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Abstract. Bat Algorithm (BA) is one of the newest and promising
nature inspired metaheuristics. Introduced by Yang in 2010, BA is a
population method which is based on the echolocation characteristics
of microbats. The original BA was proposed only for continuous opti-
mization problems. Different approaches that use BA as basis for solv-
ing discrete optimization problem have been proposed. In this paper, a
discrete bat algorithm version has been developed to solve the exami-
nation timetabling problem. Empirical study of the proposed algorithm
was carried using data from the University of Dar es Salaam. The pro-
posed algorithm demonstrated higher performance in comparison to a
well known metaheuristic, Tabu Seach (TS).
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1 Introduction

Combinatorial Optimization (CO) is a field of studies that is focused on opti-
mization problems with a finite set of solutions. CO has numerous important
real life applications such as resource allocations, network analysis, academic
timetabling, machine learning, communication and routing in networks, produc-
tion planning and artificial intelligence [24, 39]. Unfortunately, most combinato-
rial optimization problems are NP-hard (see, e.g., [36]). Thus, no any polynomial
time algorithm is known to solve them, and it is very unlikely such algorithms
exist, unless P = NP [23]. To complicate the matter further, many cases of CO
problems from real-life applications come with large size instances, several ob-
jectives and many constraints. Thus, their exact solutions cannot be computed
with reasonable amount of time. For these reasons, many heuristic, in particular
metaheuristic, methods have been developed for CO problems. Heuristics and
metaheuristics seek to find solutions fast without a guarantee that the obtained
solution is optimal.

Metaheuristic algorithms are considered as higher-level heuristic method-
ologies that combine several lower-level heuristic processes in solving specific
optimization problems (see, e.g., [12]). The key components of metaheuristic al-
gorithms are diversification and intensification [6, 31]. Diversification, also called
exploration, ensures that the algorithm to explore, often randomly, many and
different regions of the search space. The main idea behind the diversification
component is to ensure that the system does not get trapped into local solutions,
and thus generate new solutions as widely as possible. Intensification, also called
exploitation, is the ability to obtain high quality solution within the explored
regions.

Many metaheuristic algorithms have been developed over the last two decades,
and many of them are inspired by various phenomena of nature [39]. Examples
of such algorithms include: Ant Colony Optimization (ACO) was inspired by the
behaviour of ants foraging for food. Artificial Immune Systems (AIS) mimics bi-
ological immune systems for optimization. Bacterial Foraging Algorithm (BFA)
simulates search and optimal foraging of bacteria. Cat Swarm Algorithm (CSA)
simulates the behaviour of cats. Cuckoo Optimization Algorithm (COA) mimics
reproduction strategy of cuckoos. Fish School Search (FSS) simulates gregar-
ious behaviour of oceanic fish. Genetic Algorithm (GA) simulates Darwinian
evolution concepts. Invasive Weed Optimization (IWO) mimics the ecological
behaviour of colonizing weeds. Marriage in Honey Bee Optimization Algorithm
(MBO) is based on the processes of reproduction in the honey bee colony. Mon-
key Search (MS) mimics a monkey in search for food resources. Particle Swarm
Optimization (PSO) simulates the social behaviour of a flock of migrating birds
trying to reach an unknown destination. Simulated Annealing (SA) is based on
the annealing process of metals. The reader is referred to [31] and [38] for detailed
information on the nature inspired metaheuristic algorithms.

One of the most promising recently introduced nature inspired metaheuristics
is Bat Algorithm (BA). Proposed by Yang [37], BA is based on the echolocation
behaviour of microbats. Bats are the only mammals with wings and they have



A Discrete Bat Algorithm for the Examination Timetabling Problem 3

capability of echolocation, which they can use in finding preys and discriminating
different types of objects even in complete darkness by varying pulse rates of
emission and loudness [37]. BA uses communication between individuals in
the bat population to search solutions. One of the main advantages of BA is
that it can balance between the diversification and intensification strategies by
adjusting parameters when the global optimality is approaching.

Since its inception, BA and its variations have been applied in many differ-
ent optimization problems from both continuous and discrete fields. A list of
the applications includes: Clustering and Data Mining [13, 11], Diagnosis Breast
Cancer [10], Fuzzy Logic [32], Image Processing [4], Items Allocation [30], Mul-
tiprocessor Scheduling [16], Transport Network Design [29], Vehicle Routing [21,
22]. Induja and Eswaramurthy in [9] and Wanatchapong in [34] provide overviews
and applications of BA.

