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Synthesis and Structural Features of Hydrogen-Bonded Networks Based on The Combination of 

Tectons Triphenylboroxine Cation and Pt(SCN)4 Anion Salts 

Fumet Duygu USTUNDAG1, Elif GUNGOR2, Hulya KARA SUBASAT3* 

ABSTRACT: In this work, a new compound [C15H16B3N3O5].[Pt(SCN)4].2(H2O] (1) has been 

synthesized and structurally characterized. The compound (1) crystallizes in monoclinic, space group 

P21/c a=10.443 Å, b= 24.918 Å, c= 15.048 Å, 𝛼=90, β=133.945, γ=90, V=2819.4 Å3, Z=4. The use 

of molecular tecton (building block) able to form thiocyano-based hydrogen-bonded synthons 

(OH···SCN) to synthesize a diverse range of crystal structures is described. In the crystal structure, 

molecules are linked by intermolecular SCN···HN and BO···HN hydrogen bonds, forming a three-

dimensional network. 

Keywords: Boroxine compound, single-crystal structure, hydrogen bonds synthons, supramolecular 

frameworks. 
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INTRODUCTION  

In recent years, boronic acid compounds have been widely used in pharmaceuticals, 

agrochemicals, sensors for carbohydrates, optical and electrochemical sensors, biologically relevant 

materials, cell manipulation, including capture, culture, and protection of cells, inhibitors of 

proteases, therapeutic agents, enzyme inhibitors ( Pedireddi and SeethaLekshmi, 2004; Kara et al., 

2006; Dai et al., 2010; Whyte et al., 2013; Brooks and Sumerlin, 2016). They are also used in the 

treatment of cancer with boron neutron capture therapy (BNCT), tumors, HIV, obesity, and diabetes 

in medicine ( Yang et al., 2003; Cambre and Sumerlin, 2011; Brooks and Sumerlin, 2016). 

Substituted pyridines are important components of drug candidates (Cai et al., 2002). The first 

boronic acid-containing anticancer agent Velcade proves increased interest in boronic acid in 

medicine (Hall, 2011). Boronic acids are rich in hydrogen bond derivatives and perform a wide 

variety of cross-coupling reactions with metals. Due to these properties, they have attracted great 

attention and gain importance in supramolecular chemistry (Aakeröy et al., 2005; Hall, 2011). At the 

same time, boronic acids are important compounds in the definition of molecules and anions in 

material science and crystal engineering (Braga et al., 2003; Deplano et al., 2004; Aakeröy and 

Salmon, 2005; Marinaro et al., 2012; Hezil, 2016). Boronic acid compounds are promising building-

blocks in crystal engineering, mostly due to the formation of hydrogen bonds that seems to be the 

main force in producing supramolecular species in the solid phase ( Hall, 2011; Campos-Gaxiola et 

al., 2017). Ortho-substituted boronic acids seem to be especially prone to the creation of 

supramolecular structures. Boronic acids are useful building-blocks in the design and synthesis of 

supramolecular assemblies ( Aakeröy et al., 2005; Yahsi et al., 2015; Neochoritis et al., 2019). Water 

molecules play an important role as spacer molecules in the resulting supramolecular structure 

(Rodríguez-Cuamatzi et al., 2009). 

Formation of  boroxines or/and N–B dative bonds is also useful in crystal engineering (Aakeröy 

et al., 2005). Boroxines are cyclic trimers of organoboronic acids produced by dehydration of the 

acids. Boronic acids easily undergo spontaneous dehydration that can take place at purifying 

conditions or under storage, resulting in cyclic boroxines (Korich and Iovine, 2010; Hall, 2011).  Due 

to this fact, most of the market-available boronic acids contain various amounts of anhydride. As the 

suppliers claim, the “impurity” does not disqualify the product as the dehydration process is 

reversible and therefore boronic acids and boroxines can be used interchangeably in most cases ( 

Rodríguez-Cuamatzi et al., 2009; Hall, 2011) . 

