

Konuralp Journal of Mathematics

Research Paper https://dergipark.org.tr/en/pub/konuralpjournalmath e-ISSN: 2147-625X

Pure Extending Objects

Mustafa Kemal Berktaş¹

¹Department of Mathematics, Faculty of Science and Arts, Uşak University, Uşak, Turkey

Abstract

In this paper we introduce two new concepts, namely, pure extending objects and \mathcal{H} -nonsingular objects and then, we prove that any pair of subisomorphic \mathcal{H} -nonsingular objects in a finitely accessible additive category with kernels \mathscr{A} are isomorphic to each other if and only if for any object *Y* and any pure extending \mathcal{H} -nonsingular object *X*, if *X* and *Y* are subisomorphic to each other then $X \cong Y$.

Keywords: Finitely accessible additive category, Pure essential monomorphism, Nonsingular object. 2010 Mathematics Subject Classification: 18C35, 18E05.

1. Introduction

It is well known that every finitely accessible additive category \mathscr{A} has an associated Grothendieck functor category \mathscr{E} consisting all contravariant functors from \mathscr{A}_0 to the category of abelian groups. A contravariant functor in \mathscr{E} is *flat* if it is direct limit of finitely generated projective objects. Yoneda's lemma induces an equivalence between \mathscr{A} and the subcategory of flat objects of \mathscr{E} . By this equivalence, *f* is a pure monomorphism in \mathscr{A} if and only if it is a monomorphism in \mathscr{E} (see [4]).

The motivation of this paper comes from the comprehensive work by Dehghani and Rizvi [5] on isomorphic modules which are mutually subisomorphic. They ask also when any pair of subisomorphic extending modules are isomorphic to each other and they prove that, any pair of nonsingular subisomorphic *R*-modules are isomorphic to each other if and only if for any *R*-module *Y* and any nonsingular extending *R*-module *X*, if *X* and *Y* are subisomorphic to each other then $X \cong Y$. ([5, Theorem 2.19]). The present paper considers a extension of an extending module/object, namely pure extending objects, to the finitely accessible additive categories and then, for these object we extend [5, Theorem 2.19] to the finitely accessible additive categories.

Throughout \mathscr{A} will denote a finitely accessible additive category.

2. Pure extending objects

A module M is called extending if and only if every submodule is essential in a direct summand of M ([6]). As it stated in [6], every injective module is extending but class of extending modules retains many of its desirable properties.

Let A, A' and A'' be objects in \mathscr{A} . A pure monomorphism $p: A \to A'$ is said to be *pure essential* if whenever $f: A' \to A''$ is a morphism such that fp is a pure monomorphism, then f also must be a pure monomorphism. A non-zero object in \mathscr{A} is *pure uniform* if all non-zero subobjects are pure essential ([2]).

Definition 2.1. Let *M* be an object in *A*. *M* is called *pure extending* if every pure subobject is pure essential in a direct summand of *M*.

As it stated in [3], every object of a Grothendieck category \mathscr{E} has an injective envelope, so every injective object of \mathscr{E} is extending by [3, Corollary 5.2]. We shall give some examples in finitely accessible additive categories: Every pure-injective object is pure extending. Clearly every pure uniform object is pure extending and every indecomposable pure extending object is pure uniform.

Proposition 2.2. Let A be an object of \mathscr{A} . If A is extending in \mathscr{E} , then it is pure extending in \mathscr{A} .

Proof. Let *S* be a pure subobject of *A*. There exists a direct summand *D* of such that *S* is essential in *D*, since *A* is extending in \mathscr{E} . Notice that *D* is flat as well. Hence *S* is pure essential subobject of *D* in the category \mathscr{A} .

Proposition 2.3. Let A be an object of \mathscr{A} . If A is pure extending then any direct summand of A is also pure extending.

Proof. Let *D* be a direct summand of *A* and let *P* be a pure subobject of *D*. Clearly *P* is a pure subobject of *A*. Then, by hypothesis, there exists a direct summand D' of *A* such that *P* is pure essential in D'. On the other hand, *D* and D' are flat objects in the Grothendieck category \mathscr{E} and their intersection D'' is flat in \mathscr{E} . Hence D'' is an object of \mathscr{A} . Therefore *P* is pure essential in D''. Now consider the following morphisms

$$P \xrightarrow{f} D'' \xrightarrow{g} D' \xrightarrow{h} D$$

where f and g are pure essential monomorphisms and $\psi = hgf$ is a pure monomorphism. Since gh is pure essential, h is a pure monomorphism. Thus D' is a direct summand of D. This completes the proof.

