Analysis of miRNA-Mediated ceRNAs In The Pathogenesis of Renal Cell Carcinoma: An In Silico Approach

Orcun Avsar
Hitit University, Department of Molecular Biology and Genetics, Corum, Turkey

ABSTRACT

Abstract

Renal cell carcinoma (RCC) is the most common form of kidney cancers and derived from kidney epithelium. The prognosis of RCC is still poor despite recent developments in surgical and other novel treatment strategies. Competing endogenous RNAs (ceRNAs) are considered as significant post-transcriptional regulators that modulate gene expression via miRNA-mediated regulatory networks. Furthermore, it has been demonstrated that ceRNAs have remarkable functions in the pathogenesis of cancers by modulating the expression of oncogenes or tumor-suppressive genes. The aim of this study was to define novel molecular biomarkers for RCC via in silico analysis. Seven miRNAs which have clinical significance for renal cell carcinomas were exported through miRTarBase database. 1001 genes which are targeted by these 7 miRNAs simultaneously were determined by ComiR database. The genes with T-UCR in their exonic regions and which have the potential ceRNA activities were extracted. Gene expression differences between RCC and normal kidney tissues according to the renal cell carcinoma-associated ceRNAs involving T-UCR were identified by GEPIA. The statistical analysis of the relationship between NRXN3 and PTBP2 genes with RCC was determined by Spearman correlation test. NRXN3 and PTBP2 were found to be significantly associated with RCC ($\mathrm{p}=0.0057$; $\mathrm{R}=-0.29$). The current study demonstrates for the first time that PTBP2 gene is associated with renal cell carcinoma. The results of in silico analysis suppose that PTBP2 gene may have potential tumor suppressor role in RCC and NRXN3 gene may have potential oncogenic activity in RCC. Further in vitro and in vivo studies are required in order to clarify tumor suppressor role of PTBP2 and oncogenic activity of NRXN3 in RCC.

Keywords:

miRNA; ceRNA; T-UCR; Renal cell carcinoma; PTBP2; NRXN3

Article History:

Received: 2020/06/01 Accepted: 2020/09/17 Online: 2020/09/30

Correspondence to: Orcun Avsar Hitit University, Molecular Biology and Genetics, 19030, Corum, Turkey E-Mail: orcunavsar.gen@gmail.com Phone: +90 36422716 V $_{5} 8$

INTRODUCTION

Renal cell tumors represent approximately 3% of all cancers in males and lower incidence in females. Several factors such as genetics, obesity, tobacco smoking, hypertension, diuretics, medications such as acetaminophen and non-aspirin non-steroidal an-ti-inflammatory drugs, viral hepatitis, and chemical carcinogens (asbestos, arsenic, etc.,) are implicated in the pathogenesis of renal cell tumors [1, 2, 3]. Renal cell carcinomas are divided into three subtypes: chromophobe, renal clear cell carcinoma and renal papillary cell carcinoma and this classification is verified by genetic and cytogenetic analysis $[4,5]$. The most common form of renal cell tumors (approximately 70% of renal tumors) is renal clear cell carcinoma in adults. Papillary renal cell carcinoma is the second most frequent kidney tumors in adults [6].

MicroRNAs (miRNAs) are small non-coding RNA molecules (composed of 18-22 nucleotides) and conserved among different organisms. miRNAs are also defined as post-transcriptional regulators. miRNAs can bind to the complementary sequence of target mRNAs (target specificity is determined by miRNA sequence that is 6-8 nucleotide in length) and then cause to the degradation of mRNA. Furthermore, miRNAs are able to suppress translation and hence modulate gene and protein expression. miRNA biogenesis and functions are associated with various cancer types and they take significant roles in initiation, progression and metastasis of these cancers. Dysregulated miRNA expression profiles might be used as biomarkers of diagnosis and treatment of cancer $[7,8]$.

In recent years, competing endogenous RNAs (ceRNAs) are considered as significant post-transcriptional regulators that modulate gene expression via miRNA-mediated regulatory networks. Recent studies have showed that ceRNAs have significant functions in the pathogenesis of cancers by modulating the expression of oncogenes or tu-mor-suppressive genes. In the human genome, it is supposed that $>50 \%$ of human mRNA might involve microRNA recognition elements (MREs) and ceRNAs share these sequences. miRNA can modulate several targets which include the typical MRE for miRNA. Similarly, the mRNA which have multiple MREs can be regulated by several miRNAs. Hence, the miRNA-mediated ceRNA network may be a common form of post-transcriptional regulation. ceRNA activity is affected by several factors such as RNA secondary structures, binding affinity of miRNAs, RNA editing, localization of ceRNA components. Disruptions in these factors may cause to the dysregulation of ceRNA network and then some diseases such as cancer $[9,10]$.

