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Unrestricted Cesaro summability of d-dimensional Fourier
series and Lebesgue points
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ABSTRACT. We generalize the classical Lebesgue’s theorem to multi-dimensional functions. We prove that the
Cesaro means of the Fourier series of the multi-dimensional function f € Li(log L)~ 1(T%) D L,(T%) (1 < p < 0)
converge to f at each strong Lebesgue point.
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1. INTRODUCTION

In 1904, Fejér [3] investigated the arithmetic means of the partial sums of the trigonometric
Fourier series of a one-dimensional function f, the so called Fejér means and proved that if the
left and right limits f(x — 0) and f(z + 0) exist at a point z, then the Fejér means

onfle) = 30 (151 Fgers

~

converge to (f(x — 0) + f(x + 0))/2. Here, f(k) denotes the k-th Fourier coefficient. One year
later, Lebesgue [11] extended this theorem and obtained that every one-dimensional integrable
function is Fejér summable at each Lebesgue point, thus almost everywhere. Some years later,
M. Riesz [15] generalized this theorem for the Cesaro means of one-dimensional integrable
functions (the definition can be found later).

The Cesaro summability is investigated in a great number of papers (see e.g. Gét [4, 5, 6],
Goginava [7, 8, 9], Simon [17, 18], Nagy, Persson, Tephnadze and Wall [13, 14] and Weisz
[19, 20]). In this short note, we generalize the result of Lebesgue and Riesz to this summa-
bility of multi-dimensional functions. We generalize the Lebesgue points and introduce the
so called strong Lebesgue points. It is known that almost every point is a strong Lebesgue
point of f € Li(log L)4~(T¢). We introduce the strong Hardy-Littlewood maximal function
M, f and show that the Cesaro means of f € L;(log L)¢~*(T¢) can be estimated by M; f point-
wise. Our main result is the following. If M; f(z) is finite and x is a strong Lebesgue point of
f € Li(log L)?~1(T9), then

lim o f(z) = f(z),
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where of f denotes the n-th Cesaro means of the Fourier series of f. This implies the conver-
gence of the Cesaro means almost everywhere as well as covers the one-dimensional results
mentioned above. Note that L; (log L)?~1(T%) D L,(T%) with 1 < p < oc. The results are not
true for L;(T¢) if d > 1. Similar theorems are known for the #-means generated by a single
function 6 (see Feichtinger and Weisz [2] and the references therein). However, those results
and proofs do not contain the results for Cesaro means. For the multi-dimensional Cesaro
means, we need new ideas.

2. STRONG MAXIMAL FUNCTION AND STRONG LEBESGUE POINTS

Let us fix d € N. For a set Y # 0, let Y? be its Cartesian product Y x ... x Y taken with itself
d times. We briefly write L, (T?) instead of the L, (T%, ) space equipped with the norm

1/p
= ([ irar) © asp<s,

with the usual modification for p = oo, where ) is the Lebesgue measure. We identify the torus
T with [—7, 71]. Set log™ u := max(0,logu). For k € Nand 1 < p < 0o, a measurable function f
is in the set L, (log L)*(T?) if

1/p
lsyoee = ([ P os” 7)50) < o
For k = 0, we get back the L, (T%) spaces. We have forall k € Pand 1 < p < r < oo that
L,(T% > L,(log L)*~*(T%) > L,(log L)*(T%) > L,(T%).
For f € Li(T%), the strong Hardy—Littlewood maximal function is defined by

Myf(x) := sup —— / / f(z —t)| dt.
(@) heRr? H] 12h )

For d > 1, itis known that there is a function f € L;(T?) such that M, f = oo almost everywhere
(see Jessen, Marcinkiewicz and Zygmund [10] and Saks [16]). Thus, in contrary to the one-
dimensional case, M, cannot be of weak type (1,1) if d > 1. However, we know the following
weak type inequality. If f € L(log L)4~!(T?), then

1) sup pA(M, f > p) < €+ C I£] (log™ 1) -
p>0 1

Moreover, for 1 < p < oo, we have

(2.2) IMfll, < Coll s (f € Ly(T)).
In this paper, the constants C' and C,, may vary from line to line. If f € L;(log L)?~1(T%), then
1 ha
Jim 7/ Flo—t)dt = f(z)
h=0 H;l:1(2hj) —h —ha
for almost every = € T<. Here h — 0 means that hj = Oforall j = 1,...,d. Note that this
result does not hold for all f € L;(T?) if d > 1 (see Jessen, Marcinkiewicz and Zygmund [10]

and Saks [16]).
Motivated by this convergence result, a point z € T¢ is called a strong Lebesgue point of

f € L,(T%) if
leli%n ) / / flz—1t) = f(x)| dt = 0.
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Theorem 2.1. Almost every point x € T% is a strong Lebesgue point of f € Ly (log L)4=1(T4).

