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VARIOUS CHARACTERIZATIONS FOR QUATERNIONIC

MANNHEIM CURVES IN THREE-DIMENSIONAL EUCLIDEAN

SPACE

AYKUT HAS* AND BEYHAN YILMAZ

Abstract. In this article, quaternionic curves in 3-dimensional Euclidean
space have examined. Firstly, algebraic properties of quaternions and their

basic definitions and theorems are given. Later, some characterizations of

the quaternionic Mannheim curves in the 3-dimensional Euclidean space have
obtained.

1. Introduction

Quaternions discovered in 1843 during the study of Irish mathematician William
Rowan Hamilton to generalize complex numbers into 3−dimensional space. Real
quaternions consist of a combination of two complex numbers. Accordingly, as
complex numbers are a subset of quaternions, it is understood that quaternions
are a larger number system that includes both real numbers and complex numbers.
Quaternions are increasingly used in every field in recent years. Also, quaternions
play an important role in various fields such as mechanics, kinematics, and quantum
mechanics. On the other hand, these numbers are related to rotational transfor-
mation in orthogonal and unit symmetry groups. Quaternions also provide the
possibility to represent finite rotations in space, [5, 10, 12].

Since Hamilton, quaternions have been studied by different authors. Every ele-
ment in real quaternions Q can be expressed as ae1 + be2 + ce3 + de4, where a, b, c
and d are real numbers and e1, e2, e3 and e4 can be taken as the base vector in
4−dimensional space, [1]. The Serret-Frenet formulas for quaternionic curves in E3

and E4 defined by Bharathi and Nagaraj in 1987, [2]. Afterwards, Çöken and Tuna
defined these formulas for a quaternionic curve in semi-Euclidean space E4

2. Also
they introduced the definitions quaternionic inclined curves and harmonic curva-
tures, [3, 4]. In 4−dimensional Euclidean space the quaternionic Mannheim curves
studied by Okuyucu in 2013, [7].

One of the most studied topics in differential geometry is the theory of curves.
In the theory of curves, especially geodesics, circles, general helixes, slant helix and

Date: January, 2021.

2000 Mathematics Subject Classification. 53A04, 53C50.
Key words and phrases. Real quaternion, Spatial quaternion, Quaternion algebra, Mannheim

partner curves.

62



VARIOUS CHARACTERIZATIONS FOR QUATERNIONIC MANNHEIM CURVES IN E3 63

special curves such as rectifying curves are studied. One of the problems most
researched in Euclidean space is the characterization of a regular curve. One of the
approaches used in the solution of this problem is to determine the characterizations
of these curves by considering the relationship between the Frenet vectors of the
two curves. For example, if the principal normal vectors of two curves coincide, this
pair of curves is called the Bertrand curve pair. If the tangents of two curves are
perpendicular to each other, these curves are called involute-evolute curve pairs. If
the normal vector of one of the two curves coincides with the binormal vector of
the other, this pair of curves is called the Mannheim curve pair.

Mannheim curves discovered by Mannheim in 1878, [13]. In 1966, with the help
of Riccati equations some theorems given regarding Mannheim curves, [8]. In recent
years, Liu and Wang have studied the characterization of Mannheim curve pairs
in 3−dimensional Euclidean space, [6]. In addition, studies have been carried out
reveal some characteristic features in the Minkowski space, [9, 11].

In this present paper, we firstly prove the theorems related to the Mannheim
curve pair in quaternionic form .Then, we obtain some characterizations of spatial
quaternionic Mannheim curves with the aid of Serret-Frenet formulas.

2. Preliminaries

In this section, basic definitions and theorems on quaternions, spatial quater-
nionic curves and quaternionic curves will be given.

Let QH be a vector space with characteristic greater than 2 on the H field. In
general, the real quaternion form is as follows, where q is a real quaternion.

q = ae1 + be2 + ce3 + de4

where a, b, c, d are real numbers and ei, (1 ≤ i ≤ 4) are quaternionic units which
satisfy the non-commutative multiplication rules

e4 = 1, e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3,

e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2.