Ultraconserved regions (UCRs) which are 481 DNA elements longer than 200 base pair were discovered in 2004 by bioinformatics analysis. UCRs are completely conserved (no insertions or deletions) among rat, human, and mouse genomes and involved in diverse biological functions. According to the localization, UCRs are divided into five subtypes: intergenic, intronic, exon-containing, partly exonic, and exonic. Most of UCRs are transcribed in human tissues and these transcripts are named as transcribed UCRs (T-UCRs). It has been demonstrated that T-UCRs share tissue-specific expression pattern and have differential expression profiles between tumors. Moreover, it has been suggested that T-UCRs might have a significant role in the pathogenesis of diverse cancers $[11,12]$.

Studies in recent years have showed that miRNAs are promising for the understanding of the molecular mechanisms of cancer pathogenesis. Novel biomarkers are required to identify in order to elucidate the basis of miRNA-mediated cancer pathogenesis and novel RNA-mediated cancer treatment strategies. In this regard, the aim of the study is to identify novel promising biomarkers for renal cell carcinomas by bioinformatics analysis.

MATERIAL AND METHODS

miRNA Selection for The Pathogenesis of Renal Cell Carcinoma

Seven miRNAs which have clinical significance for renal cell carcinomas and have been proved experimentally were exported through miRTarBase database. The miRTarBase has been developed in order to present experimentally validated and predicted data on miRNA-target
interactions due to the biological significance of miRNA. That database enables scientists to verify novel targets of miRNAs. Chou et al. (2018) has described the 'Verified Target Module' [13].

Analysis of Renal Cell Carcinoma-Specific miRNA-Mediated ceRNAs

1001 genes which are targeted by these 7 miRNAs simultaneously were determined by the use of online ComiR database. ComiR, combinatorial miRNA targeting, is an online tool and estimates if a specific mRNA is targeted by a cluster of miRNAs. ComiR defines the potency for being targeted by a cluster of miRNAs. The ComiR database computes the potency of the regulation of each individual mRNA by a group of miRNAs according to the expression levels of miRNA in a combinational way. It is estimated that RNA transcripts of the genes might have the potential of ceRNA activity of the defined miRNAs [14].

Matching of Renal Cell Carcinoma-Associated ceRNA with Genes Consisting T-UCR

Ultraconserved regions (UCRs) with evolutionary conservation among organisms were determined in the human genome. Genes which contain these ultraconserved regions are divided into two as upstream (in the exonic region) and downstream [15]. In this study, the genes with T-UCR in their exonic regions and also genes which have the potential ceRNA activities among them were described.

Analysis of Renal Cell Carcinoma-associated ceRNAs Involving T-UCR for the Gene Expression Comparison Between Renal Cell Carcinoma and Normal Kidney Tissues

Gene expression differences between renal cell carcinomas and normal kidney tissues according to the renal cell carcinoma-associated ceRNAs involving T-UCR were determined by using Gene Expression Profiling Interactive Analysis (GEPIA) database. GEPIA which is a web-based and interactive bioinformatics tool is used for the analysis of gene expression [16].

Correlation Analysis of NRXN3 and PTBP2 Genes in Renal Cell Carcinoma

The statistical analysis of the relationship between NRXN3 and PTBP2 genes with renal cell carcinoma was determined by the use of Spearman correlation test in the GEPIA database.

RESULTS AND DISCUSSION

The list of seven miRNAs which are experimentally associated with RCC by the use of miRTarBase database is given in Table 1.

Table 1. List of miRNAs which are involved in the pathogenesis of renal cell carcinomas.

	hsa-miR-141
hsa-miR-15a	
	hsa-miR-192
	hsa-miR-200c
	hsa-miR-21
hsa-miR-215	
hsa-miR-23b	

The list of 1001 genes which are targeted by the 7 miRNAs simultaneously is seen in Table A.1. According to the study that was conducted by Bejerano et al. [15] the genes which contain T-UCR in their exonic regions were given in Table A.2. The genes which have potential ceRNA activities were extracted and shown in Table 2. The genes which have expression profile differences between RCC and normal kidney tissue among renal cell carcinoma-associated ceRNAs with T-UCR have been designated. This analysis enabled to show that PTBP2 gene expression was significantly higher in normal kidney tissue than in kidney chromophobe. On the other hand, NRXN3 gene expression was significantly higher in kidney chromophobe and in renal clear cell carcinoma than in normal kidney tissue (Table 3, Table 4, Table 5).