For the past few years, our research group has been actively working on the structural and optical 

characterization of organic molecules containing various aromatic carboxylate and pyridine derivatives 

(Erkarslan et al., 2016; Coban et al., 2016; Kocak et al., 2017; Erkarslan et al., 2018). We have also 

reported geometrical and structural features of compounds formatting between pyridinium and 

bipyridinium cationic tectons and [PtCl4]-2, [PdCl4]-2, [PtCl6]-2 anionic salts (Kara et al., 2006; 2011). 

These studies showed that caused the 1D, 2D and 3D networks formation according to the hydrogen 

bond donor ability of cations due to the isometric and isosteric use of 4 -pyridinium cation. It was 

reported that it played an important role in determining their structure of stereochemistry of hydrogen 

bond donor groups in cations and caused different behaviours. 

In this study, we have synthesized a new compound [C15H16B3N3O5].[Pt(SCN)4].2(H2O) (1) 

with the salt of the [Pt(SCN)4]-2 anion and dehydration of 4-Pyridine boronic acid to boroxine. We 

explored the use of molecular tecton of thiocyano-based hydrogen-bonded synthons (Pt-SCN···HO, 

SCN···HN and BO···HN) to synthesis a diverse range of crystal structure. 
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MATERIALS AND METHODS 

Materials and Measurements 

[C15H16B3N3O5].[Pt(SCN)4].2(H2O) (1) was synthesized according to the published experimental 

method (Kara et. al., 2006). The organic compound was recrystallized from concentrated hydrochloric 

acid to give hydrochloride salts. Single crystal of 1 was obtained by slow diffusion of in stoichiometric 

quantities of boroxine and metal [Pt(SCN)4] salt reagent. Elemental analysis was performed in the 

Microanalytical Service of the Chemistry School.  

Synthesis of [(4-HNC5H4)3B3O3], Boroxine  

4-Pyridinylboronic acid, (1 mmol) was dissolved in %37 hydrochloric acid solution and water. 

The solution was maintained at the boiling point with stirring for 1 h. The solvent was evaporated, and 

the white crystals were obtained upon filtration. The dehydration of 4-Pyridine boronic acid to 

boroxine is outlined in Scheme 1. 

 

Scheme 1 The dehydration of 4-Pyridine boronic acid to boroxine 

 

Synthesis of [C15H16B3N3O5].[Pt(SCN)4].2(H2O]  (1) 

To a solution of Pt(SCN)4 (0.4274 mg, 1 mmol) in 10 ml of water, a solution of [(4-

HNC5H4)3B3O3] (0.1229 g, 1 mmol) in 10 ml water was added dropwise with stirring. The orange 

precipitate was obtained, collected by filtration and dried. The synthetic route of 1 is outlined in 

Scheme 2. Yield: 55%. Elemental analysis (%). Found: C, 27.89; H, 2.61; N, 12.01. Calculated: C, 

27.99; H, 2.59; N, 12.03. 
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X‑Ray Crystallography 

Diffraction measurements were made on three-circle Bruker Apex II Kappa CCD diffractometers 

using graphite monochromated Mo-Kα radiation (= 0.71073 Å) at 100 K for 1. The intensity data 

were integrated using the SAINT ( Bruker-AXS, 2008) program. The data was collected for Lorentz-

polarization and absorption effects (Sheldrick, 2008). Absorption corrections were applied based on 

equivalent reflections using SADABS (Sheldrick, 2008). The structures were solved by direct methods 

using SHELXS (Sheldrick, 2008) and were refined with SHELXL (Sheldrick, 2015) using full-matrix 

least-squares in Olex2 (Dolomanov et al., 2009) program. All non-hydrogen atoms were assigned 

anisotropic displacement parameters and refined without positional constraints. Hydrogen atoms were 

included in idealized positions. Crystal data for 1 and its structural refinement parameters are given in 

Table 1.  