3. \mathcal{K} -nonsingular objects

Following [3], [5] and [8], we introduce a new concept which extends the notion of nonsingular modules/objects to finitely accessible additive categories.

Definition 3.1. Let \mathscr{A} be a finitely accessible additive category with kernels and let *A* be an object of \mathscr{A} . *A* is called \mathscr{K} -*nonsingular* if for any $\varphi \in S = End_{\mathscr{A}}(A)$, $Ker\varphi$ is pure essential in *A* implies $\varphi = 0$.

Lemma 3.2. Let \mathscr{A} be a finitely accessible additive category with kernels and let A be a \mathscr{K} -nonsingular object of \mathscr{A} . Then, any direct summand of A is \mathscr{K} -nonsingular.

Proof. Suppose that *A* is \mathscr{K} -nonsingular and write $A = A' \oplus A''$. Let $f : A' \to A'$ be a morphism such that *Kerf* is pure essential in *A'*. Consider the morphism $\varphi = f \oplus 0 : A' \oplus A'' \to A' \oplus A''$. Therefore $Ker\varphi = Kerf \oplus A''$ is pure essential in *A*. Since *A* is \mathscr{K} -nonsingular by hypothesis, $\varphi = 0$ and so f = 0.

Lemma 3.3. Let \mathscr{A} be a finitely accessible additive category with kernels and let A be a pure injective \mathscr{K} -nonsingular object of \mathscr{A} . Then, any pure essential subobject of A is \mathscr{K} -nonsingular.

Proof. Assume that *A* is \mathscr{K} -nonsingular, $f : B \to A$ is a pure essential monomorphism and *B* is not \mathscr{K} -nonsingular. Let $\varphi_B : B \to B$ be a non-zero morphism such that $Ker\varphi_B$ pure essential in *B* and let $\varphi_A : A \to A$ be its extension. Notice that $Ker\varphi_B$ is pure subobject of $Ker\varphi_A$ and $Ker\varphi_B$ is pure essential in *A*, since composite of pure essential morphisms is pure essential. But since *A* is \mathscr{K} -nonsingular, $Ker\varphi_B$ can not be pure essential.

It can be seen from [8, Example 2.19] that the converse of Lemma 3.3 is not true in general. Following [5], the objects X and Y in a finitely accessible additive category \mathscr{A} are called *subisomorphic* to each other whenever X is isomorphic to a subobject of Y and Y is isomorphic to a subobject of X. Now we are ready to give our main result which is an extension of [5, Theorem 2.19]:

Theorem 3.4. Let \mathscr{A} be a finitely accessible additive category with kernels. The following statements are equivalent: *i*)For any object Y and any pure extending \mathscr{K} -nonsingular object X, if X and Y are subisomorphic to each other then $X \cong Y$. *ii*) Any pair of \mathscr{K} -nonsingular subisomorphic objects are isomorphic to each other.

Proof. Assume that Z is any \mathscr{K} -nonsingular object. Then $Y = PE(Z)^{\mathbb{N}} \oplus Z$ and $X = PE(Z)^{\mathbb{N}}$ are subisomorphic \mathscr{K} -nonsingular objects where PE(Z) denotes the pure injective envelope of Z (see [7]). X is pure extending, since X = PE(Z) is pure injective. Hence, If (i) holds then $X \cong Y$. The converse is clear, since Y is also \mathscr{K} -nonsingular.

Acknowledgement

The author would like to thank the referee for some corrections and useful suggestions which improved the paper.

References

- [1] Adámek, J. and Rosicky, J., Locally presentable and accessible categories, Cambridge University Press, Cambridge, 1994.
- [2] Berktaş, M. K., On pure Goldie dimensions, Comm. Algebra 45 (2017), 3334-3339.
- [3] Crivei, S. and Radu S. M., CS-Rickart and dual CS-Rickart objects in abelian categories, arxiv: 2007.11059v1
- [4] Crawley-Boevey, W., Locally finitely presented additive categories, Comm. Algebra **22** (1994), 1641-1674.
- [5] Dehghani, N. and Rizvi, S. T., When mutually subisomorphic Baer modules are isomorphic, arxiv: 1909.0344v1
 [6] Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., *Extending modules*, Longman, 1994.
- [7] Herzog, I., Pure injective envelopes, J. Algebra Appl. 4 (2003), 397–402.
- [8] Rizvi, S. T. and Roman, C. S., On H-nonsingular modules and applications, Comm. Algebra 35 (2007), 2960–2982.