Table 2. The list of renal cell carcinoma-associated ceRNAs crossmatching with genes involving T-UCR in the exonic regions.

UCR number	Length (bp)	Gene Name
uc.33	312	PTBP2
uc.378	251	NRXN3
uc.393	275	CLK3
uc. 406	211	NFAT5

The association between NRXN3 and PTBP2 genes and renal cell carcinomas were carried out by the use of GEPIA database. Spearman correlation analysis has determined that NRXN3 and PTBP2 gene pair are significantly associated with renal cell carcinoma (figure 1) ($\mathrm{p}=0.0057$; $R=-0.29)$.

Renal cell carcinoma is the most common form of kidney cancers and derived from kidney epithelium. Renal cell carcinoma is the third frequent urogenital malignancy and

Table 3. Expression values of renal cell carcinoma-associated ceRNAs involving T-UCR between kidney chromophobe and normal kidney tissue.

Gene ID	Kidney chromophobe	Normal kidney
PTBP2 *	$\mathbf{2 . 9 4}$	$\mathbf{8 . 3 6}$
NRXN3 *	$\mathbf{1 9 . 2 4}$	$\mathbf{0 . 8 8}$
CLK3	30.35	35
NFAT5	7.54	6.82

*significant differential expression pattern between kidney chromophobe and normal kidney tissues

Table 4. Expression values of renal cell carcinoma-associated ceRNAs involving T-UCR between renal clear cell carcinoma and normal kidney tissue.

Gene ID	Renal clear cell carcinoma	Normal kidney
PTBP2	8.33	7.15
NRXN3 *	$\mathbf{2 . 2 5}$	$\mathbf{1 . 0 9}$
CLK3	37.42	27.7
NFAT5	5.91	8.74
*significant differential expression pattern between renal clear cell carcinoma and normal kidney tissues		

Table 5. Expression values of renal cell carcinoma-associated ceRNAs involving T-UCR between renal papillary cell carcinoma and normal kidney tissue.

Gene ID	Renal clear cell carcinoma	Normal kidney
PTBP2 $^{\text {NRXN3* }}$	8.33	7.15
CLK3	$\mathbf{2 . 2 5}$	$\mathbf{1 . 0 9}$
NFAT5	37.42	27.7

the twelfth most frequent cancer type in the world [17, 18]. The prognosis of RCC is still poor despite recent developments in surgical and other novel treatment strategies. Molecular characterization of renal cell carcinomas has led to the definition of particular molecular pathways, genes and miRNAs. Moreover, the increasing knowledge about the functions of miRNAs in the pathogenesis of cancers may give remarkable clue for the determination of potential diagnostic biomarkers and therapeutic targets for RCC. It appears that identification of disease-specific miRNAs may help to better clarify prognostic and therapeutic aspects of renal cell carcinomas [19, 20]. For these reasons, identification of molecular biomarkers for early diagnosis, the surveillance of RCC treatments and classification becomes more of an issue. The aim of this study was to define novel molecular biomarkers for RCC via in silico analysis. In this regard, RCC-specific miRNAs, their combinatorial target genes (potential ceRNAs) were determined and those with T-UCR were selected. Subsequently, the relationship between miR-NA-mediated ceRNAs and RCC was analyzed by the use of statistical correlation methods.

Figure 1. Spearman correlation analysis of NRXN3 and PTBP2 genes with renal cell carcinomas.

In this study, seven miRNAs experimentally associated with RCC were designated through miRTarbase database (Table 1). The genes with ComiR equal abundance score were listed among 1001 genes targeted by these seven miRNAs simultaneously. Then, the genes with T-UCR in exonic regions were determined according to the genes that contain T-UCR [15]. Furthermore, the ones with potential ceRNA activities were identified (Table 2). Afterwards, the genes with remarkable expression differences between RCC and normal kidney tissues from RCC-associated ceRNAs that contain T-UCR were selected. According to this study, PTBP2 gene expression was significantly lower in kidney chromophobe than in normal kidney tissue and NRXN3 gene expression was significantly higher in kidney chromophobe and in renal clear cell carcinoma than in normal kidney tissue. On the other hand, the other genes did not demonstrate any remarkable differential expression patterns. According to the Spearman correlation analysis, NRXN3 and PTBP2 gene pair were shown to be remarkably associated with RCC. PTBP2 gene has not been experimentally associated with renal cell carcinoma in the literature. This and PTBP2) with RCC.