It is well known that heuristics may perform well in some problems but per-
form poorly in other problems. That is, every meta-heuristic always encounter
a problem on which it performs poorly. Wolpert and Mcready [35] proposed a
No-Free-Lunch (NFL) theorem, which states “for any optimization algorithm,
any elevated performance over one class of problems is offset by performance
over another class”. The theorem implies that the performance of an optimiza-
tion algorithm always depends on the problem. This means that there is no
optimization algorithm that outperforms all other algorithms for all types of
problems. This necessitates a need of rigorously testing new developed meth-
ods. In this work we investigate usefulness of BA on a well known combinatorial
problem called the examination timetabling problem.

The Examination Timetabling Problem (ETP) falls to a large class of timetabling
problems, which arise in various forms. This class includes educational timetabling
(teaching timetabling and examination timetabling), sports timetabling, nurse
scheduling, and transportation timetabling [27]. Burke et al in [3] define timetabling
as a problem consisting with four parameters: (i) a finite set of times T , (ii) a
finite set of resources R, (iii) a finite set of meetings M , and (iv) a finite set of
constraints C. The problem is to assign times and resources to the meetings so as
to satisfy the constraints as far as possible. This work focuses on the examination
timetabling problem which is defined as an assignment of a set of examinations
into a limited number of ordered timeslots (time periods) and rooms of certain
capacity in each timeslot, subject to a set of constraints (see, e.g., [19]).

ETP is known to be NP-hard [3, 27] and it has received much attention in the
literature because of its importance, from both practical and theoretical point
of view. The task of generating high-quality timetable is now becoming more
challenging. Institutions are now enrolling more students into a wider variety
of degree programmes. In addition, many universities have introduced the con-
cept of cross-faculty, which gives the greater flexibility to students in enrolling
courses that they wish to take, besides offering them more options to choose
from different faculties. The NP-hardness of ETP implies that there is no effec-
tive (polynomial-time) algorithm to solve it. Thus, a large number of researchers
have focused on finding heuristic algorithms to solve the problem. This work
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aims at investigating performance of BA on the ETP, using real data from the
University of Dar es Salaam. One way of assessing the usefulness of a new heuris-
tic is to compare its results with other successful heuristic methods. Examples of
such methods include TS [7, 20], SA [15], ACO [2], POS [17] and Prey-Predator
Algorithm (PPA) [33] for the case of ETP. Aldeeb et al [1] provide a comprehen-
sive list of heuristic methods used for ETP. In this work, timetables generated by
BA and TS are compared. TS has been opted because it was successfully applied
in [20] to solve ETP by using real-life dataset which has similar characteristics
as of those used in this work.

The remaining part of this paper is organized as follows: The next section
gives a formulation of the problem. Here we also give soft and hard constraints.
Then we present a section on bat algorithm. In this section original (basic) bat
algorithm and modified bat algorithm for ETP are described. In subsequent
sections, the results and comparison are presented and discussed. Conclusions
are provided in the section before the references.

2 Problem Formulation

As mentioned earlier, examination timetabling problem involves assigning a set
of examinations into timeslots and rooms subject to a set of constraints. These
constraints are grouped into hard and soft. The hard constraints must be satisfied
in order to produce a feasible timetable, whilst the soft constraints should be
satisfied as much as possible [19]. Merlot et al in [18] and Mushi in [20] give lists of
possible constraints. Examination timetabling problems can be categorized into
capacitated and uncapacitated. Their differences is that we consider capacity
of each examination room in the first category which is not the case in the
other category [2]. In this paper we focus on the uncapacitated case. Instead
of considering individual room capacity, we consider the total available sitting
capacity in each timeslot. Hard and soft constraints in this paper are similar to
those listed in [1], which are:

Hard constraints:

– Each exam must be scheduled in precisely one timeslot.
– No students can have more than one examination at the same timeslot.
– No timeslot with students more than the maximum available sitting capacity

in the timeslot.

Soft constraints

– Back-to-back examinations should be avoided as much as possible. This
means that the number of examinations with common students which are
scheduled in consecutive timeslots is to be minimized.

– Examinations with large number of students (big examinations) should be
scheduled as early as possible. The idea is to give examiners enough time for
marking.
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Sets, Parameter and Variables

In order to write the model formulation we need the following notations for
sets, parameters and variables.

Sets:

E: Set of examinations.
T : Set of timeslots.