If we denote Sq = d and V q = ae1 + be2 + ce3, we can rewrite a real quaternion is
q = Sq+V q where Sq and Vq are the scalar part and vectorial part of q, respectively.
So, we can show the product of two quaternions as:

p× q = SpSq − 〈V p, V q〉+ SpV q + SqV p+ V p ∧ V q

where 〈, 〉 and ∧ are inner product and cross product in E3, respectively. The
conjugate of q denoted by γq and defined as:

γq = −ae1 − be2 − ce3 + de4

which is called the ”Hamilton conjugation”. This defines bilinear form h as follows

h(p, q) =
1

2
[p× γq + q × γq]

which is called the quaternion inner product. The norm of q is given by

‖q‖2 = h(q, q) = q × γq = γq × q = a2 + b2 + c2 + d2.

If ‖q‖2 = 1, then q is called unit quaternion. Also, q is called a spatial quaternion
whenever q + γq = 0 and called a temporal quaternion whenever q − γq = 0.
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Theorem 2.1. Space of spatial quaternions in three dimensional Euclidean space,
it is clearly is identified as {p ∈ QH | p+ γp = 0}. Let I = [0, 1] indicate the unit
spacing in R. Let

α : I ⊂ R −→ QH

s −→ α(s) :

3∑
i=1

αi(s)ei (1 ≤ i ≤ 3)

be a curve with {k(s), r(s)} and {t(s), n(s), b(s)} denote the Frenet frame of α.
Then,  t′(s)

n′(s)
b′(s)

 =

 0 k(s) 0
−k(s) 0 r(s)

0 −r(s) 0

 t(s)
n(s)
b(s)

 . (2.1)

Theorem 2.2. Let I = [0, 1] indicate the unit spacing in R and

α : I ⊂ R −→ QH

s −→ α(s) :

4∑
i=1

αi(s)ei (1 ≤ i ≤ 4),

be a curve in E4 with {K(s), k(s), (r − K)(s)} and {T (s), N(s), B1(s), B2(s)} de-
notes the Frenet frame of the curve. Then,

T ′(s)
N ′(s)

B
′

1(s)

B
′

2(s)

 =


0 K(s) 0 0

−K(s) 0 k(s) 0
0 −k(s) 0 (r −K)(s)
0 0 −(r −K)(s) 0




T (s)
N(s)
B1(s)
B2(s)

 . (2.2)

Definition 2.3. Let α(s) and β(s∗) be two spatial quaternionic curves in E3.
{t(s), n(s), b(s)} and {t∗(s∗), n∗(s∗), b∗(s∗)} are the Frenet frames on these curves,
respectively. α and β are called spatial quaternionic Mannheim curves if n(s) and
b∗(s∗) are linearly dependent, [14].

Definition 2.4. A quaternionic curve α(4) : I ⊂ R −→ E4 is a quaternionic
Mannheim curves if there exist a β(4) : I ⊂ R −→ E4 such that the second Frenet
vector at each point of α(4) is included the plane generated by the third Frenet
vector and the fourth Frenet vector of β(4) at coresponding point under ϕ where ϕ
is a bijection from α(4) to β(4). The curve β(4) is called the quaternionic Mannheim
partner curve of α(4), [7].

Definition 2.5. Let α(s) and β(s∗) be quaternionic curves in E3 with the Frenet
frames {t(s), n(s), b(s)} and {t∗(s∗), n∗(s∗), b∗(s∗)} according to arc-length param-
eter s and s∗, respectively. If the pair {α, β} are a Mannheim pair n(s) and b∗(s∗)
are linearly dependent. So, we can write

α(s) = β(s∗) + λ1b
∗(s∗), (2.3)

and

β(s∗) = α(s) + λ2n(s∗). (2.4)

Corollary 2.6. Let α(s) and β(s∗) be quaternionic curves in E3 with the Frenet
frames {t(s), n(s), b(s)} and {t∗(s∗), n∗(s∗), b∗(s∗)} according to arc-length param-
eter s and s∗, respectively. If the pair {α, β} are a Mannheim pair, we can write
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the following results

t∗ = cos θt− sin θb, (2.5)

n∗ = sin θt+ cos θb,

and

t = cos θt∗ + sin θn∗, (2.6)

b = − sin θt∗ + cos θn∗.