Table 1 Crystal data of 1 

 1 

CCDC deposit no. 1993503 
Chemical Formula C15H16B3N3O5C4N4PtS4.2(H2O) 
Crystal System Monoclinic 
Space Group P21/c 

Unit cell parameters 

a =10.443(2) Å 
b =24.918(5) Å 
c =15.048(4) Å 

 =90° 

 =133.945(17)° 
 =90° 

V 2 819.4 (14) Å3 
T 100 K 
Z 4 
μ 5.327 mm-1 
Reflections collected 19 798 
Independent reflections (Rint) 6 459 [Rint = 0.0695] 
Final R1[I > 2σ(I)] 0.0640 

RESULTS AND DISCUSSION 

Molecular networks are infinite periodic molecular formed under self-assembly conditions 

between molecular tectons. To create hydrogen bonded 1D, 2D, 3D networks, it is necessary to 

combine anionic and cationic components. When hydrogen bonding acceptor thiocyanometallate 

anions and metal centers are combined, they exhibit interesting coordination modes leading to various 

H-bond patterns (Sheldrick, 2015). Although thiocyanometallate anions and cyanometallate analogs 

are different sizes and geometries, they are similar hydrogen bonding properties (Figure 1). Although 

the isothiocyanometallate complexes and cyanometallate anions as H-bond acceptors have similar 

coordination geometry, nevertheless they offer different possibilities ( Bowmaker et al., 2009; Tan et 

al., 2013; Otgonbaatar et al., 2015). 
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Figure 1. Coordination and possible H-bond acceptor modes of cyanide (a) thiocyanate (b) and 

isothiocyanate (c) metal complexes. The arrow represents the direction of the H-bond. 

 

Compound 1 crystallizes in the monoclinic crystal system and P21/c space group. The 

asymmetric unit of compound contains a [Pt(SCN)4]-2 anion, a boroxine, and two water molecules 

(Figure 2). The Pt ion in the 1 is four-coordinated by four SCN bounds and located on an inversion 

centre. The cis S-Pt-S bond angles are between 83.28(11)° and 95.25(12)° for 1 which deviates from 

the ideal square geometry angle (90°). Therefore, [Pt(SCN)4]-2 anion of 1 have slightly distorted square 

planar geometry around the Pt centre with the average Pt–S bond lengths of 2.32(7) Å. The average 

Pt–C and C≡N bond lengths of compounds are 1.68(8) Å and 1.15(10) Å, respectively. The S-Pt-S 

angle varies from 1 is between 83.28(11)° and 95.25(12)°. As shown in Table 2, the Pt–S bond is bent 

with the PtSC angle varying between 101.30(3)° and 109.60(5)°. The NCS angle in the thiocyanide 

anion of 1 is almost linear with an average 177.30(8)°. 

The triphenylboroxin in 1 contains one three-coordinate, two four-coordinate boron. The phenyl 

rings attached to the three-coordinate B atom in the triphenylboroxin structure of 1 is approximately 

coplanar with the B3O3 ring. The average B-O-B bond angles in the B3O3 ring of 1 is 124.25(10)° 

which are display deviates from 120° values expected if the bonds are formed from sp2 hybrid orbitals. 

The four-coordinate B atoms in the B3O3 rings of 1 is distorted from planarity, resulting in the 

formation of two twisted six-membered rings after coordination with OH of B atoms. Therefore, the 

three-coordinate boron atom has slightly distorted trigonal planar geometry while the four-coordinate 

boron atoms have slightly distorted tetrahedral geometry. 

Compound 1 is formed 1-D chain as infinite ribbons by the mutual interconnection of the 

cationic and anionic units with hydrogen bonds as shown in Figure 3a. The four ends of the 

[Pt(SCN)4]2- anion of both compounds are linked to four cations by one Pt-SCN···HO (boroxine) and 

three Pt-SCN···HO (water) hydrogen bonds. The Pt-SCN···HO (boroxine) and Pt-SCN···HO (water) 

distances are 2.838 Å and 2.887 Å for 1 and formed these hydrogen bonds are strong. 

The 1D chain of 1 are arranged as double ribbons in the ab plane from the interconnection of 

dications and dianions with O-H···O hydrogen bonds, forming 2D networks (Table 3, Figure 3b). In 

the structure, 2D sheets are packed in parallel in the ab plane. The distance between two metal 

centres within the 1-D networks is 10.443 Å for 1 while the distance between two metal centres 

belonging to two serial chains is observed 12.511 Å for 1. Additionally, ribbon motifs with 

SCN···HN and BO···HN hydrogen bond interactions can increase the stability of solid-state structure 

and form 3D networks (Figure 4).  
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Figure 2. The molecular structure of 1. 