Parameters:

Rt: Total sitting capacity available in the timeslot t ∈ T .
Ci: The number of students in the examination i ∈ E.
M(i, j): Collision matrix with M(i, j) = 1 if courses i and j have some common

students, otherwise M(i, j) = 0.

V ariables:

xit= 1 if exam i is scheduled at timeslot t, and 0 otherwise.

Mathematical Model Using the above notations, we write integer linear pro-
gramming model in which constraints represent hard constraints and an ob-
jective function constructed in such away that deviations from soft constraint
satisfaction are minimized. As mentioned above, this work focuses on two soft
constraints. Thus, given a solution s, the objective function has the form:

min f(s) = λ1f1(s) + λ2f2(s),

where f1 and f2 are respectively associated with back-to-back and big exami-
nations constraints. A penalty λi (i = 1, 2) is given to constraint i to represent
the importance of the constraint. Values of λ1 and λ2 were determined throng
experimental tests.

The following function gives the number of pairs of examinations with com-
mon students which are scheduled in consecutive timeslots.

f1(s) =

|T |−1∑
t=1

|E|−1∑
i=1

|E|∑
j=i+1

xitxjt+1Mij

There are different ways of defining functions that give priority to large exami-
nations on the lower-numbered timeslots. For example, Mushi in [20] proposed a

function of the form t2

z , where t is the timeslot and z is the size of an examina-

tion. However, in this work, a simple function tz2

p , where p is a constant, gives
good results. Thus, we set:

f2(s) =
1

p

|E|∑
i=1

|T |∑
t=1

tci
2xit
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After performing experiments, we set p = 1, 000, 000.
Therefore, a complete model becomes:

Min f(s) = λ1f1(s) + λ2f2(s)

S.t:
∑
t∈T

xit = 1 ∀i ∈ E (1)∑
i,j∈T

xitxjtMij = 0 ∀t ∈ T

∑
i∈E

xitci ≤ Rt ∀t ∈ T

The objective cost function minimize deviations from soft constrains satisfac-
tory. The first constraints ensures that each exam is scheduled in precisely one
timeslot, the second ensures that examinations with common students are not
scheduled in the same timeslot and the third ensures that there is enough room
space for each timeslot.

To be able to apply the proposed heuristic efficiently, we transform Model
(1) into equivalent model whose objective function is a linear combination of
both hard and soft constraints, but hard constraints are penalized much higher
than soft constraints. Let

Dt =

1 if
∑
i∈E

xitci > Rt

0 otherwise

The equivalent model is

Min f(s) = M
∑
t∈T

(
∑
i,j∈T

xitxjtMij +Dt) + λ1f1(s) + λ2f2(s)

S.t:
∑
t∈T

xit = 1 ∀i ∈ E (2)

In solving Model (2), M can be assigned any large number. In our case we

set M = 3000. Thus, since the expression
∑
t∈T

(
∑
i,j∈T

xitxjtMij + Dt) gives the

number of all hard constraints that have been violated, any solution s such that
f(s) < 3000 must be feasible.

3 Bat Algorithm

3.1 Original Bat Algorithm

As mentioned earlier, BA is a nature inspired optimization algorithm based on
the echolocation behaviour of microbats. It mimics the foraging behaviour of
microbats when they are hunting and navigating. Microbats emit sound pulse
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with different rates and loudness. After the emission of these pulses, they listen
to the echoes, and based on the time delay between the emission and detection
of the echo behaviour they can locate and identify preys and obstacles [37]. In
addition, each bat of the swarm is able to find and move towards a “nutritious”
location previously found by the swarm [22].

Set Population of Bat P = {x1, . . . , xn}
Initialize bat xi, i = 1, . . . , n
For each Bat xi ∈ P do

Initialize bat xi, i = 1, . . . , n
End for

Repeat

For each xi ∈ P do

Generate new solutions using Equations (3)-(5);

Generate random number rand
If (rand > ri)

Select one solution among the best ones;

Generate a local solution around the best one;

End if

If (rand < Ai && f(xi) < f(x∗))
Accept the new solution

Increase r1 and reduce Ai

End if

Rank the bats and find the current best x∗
End for

Until termination criterion is reached

Return the current best bat of the population;

Fig. 1. Basic bat algorithm

Yang [37] idealized the following steps of basic BA:

1. All bats use echolocation to sense distance and difference between food and
background barriers.

2. Bats fly randomly with velocity vi at position xi with a fixed frequency
fi, varying wavelength k and loudness A0 to search for preys. They can
automatically adjust the wavelength (or frequency) of their emitted pulses
and adjust the rate of pulse emission r ∈ [0, 1], depending on the proximity
of their targets.