3. Main Results

Theorem 3.1. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves
in three-dimensional Euclidean space E3 with arc-length parameter s ∈ [0, 1] and
β(s∗) be the spatial Mannheim curve pair of α(s) with the arc-length parameter s∗.
Then the distance between corresponding points are a fixed distance for each s ∈ I.

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. Taking the
derivative of equation (2.3) according to s∗ and apply Frenet formulas following
equations, we have

dα

ds

ds

ds∗
= β′(s∗) + λ′1b

∗(s∗) + λ1(b
∗
)
′
(s∗),

t
ds

ds∗
= t∗ + λ′1b

∗ − λ1r∗n∗.

If both sides of the equality are made the quaternionic inner product of the n, we
get

ds

ds∗
h(t, n) = h((t∗ + λ′1b

∗ − λ1r∗n∗), n). (3.1)

If the left side of the above equation is calculated, we have

ds

ds∗
h(t, n) =

1

2

ds

ds∗
[t× γn+ n× γt]

= 0. (3.2)

On the other hand, right side of equation (3.1) as follows

h(t∗+λ′1b
∗−λ1r∗n∗, n) =

1

2
[(t∗+λ′1b

∗−λ1r∗n∗)×γn+n×γ(t∗+λ′1b
∗−λ1r∗n∗)]

=
1

2
[−(t∗ × n)− λ′1(b∗ × n) + λ1r

∗(n∗ × n)− (n× t∗)− λ′1(n× b∗) + λ1r
∗(n× n∗)]

=
1

2
[n∗ + λ′1 + λ1r

∗t∗ − n∗ + λ′1 − λ1r∗t∗]

= λ′1. (3.3)

From the equations (3.2) and (3.3) we can easily see that

λ1 = 0

λ′1 = c, c ∈ R.

�
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Theorem 3.2. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves in
E3 with s ∈ [0, 1] and β(s∗) be the spatial Mannheim curve pair of α(s) with s∗. Sup-
pose that k, r and k∗, r∗be a curvature and torsions of α(s) and β(s∗), respectively.
In this case, the following equations are available

k = r∗ sin θ
ds∗

ds
,

r = −r∗ cos θ
ds∗

ds
.

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. By definition
of curvature, we have

k = h(t′, n) and r = h(n′, b).

If the equation (2.3) is used in the first equation given above, we get

k = h((cos θt∗ + sin θn∗)′, n),

k = h(− sin θ
dθ

ds
t∗ + cos θk∗n∗

ds∗

ds
+ cos θ

dθ

ds
n∗ + sin θ(−k∗t∗ + r∗b∗)

ds∗

ds
), b∗)

=
1

2
[(sin θ

dθ

ds
(t∗ × b∗)− k∗ cos θ

ds∗

ds
(n∗ × b∗)− cos θ

dθ

ds
(n∗ × b∗)

+k∗ sin θ
ds∗

ds
(t∗ × b∗)− r∗ sin θ

ds∗

ds
(b∗ × b∗)

+ sin θ
dθ

ds
(b∗ × t∗)− k∗ cos θ

ds∗

ds
(b∗ × n∗)− cos θ

dθ

ds
(b∗ × n∗)

+k∗ sin θ
ds∗

ds
(b∗ × t∗)− r∗ sin θ

ds∗

ds
(b∗ × b∗)].

As a result of this equation, we can write

k = r∗ sin θ
ds∗

ds
.

