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Abstract

In this paper we introduce two new concepts, namely, pure extending objects and K -nonsingular objects and then, we prove that any pair of
subisomorphic K -nonsingular objects in a finitely accessible additive category with kernels A are isomorphic to each other if and only if
for any object Y and any pure extending K -nonsingular object X , if X and Y are subisomorphic to each other then X ∼= Y .
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1. Introduction

It is well known that every finitely accessible additive category A has an associated Grothendieck functor category E consisting all
contravariant functors from A0 to the category of abelian groups. A contravariant functor in E is flat if it is direct limit of finitely generated
projective objects. Yoneda’s lemma induces an equivalence between A and the subcategory of flat objects of E . By this equivalence, f is a
pure monomorphism in A if and only if it is a monomorphism in E (see [4]).
The motivation of this paper comes from the comprehensive work by Dehghani and Rizvi [5] on isomorphic modules which are mutually
subisomorphic. They ask also when any pair of subisomorphic extending modules are isomorphic to each other and they prove that, any pair
of nonsingular subisomorphic R-modules are isomorphic to each other if and only if for any R-module Y and any nonsingular extending
R-module X , if X and Y are subisomorphic to each other then X ∼= Y . ([5, Theorem 2.19]). The present paper considers a extension of an
extending module/object, namely pure extending objects, to the finitely accessible additive categories and then, for these object we extend [5,
Theorem 2.19] to the finitely accessible additive categories.
Throughout A will denote a finitely accessible additive category.

2. Pure extending objects

A module M is called extending if and only if every submodule is essential in a direct summand of M ([6]). As it stated in [6], every injective
module is extending but class of extending modules retains many of its desirable properties.
Let A, A′ and A′′ be objects in A . A pure monomorphism p : A→ A′ is said to be pure essential if whenever f : A′→ A′′ is a morphism
such that f p is a pure monomorphism, then f also must be a pure monomorphism . A non-zero object in A is pure uniform if all non-zero
subobjects are pure essential ([2]).

Definition 2.1. Let M be an object in A . M is called pure extending if every pure subobject is pure essential in a direct summand of M.

As it stated in [3], every object of a Grothendieck category E has an injective envelope, so every injective object of E is extending by [3,
Corollary 5.2]. We shall give some examples in finitely accessible additive categories: Every pure-injective object is pure extending. Clearly
every pure uniform object is pure extending and every indecomposable pure extending object is pure uniform.

Proposition 2.2. Let A be an object of A . If A is extending in E , then it is pure extending in A .

Proof. Let S be a pure subobject of A. There exists a direct summand D of such that S is essential in D, since A is extending in E . Notice
that D is flat as well. Hence S is pure essential subobject of D in the category A .

Proposition 2.3. Let A be an object of A . If A is pure extending then any direct summand of A is also pure extending.
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Proof. Let D be a direct summand of A and let P be a pure subobject of D. Clearly P is a pure subobject of A. Then, by hypothesis, there
exists a direct summand D′ of A such that P is pure essential in D′. On the other hand, D and D′ are flat objects in the Grothendieck category
E and their intersection D′′ is flat in E . Hence D′′ is an object of A . Therefore P is pure essential in D′′.
Now consider the following morphisms

P
f // D′′

g // D′ h // D

where f and g are pure essential monomorphisms and ψ = hg f is a pure monomorphism. Since gh is pure essential, h is a pure monomorphism.
Thus D′ is a direct summand of D. This completes the proof.

3. K -nonsingular objects

Following [3], [5] and [8], we introduce a new concept which extends the notion of nonsingular modules/objects to finitely accessible
additive categories.

Definition 3.1. Let A be a finitely accessible additive category with kernels and let A be an object of A . A is called K -nonsingular if for
any ϕ ∈ S = EndA (A), Kerϕ is pure essential in A implies ϕ = 0.

Lemma 3.2. Let A be a finitely accessible additive category with kernels and let A be a K -nonsingular object of A . Then, any direct
summand of A is K -nonsingular.

Proof. Suppose that A is K -nonsingular and write A = A′⊕A′′. Let f : A′ → A′ be a morphism such that Ker f is pure essential in A′.
Consider the morphism ϕ = f ⊕0 : A′⊕A′′→ A′⊕A′′. Therefore Kerϕ = Ker f ⊕A′′ is pure essential in A. Since A is K -nonsingular by
hypothesis, ϕ = 0 and so f = 0.

Lemma 3.3. Let A be a finitely accessible additive category with kernels and let A be a pure injective K -nonsingular object of A . Then,
any pure essential subobject of A is K -nonsingular.

Proof. Assume that A is K -nonsingular, f : B→ A is a pure essential monomorphism and B is not K -nonsingular. Let ϕB : B→ B be a
non-zero morphism such that KerϕB pure essential in B and let ϕA : A→ A be its extension. Notice that KerϕB is pure subobject of KerϕA
and KerϕB is pure essential in A, since composite of pure essential morphisms is pure essential. But since A is K -nonsingular, KerϕB can
not be pure essential.

It can be seen from [8, Example 2.19] that the converse of Lemma 3.3 is not true in general.
Following [5], the objects X and Y in a finitely accessible additive category A are called subisomorphic to each other whenever X is
isomorphic to a subobject of Y and Y is isomorphic to a subobject of X . Now we are ready to give our main result which is an extension of
[5, Theorem 2.19]:

Theorem 3.4. Let A be a finitely accessible additive category with kernels. The following statements are equivalent:
i)For any object Y and any pure extending K -nonsingular object X, if X and Y are subisomorphic to each other then X ∼= Y .
ii) Any pair of K -nonsingular subisomorphic objects are isomorphic to each other.

Proof. Assume that Z is any K -nonsingular object. Then Y = PE(Z)N⊕Z and X = PE(Z)N are subisomorphic K -nonsingular objects
where PE(Z) denotes the pure injective envelope of Z (see [7]). X is pure extending, since X = PE(Z) is pure injective. Hence, If (i) holds
then X ∼= Y . The converse is clear, since Y is also K -nonsingular.
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