3. The loudness can vary from a large (positive) A0 to a minimum constant
value Amin.

Figure 1 gives a pseudocode of the basic BA.
We assume that a position xi of bat i of the population represents a candidate

solution of the problem to be solved and the objective function to be optimized
is already defined. In applying BA, the first step is to initialize all the parameters
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related to each bat i. These parameters are: position xi, velocity vi and frequency
fi, pulse rate ri and loudness Ai. The news positions xti and velocities vti at time
step t are given by the following equations:

fi = fmin + (fmax − fmin)β (3)

vti = vt−1i +
(
xti − x∗

)
fi (4)

xti = xt−1i + vti , (5)

where the parameter β ∈ [0, 1] is a randomly generated number and x∗ denotes
the current best solution in the population.

After selecting one solution among the current best solutions, a new solution
for each bat is generated locally using random walk [37]:

xnew = xold + ε
〈
At
〉

(6)

where a scaling facto ε ∈ [−1, 1] is a random number and 〈At〉 is the average
loudness of bats at the current step. The loudness Ai and the pulse emission
rate ri are updated by using the equations:

At+1
i = αAt

i (7)

rt+1
i = r0i [1− exp(−γt)] (8)

where α and γ are constants.

3.2 Discrete Bat Algorithm for ETP

The original BA was developed to optimize continuous nonlinear functions [28].
This implies that it cannot be used to solve discrete optimization problems di-
rectly. Therefore, some modifications of the original BA are needed in order to
solve discrete optimization problems. Saji and Riffi [28] suggested to redefine the
standard arithmetic operators (addition, subtraction) and the involved param-
eters. We have adopted this idea in developing Discrete Bat Algorithm (BDA)
version for ETP.

The parameters ri, Ai and fi have the same form as the basic BA. Simi-
larly, the position xi of bat i is a possible feasible solution for the examination
timetable problem. Below are descriptions of how position xi and velocity vi are
computed in DBA.

Computation of Position xi In the basic BA the movement of the bats is
updated through the following the Equation (5)

xti = xt−1i + vti .

From this formula, the position of a bat i at time step t depends on the velocity
vi and its previous position at time step t − 1. This formula cannot be used as
it is to solve the ETP. To modify it, we need to define the notion of distance in
the discrete space, based on the work of Qui et al. [26].
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Definition 1 A discrete solution space is a pair (S, ø), where S is a set of
solutions and ø is an operator which operates on an element in S and generates
another one. For a given solution s ∈ S, the set of all solutions that can be
obtained by performing one operation ø on s is called to be the neighbourhood set
of s, and it is denoted by N(s).

In solving ETP, an operator ø can use 1-1 and 1-0 moves. The 1-1 move
involves with swapping timeslots of two examinations. In the 1-0 move, an ex-
amination is removed from its current timeslot and assigned to another. In this
work we have used 1-0 move in which both exams and timeslots are randomly
selected.

Definition 2 ([26]) For any solutions s and s′, the distance of them, denoted
by s − s′, is a sequence of least number of consecutive applications of operator
that are required to transform s′ into s. Difference of two positions is a velocity.
That is, a velocity is a sequence of applications of the operator.

Definition 3 ([26]) If s is a solution and v is a velocity, the sum of them, s+v,
is a new position such that s + v = ø(. . . ø(ø(s))) (v consecutive applications of
the operator)

Thus, through Equation (5), each bat i updates its position by applying the
operator ø vi times and choose the best position.

Computation of vi A bat i updates velocity through the following Equation
(4)

vti = vt−1i +
(
xti − x∗

)
fi.

Inputs: Partitions Pi = {Ei
1, E

i
2, . . . , E

i
k} and P∗ =

{E∗
1 , E

∗
2 , . . . , E

∗
k}.

Step 1: Create a cost matrix A = [ars] by putting

ars = |Ei
r ∩ E∗

s | r, s ∈ {1, . . . , k}

Step 2: Use Hungarian algorithm to calculate the value of

maximum assignment w of the cost matrix A.
Step 3: Return w as the value of xi − x∗

Fig. 2. Computation of xi − x∗
.