On the other hand, if equation (2.3) is used in the torsion equation, we obtain

r = h(−r∗n∗ ds
∗

ds
, (− sin θt∗ + cos θn∗)),

r =
1

2
[(−r∗n∗ ds

∗

ds
)× γ(− sin θt∗ + cos θn∗) + (− sin θt∗ + cos θn∗)× (−r∗n∗ ds

∗

ds
)]

=
1

2
[−r∗ sin θ

ds∗

ds
(n∗ × t∗) + r∗ cos θ

ds∗

ds
(n∗ × n∗)

−r∗ sin θ
ds∗

ds
(t∗ × n∗) + r∗ cos θ

ds∗

ds
(n∗ × n∗)].

If necessary arrangements are made, we can write

r = −r∗ cos θ
ds∗

ds
.

�

Theorem 3.3. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves in
E3 with s ∈ [0, 1] and β(s∗) be the spatial Mannheim curve pair of α(s) with s∗. Sup-
pose that k, r and k∗, r∗be a curvature and torsions of α(s) and β(s∗), respectively.
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Following equations are available

k∗ = −dθ
ds
,

r∗ = (k sin θ − r cos θ)
ds

ds∗
.

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. By definition
of curvature, we get

k∗ = h((cos θt− sin θb)′, n∗)

k∗ = h((− sin θ
dθ

ds
t+ kn cos θ

ds

ds∗
− cos θ

dθ

ds
b+ rn sin θ

ds

ds∗
), (sin θt+ cos θb))

=
1

2
[(sin2 θ

dθ

ds
(t× t)− k sin θ cos θ

ds

ds∗
(n× t) + sin θ cos θ

dθ

ds
(b× t)− r sin2 θ

ds

ds∗
(n× t)

+ sin θ cos θ
dθ

ds
(t× b)− k cos2 θ

ds

ds∗
(n× b) + cos2 θ

dθ

ds
(b× b)− r sin θ cos θ

ds

ds∗
(n× b)

+ sin2 θ
dθ

ds
(t× t)− k sin θ cos θ

ds

ds∗
(t× n) + sin θ cos θ

dθ

ds
(t× b)− r sin2 θ

ds

ds∗
(t× n)

+ sin θ cos θ
dθ

ds
(b× t)− k cos2 θ

ds

ds∗
(b× n) + cos2 θ

dθ

ds
(b× b)− r sin θ cos θ

ds

ds∗
(b× n)].

As a result of this equation, we can write

k∗ = −dθ
ds
.

On the other hand, using the definition of torsion we obtain

r∗ = h((sin θt+ cos θb)′, n)

r∗ = h((cos θ
dθ

ds
t+ kn sin θ

ds

ds∗
− sin θ

dθ

ds
b− rn cos θ

ds

ds∗
), n)

=
1

2
[− cos θ

dθ

ds
(t× n)− k sin θ

ds

ds∗
(n× n) + sin θ

dθ

ds
(b× n) + r cos θ

ds

ds∗
(n× n)

− cos θ
dθ

ds
(n× t)− k sin θ

ds

ds∗
(n× n) + sin θ

dθ

ds
(n× b) + r cos θ

ds

ds∗
(n× n)].

If necessary arrangements are made, we can easily see that

r = (k sin θ − r cos θ)
ds

ds∗
.

�

Theorem 3.4. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves
in E3 with s ∈ [0, 1] and β(s∗) be the spatial Mannheim curve pair of α(s) with s∗.
Suppose that k, r be a curvature and torsions of α(s). Then the following relation
exists.

λ2 =
k2 + r2

k

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. Taking the
derivative of equation (2.4) according to s∗ and apply Frenet formulas following
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equations

dβ∗(s∗)

ds∗
=

dα(s)

ds

ds

ds∗
+ λ′2n(s) + λ

dn(s)

ds

ds

ds∗
,

t∗ = t
ds

ds∗
+ λ′2n+ λ2(−kt+ rb)

ds

ds∗
.