This is not true for f € L1(T?) if d > 1. Note that L; (log L)?~1(T%) > L,(T%) forall 1 < p <
oo. For the results of this section, see Chang and Fefferman [1], Zygmund [21] or Weisz [19, 20].

3. RECTANGULAR CESARO SUMMABILITY
Fora # —1,-2,...and n € N, let

40— (n+a) _ (a+1)(a+2)-~-(a+n).

" n n!

Then A =1, A9 = 1 and A!, = n+ 1 (n € N). The k-th Fourier coefficient of a d-dimensional
integrable function f € L1(T¢) is defined by

1

—zk»:vx d
G | f@e e ez,

flk) =

where u - z = 22:1 upwy for v = (z1,...,24) € R¥and u = (uy,...,uq) € RZ Since the
Fourier series of f has bad convergence properties (see e.g. Weisz [20]), we consider the Cesaro
summability.

Let f € Li(T%), n = (n1,...,n4) € NYand a = (a4,...,aq) € R%. The n-th rectangular
Cesaro means o f of the Fourier series of f and the Cesaro kernel K¢ are introduced by

d
on f(z) 5:% Z Z HAgi—1—|ki\f(k)elk'x

Hi:l n;—1 |k1]<n1 |kq|<ng =1
and
d
« 1 « ikt
K5 (t) = 79  pa Z Z HA"i*1*|ki|e ’
Hi:l Ani—l |k1]<n1 |ka|<mngqi=1

respectively. It is easy to see that

R B SRV
7 fe) = G [ Fe = DK d

and
KOL — KOél . KO&,;

ng?

where the functions K3 are the one-dimensional Cesaro kernels. The Cesaro means are also
called (C, a)-means. If all a; = 1, then we get back the rectangular Fejér means. For the one-
dimensional Cesaro kernels, it is known (see Zygmund [21]) that

and

sup [ k3] ar<C.
neNJT

wheren € N,0 <a <landt € (—m, ).
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4. UNRESTRICTED CONVERGENCE AT LEBESGUE POINTS

Before proving the main results of this paper, we introduce the Herz space E.(R?) with the
norm

oo

oo
Il = > -~ D 2o fip ), <o,

ki=—o00 kg=—00
where
P.:=Py, x---x P, (keZ?)
and
P={zeR: 27 r <|z| <27} (i€Z).

Obviously, L; (R?) D E(R?). First, we will estimate pointwise the maximal operator

0 f = sup [0t/
neNd

by the strong Hardy-Littlewood maximal function. To this end, we introduce the functions

h3 () := min {1, [t| 7'} (t €R)

and
h* :=h*"' ®---Q h*.
We get from (3.3) that
1 t C N,
. — ) (— )| < = mi L ——L = Ch® .

It is easy to see that

d

(4.5) 17 gy = [T 171l g gy < Ca-
Jj=1

Theorem 4.2. Suppose that 0 < a; < 1forall j =1,...,d. If f € L1(T¢) and z € T, then
oy f(z) < CM,f(x).
Proof. Observe that

o f(z

) (L mya ) (2) dt’

Z Z o =l 0]

klffoo -

27T

where

Py;(nj) i={z eR: 2" 'n/n; <|z| < 2Mm/n;} (j=1,...,d).



Unrestricted Cesaro summability of d-dimensional Fourier series and Lebesgue points 183

Then,
e R N L
kl;m Z_ Py, (n1) Pry(na)
x sup | (L ma K7) (0)]
tePkl(nl)x»--kad(nd) 7
D S DN A AN
kl__oo ky=—oo0 Pkl('ﬂl) Py, (na)
t t
(4.6) x  sup ((W,T)dK)(1 d)‘
tePk1X~~~><Pkd ni Nd
Consequently, by (4.4),
1 oo o0
oo flx)] < ofitetka prof(2) sup |h(t
o f ()] < @) kl;oo kd;m I )te%' 0l
:CHhQHEm(W)MSf(z).
Inequality (4.5) finishes the proof. O