 

 

(a) 

 

  
 

(b) 

Figure 3. (a) Part of the crystal structure of formed between [Pt(SCN)4]2− anion and boroxine cation 

(b) 2D sheets of Pt-SCN···HO (boroxine) and Pt-SCN···HO (water) hydrogen bonded double ribbons 

in the structure. 
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Figure 4. 3-D packed structure of SCN···HN and BO···HN hydrogen-bonded ribbons of 1. 

Table 2. Some bond lengths (Å) and angles (°) for 1 

 

 

 

 

 

Bond lengths (Å) 

Pt1−S1 2.297(5) O1−B2 1.459(9) 

Pt1−S2 2.315(5) O2−B1 1.345(16) 

Pt1−S3 2.312(2) O2−B3 1.462(14) 

Pt1−S4 2.329(2) O3−B2 1.511(16) 

S1−C1 1.688(11) O3−B3 1.541(14) 

S2−C2 1.689(13) N1−C1 1.133(16) 

S3−C3 1.690(15) N2−C2 1.134(18) 

S4−C4 1.664(13) N3−C3 1.144(19) 

O1−B1 1.365(13) N4−C4 1.168(16) 

Bond angles (°)    

S2−Pt1−S4 83.28(11) B1−O1−B2 121.20(8) 

S3−Pt1−S4 176.99(10) B1−O2−B3 124(8) 

S1−Pt1−S3 86.85(12) B2−O3−B3 127.20(7) 

S1−Pt1−S4 94.68(11) O1−B1−O2 124(9) 

S1−Pt1−S2 177.62(9) O1−B2−O3 108(8) 

S2−Pt1−S3 95.25(12) O2−B3−O3 107.60(1) 

Pt1−S1−C1 107.10(5) S1−C1−N1 176.30(1) 

Pt1−S2−C2 109.60(5) S2−C2−N2 174.30(1) 

Pt1−S3−C3 103.40(4) S3−C3−N3 176 (10) 

Pt1−S4−C4 101.30(3) S4−C4−N4 176.20(9) 
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Table 3. Hydrogen bond geometry (Å, ) for 1. 

D−HA* D−H HA DA D−HA Symmetry 

O4−H4···N6 0.84 2.38 2.661 100 1-x,1-y,1-z 

N5−H5···O7 0.88 2.01 2.729 138 x,y,1+z 

N5−H5···N4 0.88 2.61 3.209 126 1+x,3/2-y,1/2+z 

O5−H5A···O1 0.84 2.52 2.878 107 2-x,1-y,2-z 

N6−H6A···O4 0.88 1.80 2.661 164 1-x,1-y,1-z 

O6−H6C···N2 0.87 2.06 2.829 147 -x,-1/2+y,3/2-z 

N7−H7A···O5 0.88 1.81 2.661 163 3-x,1-y,2-z 

O7−H7B···N1 0.87 2.29 2.910 129 x,3/2-y,-1/2+z 

O7−H7C···O2 0.87 2.10 2.961 168 x,3/2-y,-1/2+z 

C11−H11···N2 0.95 2.56 3.486 165 1-x,-1/2+y,3/2-z 

C12−H12···N1 0.95 2.54 3.311 139 1-x,1-y,1-z 

C14−H14···O1 0.95 2.58 2.924 102  

C19−H19···O2 0.95 2.54 2.901 103  

CONCLUSION 

We have demonstrated the generation of hydrogen-bonded networks based on the combination 

of tectons triphenylboroxine cationic and Pt(SCN)4 anionic in crystal synthesis. The combination of 

the boroxine with thiocyanometallate Pt(SCN)4 leads to the formation of neutral, 1D and 2D, 3D, 

periodic, H-bonded, infinite architectures.  Based on structural features of the cationic and anionic 

partners, the infinite 1D networks by Pt-SCN···HO (boroxine) and Pt-SCN···HO (water) hydrogen 

bonds were formed. The formation of the 2D network resulted from the interconnection of dications 

and dianions through O-H···O hydrogen. 3D networks were generated by the ribbon motifs with 

SCN···HN and BO···HN hydrogen bond interactions.  
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