If equation (2.5) is used in the above equation, we get

cos θt− sin θb = (1− λ2k)t
ds

ds∗
+ λ′2n+ λ2rb

ds

ds∗
. (3.4)

If both sides of the equalities are made with the quaternionic inner product of the
t, we obtain

h(cos θt− sin θb, t) = h((1− λ2k)t
ds

ds∗
+ λ′2n+ λ2rb

ds

ds∗
), t).

Firstly, if the right side of the above equation is arranged, we can see

h((1− λ2k)t
ds

ds∗
+ λ′2n+ λ2rb

ds

ds∗
), t) =

1

2
[−(1− λ2k)(t× t) ds

ds∗
− λ′2(n× t)− λ2r(b× t)

ds

ds∗

−(1− λ2k)(t× t) ds
ds∗
− λ′2(t× n)− λ2r(b× t)

ds

ds∗
]

= (1− λ2k)
ds

ds∗
. (3.5)

Also, if the left side of the same equation is to be arranged

h(cos θt− sin θb, t) =
1

2
[− cos θ(t× t) + sin θ(b× t)− cos θ(t× t) + sin θ(t× b)]

= cos θ. (3.6)

From the equations (3.5) and (3.6), we can write

cos θ = (1− λ2k)
ds

ds∗
. (3.7)

On the other hand, if both sides of the equation (3.4) are made with the quaternionic
inner product of the b, we get

h(cos θt− sin θb, b) = h((1− λ2k)t
ds

ds∗
+ λ′2n+ λ2rb

ds

ds∗
), b). (3.8)

If the right side of the above equation is arranged,

h((1− λ2k)t
ds

ds∗
+ λ′2n+ λ2rb

ds

ds∗
), b) =

1

2
[−(1− λ2k)(t× b) ds

ds∗
− λ′2(n× b)− λ2r(b× b)

ds

ds∗

−(1− λ2k)(b× t) ds
ds∗
− λ′2(b× n)− λ2r(b× b)

ds

ds∗
]

= λ2r
ds

ds∗
. (3.9)

and if the left side of the same equation is to be arranged, we can see

h(cos θt− sin θb, b) =
1

2
[− cos θ(t× b) + sin θ(b× b)− cos θ(b× t) + sin θ(b× b)]

= − sin θ. (3.10)

Using the equations (3.9) and (3.10), we have

sin θ = −λ2r
ds

ds∗
. (3.11)
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Also, from the equations (3.7) and (3.11) we obtained

cot θ =
λ2k − 1

λ2r
. (3.12)

On the other hand, as seen clearly in Theorem 4,

cot θ = − r
k

(3.13)

So, from the equations (3.12) and (3.13), we get

λ2 =
k

k2 + r2
.

�

Theorem 3.5. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves in
E3 with s ∈ [0, 1] and β(s∗) be the spatial Mannheim curve pair of α(s) with s∗. Sup-
pose that k, r and k∗, r∗be a curvature and torsions of α(s) and β(s∗), respectively.
Following equation is available

rλ1 − r∗λ2 = 0.

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. Taking
the derivative of equation (2.4) according to s and apply Frenet formulas following
equations

dβ

ds∗
ds∗

ds
= α′(s) + λ′2n(s) + λ2n

′(s),

t∗
ds∗

ds
= (1− λ2k)t+ λ′2n+ λ2rb.

If we use the equation (2.6) in the last equation, we obtain

t∗
ds∗

ds
= (cos θ − λ2k cos θ − λ2r sin θ)t∗ + (sin θ − λ2k sin θ + λ2r cos θ)n∗ + λ′2b

∗.

On the other hand, if quaternionic inner product with n∗ is made on both sides of
the equation we have obtained in the last equation above, we get

sin θ = λ2(k sin θ − r cos θ).

Also, using the result of Theorem 4 in the last equation, we have

k

r∗
= λ2r

∗,

λ2 =
k

(r∗)2
. (3.14)

Taking the derivative of equation (2.3) according to s∗,

dα

ds

ds

ds∗
= β′(s∗) + λ′1b

∗(s∗) + λ1(b
∗
)
′
(s∗),

t
ds

ds∗
= t∗ + λ′1b

∗ − λ1r∗n∗.