Inequalities (2.1) and (2.2) imply:
Corollary 4.1. Suppose that 0 < a; < 1forallj =1,...,d. If f € L1(log L)?~1(T?), then
sup p)‘(o—gf > p) S C + C ||f||L1(log L)d-1-
p>0

If1 <p<ooand f € L,(T%), then
o2 fll, < Cpll fllp-

The usual density argument due to Marcinkiewicz and Zygmund [12] implies:
Corollary 4.2. Suppose that 0 < a; < 1forall j =1,...,d. If f € Li(log L)~ 1(T?), then
lim oy f=f ae..
n=so0
In this paper, n — oo means that n; — oo for all j = 1,...,d. Now, we prove that the

convergence in Corollary 4.2 holds at each strong Lebesgue point, whenever the corresponding
strong Hardy-Littlewood maximal function is finite.

Theorem 4.3. Suppose that 0 < a; < 1 forall j = 1,...,d. If M,f(x) is finite and x is a strong
Lebesgue point of f € Ly (log L)4=(T4), then

lim o7 f(z) = f(z).

n—roo

:/Z /uu fle—t) — f@)|dt  (ueR).

Since « is a strong Lebesgue point of f, for all € > 0, we can find an integer m < 0 such that
G(u)

Proof. Let

(4.7) <e if O<u; <2Mm,j=1,...,d

Since

@Ang(t)dt1,
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we have
a 1 e o
‘an($) - f(l’)| < (27T)d /]Rd |f(1' - t) - f(x)l |(1(—7T,7r)dKn) (t)| dt == Al('r) + AQ(Z‘),

where
m+|logy n1]  m+|log, ng)

klzfoo kdzfoo

(
<[ [ e = @ (k) ()]
Py, (n1) Py, (na)

1

Al(x) = 27T)d

and

oo o0 oo oo

Ag(x)::@ 3 T DY

1y Td kg =m4-[logy gy |41 kﬂj:m,—i-Llog;2 n.,rjj—i-l kijrl:foo kr 4 =—00

[ e~ S (o) O] ar
Pkl (nl) Pkd(nd)

Here {m1,..., 74} is a permutation of {1,...,d} and 1 < j < d. Asin (4.6),

m+|logy n1 | m+L10g2 na]

M@= Y J A ALV ET
k1=—o0 k)d —00 Pkl 711) Pkd(nd)
t t
X sup (1( ﬂ,ﬂ.)dK ) < ! ...,d)
tE Py, XX Py, ni nq
m+|log, nq | m+|log, ng ) b b d
28 2Fd
< c U G yetey sup I’La
klg—:oo kd;m ( ni ) 1;[ tEPk| ®I-

Inequalities (4.7), (4.5) and 2% /n; < 2™ imply
m+|log, ny m+|log, ng )

A@)<Ce Y e Y 2T sup R < Ce|h . ga) < Cae.
tePy

k:lzfoo kdzfoo

Similarly,

o0 o0 o0 o0

n<c Y DS DS

1y Td Ky =m4|logy Ny |+1 k,r.:m+Uog2 n,r.J—Q—l kﬂv L1 =00 kr,=—00

><\/
Py
oo o o o

<c, 3 Sy DS

TTLyenes Td kg =m+ llog, nﬂ1J+1 k,,j =m+|log, n,erJrl kﬁjJrl =—00 k-n-d:—oo

x 2F1tetka qup |he (1)) (Msf(x) + |f(33)|)-

te Py,

d
|fx—1t) = f(z)|dt sup [h%(t)]
(n1) /Pkd(nd) H

tEPy,

1

Since M f(x) and f(x) are finite, the fact [log, nr;] — o0 as T' — oo imply that Ay(z) — 0 as
n — oo. O
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In the one-dimensional case, if x is a strong Lebesgue point, then M f(z) is finite and
Li(log L)4=1(T4) = L(T%), hence we get back the results due to Lebesgue [11] and Riesz [15]
mentioned in the introduction. Recall that L;(log L)4~(T9) > L,(T%) for 1 < p < oo and
d > 1. Since by Theorem 2.1 and (2.1) almost every point is a strong Lebesgue point and the
strong maximal operator M, f is almost everywhere finite for f € L;(log L)¢~*(T¢), Theorem
4.3 implies Corollary 4.2. If f is continuous at a point z, then « is also a strong Lebesgue point.
So we obtain:

Corollary 4.3. Suppose that 0 < o; < 1forall j =1,...,d. If M, f(z) is finite and
f € Li(log L)*=1(T9) is continuous at a point z, then

Jim o2 () = f(@).
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