The equation indicates that the current velocity of each bat i is influenced
by two components: one is its previous velocity and the other is the product of
the difference between positions of the bat i and the best bat in the population,
and the frequency fi. We deal with these two components as follows: We assign
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two probabilities ρ1 and ρ2 for the first and second components, respectively,
such that ρ1 + ρ2 = 1. That is, in any step, the update of a bat is influenced by
exactly one of the two components. One can easily define ρ1 and ρ2 as follows:

ρ1 =
vt−1i

vt−1i + (xti − x∗) fi
and ρ2 =

(xti − x∗) fi
vt−1i + (xti − x∗) fi

Thus, Equation (4) is replaced by the following equation in the proposed DBA
for ETP.

vi =

{
vt−1i if 0 ≤ σ ≤ ρ1
(xti − x∗)fi if ρ1 < σ ≤ 1

(9)

where σ ∈ [0, 1] is randomly generated.

Equation (9) requires computation of distance between two positions (can-
didate solutions).

Set Population of Bat P = {1, . . . , n}
For each Bat i ∈ P do

Initialize: Position xi, Velocity vi, Pulse rate ri
Loudness Ai

End for

Repeat

For each xi ∈ P do

fi = fmin + (fmax − fmin)β
w = xi − x∗ //Use algorithm in Figure 2

ρ =
vt
i

vt
i+wfi

Generate random number σ ∈ [0, 1]
If 0 ≤ σ ≤ ρ then vt+1

i = vti
If ρ ≤ σ ≤ 1 then vt+1

i = wfi
Perform vi+1 operations to improve position of xt+1

i

and choose the best one.

Generate random number rand
If rand > ri

Generate a local solution around

the selected best solution

End if

If rand < Ai and f(xi) < f(x∗)
Accept the new solution

Increase ri and reduce Ai

End if

Rank the bats and find the current best x∗
End for

Until termination criterion is reached

Return the current best bat of the population;

Fig. 3. A pseudocode of Discrete Bat Algorithm for ETP
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We use set partition-distance [8] based approach to compute xi − x∗. Given
a set S, a partition P is a collection of subsets of S such that each element of S

appears in precisely one element of P . That is, P = {Si|
⋃
i=1

Si = S ∧ ∀i 6= j →

Si ∩ Sj = ∅}.
The partition-distance between the two partitions P and P ′ of a set S is

defined as the minimum number of elements which must be moved between
subsets in P ′ such that the resulting partition equals P .

For a given instance of ETP with examination set E, since each examination
appears in precisely one timeslot, any feasible solution s induces a partition P
of E. Thus, two solutions xi and x∗ of ETP respectively induce partitions Pi

and P∗ of E. Therefore, xi−x∗ can be equated with the distance between these
two partitions. The following results of Gusfield [8] indicates that the distance
between partitions can be computed in polynomial time.

Theorem 4 ( [8]) The problem of solving distance of two partitions can be re-
duced into Assignment Problem.

The Assignment Problem [14] is well known optimization problem, and it can be
solved by Hungarian algorithm with O(n3) time complexity (see, e.g., [25]). The
value of xi − x∗ can be computed in polynomial time by using the algorithm in
Figure 2.

A pseudocode of the proposed discrete bat algorithm for ETP is given in
Figure 3.

4 Numerical Results and Performance Comparison

The proposed algorithm was applied and tested using real-world examination
timetabling dataset at the University of Dar es Salaam, Semesters I and II in
the academic year 2017/2018. The algorithm was implemented by using Java
programming language and ran on Celeron(R) Dual-core CPU T300@ 1.80 GHz
1.79GHz machine with 3.00 GB RAM and Window 10. Table 1 shows charac-
teristics of the data for the problem that we have tested.

‘
Table 1. Characteristics of dataset

Sem no. of exams average no.
of students
per exam

Number of
rooms

Number of
timeslots

Sem. I 924 138 82 28

Sem. II 901 116 82 28

Through experience and after experiments the parameters of DBA as applied
in this work are given in Table 2.
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Table 2. The parameters for discrete for Bat Algorithm for ETP

Parameter Value/Range

Population Size N 5

Constants α and γ 0.99

Emission rate ri [0, 1]

Loudness Ai [0, 1]

Minimum frequency fmin 0

Maximum frequency fmax 10

There are different stopping conditions for optimization algorithms. Exam-
ples include the maximum number of iterations, number of iterations without
improvements and CPU time. In this work, after performing experiments, we set
CPU time =500 seconds as the stopping criteria.

