies, 34(9), 1475-1494. 

Kelejian, H. & I.R. Prucha (1998), “A generalized spatial two-stage least squares procedure for 

estimating a spatial autoregressive model with autoregressive disturbances”, Journal of 

Real Estate Finance and Economics, 17, 99-121. 

Kim, K. & J. Park (2005), “Segmentation of the housing market and its determinants: Seoul and its 

neighbouring new towns in Korea”, Australian Geographer, 36(2), 221-232. 

Maclennan, D. & Y. Tu (1996), “Economic perspectives on the structure of local housing systems”, 

Housing Studies, 11(3), 387-406. 



Ara-Aksoy, S. & E. Irwin (2021), “Cluster Analysis for 

Housing Market Segmentation”, Sosyoekonomi, 29(49), 11-32. 

 

32 

 

Milligan, G.W. & M.C. Cooper (1985), “An examination of procedures for determining the number 

of clusters in a data set”, Psychometrika, 50, 159-179. 

Theodoridis, S. & K. Koutroumbas (2006), Pattern Recognition, 3rd edition. Elsevier, USA. 

Tu, Y. & H. Sun & S.M. Yu (2007), “Spatial autocorrelations and urban housing market 

segmentation”, Journal of Real Estate Finance and Economics, 34, 385-406. 

Witten, I.H. & E. Frank (2005), Data Mining, 2nd edition. Elsevier, USA. 