If we use the equation (2.5) in the last equation obtained above, we have

t
ds

ds∗
= (cos θ − λ1r∗ sin θ)t+ λ′1n+ (− sin θ − λ1r∗ cos θ)b.
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Additionally, if both sides in the last equation we obtained above are made with
the quaternionic inner product of the b, we get

sin θ = −λ1r∗ cos θ,

sin θ
ds∗

ds
= −λ1r∗ cos θ

ds∗

ds
.

Similarly, if we use the result of Theorem 4 in the last equation we obtained, we
can see

k

r∗
= λ1r,

λ1 =
k

r∗r
. (3.15)

Finally, if we use the equations (3.14) and (3.15), we obtain

λ1
λ2

=
r∗

r
,

and then

λ1r − λ2r∗ = 0.

�

Theorem 3.6. Let α : I ⊂ R −→ E3 be a spatial quaternionic Mannheim curves
in E3 with s ∈ [0, 1] and β(s∗) be the spatial Mannheim curve pair of α(s) with s∗.
Then the following relation exists.

λ1 + λ2 = 0

Proof. Suppose that α : I ⊂ R −→ E3 be a spatial quaternionic curve. Taking the
derivative of equation (2.3) according to s∗ and apply Frenet formulas following
equations

dα

ds

ds

ds∗
= β′(s∗) + λ′1b

∗(s∗) + λ1(b
∗
)
′
(s∗),

t
ds

ds∗
= t∗ + λ′1b

∗ − λ1r∗n∗ .

If we use the equation (2.5) in the last equation obtained above, we get

t
ds

ds∗
= (cos θt− sin θb) + λ′1n− λ1r∗(sin θt+ cos θb).

If both sides in the last equation obtained above are made with the quaternionic
inner product of t, we obtain

ds

ds∗
= cos θ − λ1r∗ sin θ.

If we multiply both sides of this equation by
ds∗

ds
, we can write

1 = cos θ
ds∗

ds
− λ1r∗ sin θ

ds∗

ds

and

λ1 = −r
∗ + r

kr∗
. (3.16)
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On the other hand taking the derivative of equation (2.4) according to s and apply
Frenet formulas following equations

dβ

ds∗
ds∗

ds
= α′(s) + λ′2n(s) + λ2n

′(s),

t∗
ds∗

ds
= (1− λ2k)t+ λ′2n+ λ2rb.

If we use the equation (2.5) in the last equation obtained above, we get

(cos θt− sin θb)
ds∗

ds
= (1− λ2k)t+ λ′2n+ λ2rb.

Also, if both sides in the last equation obtained above are made with the quater-
nionic inner product of the t, we have

cos θ
ds∗

ds
= 1− λ2k.

Using the result of Theorem 4 in the last equation obtained, we can easily see that

λ2 =
r∗ + r

kr∗
. (3.17)

Finally, if we use the equations (3.16) and (3.17), we obtain

λ1 + λ2 = 0.

�

4. conclusion

In this paper, some characterizations of the spatial Mannheim curve pair in
3-dimensional Euclidean space have been obtained. While obtaining these charac-
terizations, quaternionic properties are used. It is seen here that the characteriza-
tions obtained by Euclidean inner product and the characterizations obtained by
quaternionic inner product are identical.
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[11] H.B. Öztekin and M. Ergüt, Null Mannheim curves in the Minkowski 3-space, Turkish Journal
of Mathematics, 35(1), 107-114, (2011).

[12] H.H. Hacısalioglu, Hareket Geometrisi ve Kuaterniyonlar Teorisi, University of Gazi Press,

Ankara, (1983).
[13] A. Mannheim, Paris C.R. 86 1254–1256, (1878).

[14] H.H. Hacısalioglu, Diferansiyel Geometri , University of Ankara Press, Ankara, (1998).

Department of Mathematics, Kahramanmaraş Sütcü İmam University, Kahramanmaraş,
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