As indicated in Table 1, there are 28 timeslots for timetable in each semester.
However, experiences show that in generating earlier versions of examination
timetables, one or two timeslots are left free (unused) so that they can be used
when unforeseen problems arise. Thus, in this work, we have tested the algorithm
using the number of timeslots K = 24, 25 and 26 in each semester. Figure 4(a)
and 4(b) show convergence behaviour of the objective function for the above
values of K in Semester I and II, respectively. From the figures we observe that
the values of the objective function decrease very fast in the first few seconds. For
example, in Figure 4(a), when K = 26 the value of objective function dropped
from the initial value of 220,501 to 948 at time= 20 sec. Similarly, in Figure 4(b)
for K = 26, the value of the objective function dropped from 175,128 to 503
at time=20 sec. This and the equation of the objective function in Model (2)
indicate that DBA generated feasible solutions within few seconds. In addition,
the figures clearly indicate that good solutions are obtained more rapidly when
the value of K is higher.

(a) Semester 1 (b) Semester 1

Fig. 4. Convergence behaviour of modified BA for various values of time slots K.
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The true value of a new algorithm is known once it has been compared with
the other algorithms which solve the same problems [5]. Therefore, in order
to test the computational performance of DBA, a well known heuristic Tabu
Search (TS) was implemented in the same platform and using same to dataset.
Table 3 gives final values of objective functions after running DBA and TS, each
for 500s. The table clearly shows that DBA performs better in all cases. For
example, in Semester II, K = 25, a timetable that was generated by DBA had
24 back-to-back examinations, while the timetable generated by TS had 45 such
examinations. In the same semester, for K = 26, DBA produced a timetable with
17 back-to-back examinations while TS produced a timetable with 45 back-to-
back examinations.

Table 3. Comparison of objective functions between DBA and TS after running each
heuristic for 500s for timeslots K = 25 and K = 26.

Semester K Function DBA TS

I

25
f1(s) 66 113
f2(s) 484 543
f(s) 814 1108

26
f1(s) 56 91
f2(s) 457 603
f(s) 737 1058

II

25
f1(s) 24 55
f2(s) 285 321
f(s) 405 596

26
f1(s) 17 45
f2(s) 317 36
f(s) 402 591

Table 4. Comparison of convergance between DBA and TS after running each heuristic
for 500s for timeslots K = 25 and K = 26.

Time (Sec)
Semester I Semester II

K=25 K=26 K=25 K=26
DBA TS DBA TS DBA TS DBA TS

1 22501 774099 13561 765155 4371 752734 4049 668754

20 1095 473797 948 440859 502 416340 503 356334

50 982 254589 862 203502 476 205971 459 152041

100 917 92209 800 8273 452 37833 422 1784

200 983 1743 744 1494 439 1048 419 1067

300 863 1335 740 1194 412 6810 417 733

400 824 1118 737 1061 406 637 411 618

500 814 1108 737 1058 405 596 402 604
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Table 4 compares converges solutions versus execution time. This table shows
that, in all cases, DBA generated good solutions faster than TS. It can be noted
that in this table and Figure 4, in both semesters, there are quick drop in objec-
tive function values within the first 50 seconds, followed by a slow convergence.
This behaviour is normal for global heuristics techniques, where improvement in
solution quality is expected to slow down when approaching optimal value (see,
e.g., [19]).

5 Concluding Remarks

In this work, we have presented a discrete version (DBA) of Bat Algorithm (BA)
for the examination timetabling problem. Since the original BA was designed for
continuous problems, we have proposed modifications on BA in order to solve
the ETP. The proposed DBA was tested using real data from the University of
Dar es Salaam. The experimental results show that it generates feasible solutions
of high quality very fast. When compared with Tabu Search (TS) heuristic, DBA
has demonstrated superior performance. In particular, DBA has outperformed
TS in terms of time and the quality of solutions.

There are other mathematical models for ETP with different objectives and
constraints. In this work we have developed a model with two soft constraints.
Thus, a possible future work is to extend the model by adding more soft con-
straints, and then solve the resulting model with DBA. In addition, there are
different moves possible for the ETP. In this paper we have used 1-1 move in
the implementation of DBA. It would be interesting to investigate the impacts
of other moves such as 1-1 on DBA. Furthermore, we have compared the per-
formances of DBA and TS. It is worth to compare the performance of DBA
with other heuristics such as ACO, PSO and SA. Finally, it would be profitably
interesting to investigate the impact of hybridizing the DBA with other meta-
heuristics on solving the examination timetabling problem.
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