Neurexins are a class of protein family and encoded by the three mammalian neurexin genes NRXN1, NRXN2, NRXN3. Neurexin-3 protein which is encoded by NRXN3 gene takes a role in cell adhesion and cell recognition and modulates intracellular signaling. It has been reported that polymorphism of NRXN3 gene (rs10146997) and mutations of NRXN3 gene are related with higher breast cancer risk [21, 22]. Forkhead box protein Q1 (FOXQ1) is a transcription factor and takes a role in cancer, aging and development. It has been demonstrated that overexpression of FOXQ1 is associated with various cancer types such as lung cancer and breast cancer and the upregulation of this gene promo-
tes tumor proliferation, invasion and metastasis. It is supposed that FOXQ1 may stimulate tumor growth and invasion via targeting NRXN3 gene in a direct way [23].

Polypyrimidine tract-binding protein 2 (RNA-binding protein) which is encoded by PTBP2 gene binds to clusters of polypyrimidine in pre-mRNAs and involved in the regulation of assembly of the other splicing-regulatory proteins. PTBP2 is implicated in neural differentiation, brain development and function and essential for postnatal survival. Moreover, in neuroblastoma and HeLa cells, PTBP2 modulates alternative splicing of several RNA molecules. Expression of PTBP2 is affected by tissue-specific miRNAs [24]. It has been reported that PTBP2 as a splicing factor induces proliferation and migration in glioma cell lines [25]. It has been known that PTBP2 is highly expressed in cancer cells and acts as a proto-oncogene and promotes the growth of tumor cells [26]. On the other hand, it has been reported that PTBP2 as a target of the oncomir miR-132 acts as a tumor suppressor in glioblastoma cells [27]. Similarly, in a study conducted with in vitro experiments, it was shown that PTBP1 (paralog of PTBP2) stimulated proliferation, migration, and invasion in clear-cell renal cell carcinoma [28].

The current study demonstrates for the first time that PTBP2 gene is associated with renal cell carcinoma. The results of in silico analysis suppose that PTBP2 gene may have potential tumor suppressor role in RCC and NRXN3 gene may have potential oncogenic activity in RCC.

CONCLUSION

Studies in recent years have showed that miRNAs are promising for the understanding of the molecular mechanisms of cancer pathogenesis. On the other hand, results of various studies for miRNAs in RCC have been contradictory. It has been supposed that variable roles of miRNAs at different stages of RCC or their potencies to interact with numerous targets may affect these discrepancies $[29,30]$. Novel biomarkers and studies are required to identify in order to elucidate the basis of miRNAmediated RCC pathogenesis and novel RNA-mediated cancer treatment strategies. NRXN3 and PTBP2 genes are significantly correlated with RCC for the first time. Further in vitro and in vivo studies are required in order to illuminate tumor suppressor role of PTBP2 and oncogenic activity of NRXN3 in RCC.

References

[^0]3. Macleod LC, Hotaling JM, Wright JL, Davenport MT, Gore JL, Harper J, White E. Risk factors for renal cell carcinoma in the VITAL study. The Journal of Urology 190 (2013) 1657-61.
4. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs- part A: Renal, penile, and testicular tumours. European Urology 70 (2016) 93-105.
5. Moch H, Humphrey PA, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. Fourth Edition. 2016.
6. Goyal R, Gersbach E, Yang XJ, Rohan SM. Differential diagnosis of renal tumors with clear cytoplasm. Archives of Pathology and Laboratory Medicine 137 (2013) 467-480.
7. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biololgical functions of microRNAs: a review. Journal of Physiology and Biochemistry 67 (2011) 129-139.
8. Rama K, Srinivasa Rao PVLN, Bitla AR. MicroRNAs in health and disease. Journal of Clinical and Scientific Research. 6 (2017) 25-34.
9. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. Journal of Medical Genetics 0 (2015) 1-9.
10. Kartha RV, Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Frontiers in Genetics. 5 (2014) 8.
11. Zambalde EP, Mathias C, Rodrigues AC, de Souza Fonseca Ribeiro EM, Gradia DF, Calin GA, de Oliveira JC. Highlighting transcribed ultraconserved regions in human diseases. WIRES RNA 11 (2020) el567.
12. Mudgapalli N, Shaw BP, Chava S, Challagundla KB. The transcribed-ultra conserved regions: Novel non-coding RNA players in neuroblastoma progression. Non-coding RNA 5 (2019) 39.
13. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY, Tai CS, Wei TY, Tsai TR, Huang HT, Wang CY, Wu HY, Ho SY, Chen PR, Chuang CH, Hsieh PJ, Wu YS, Chen WL, Li MJ, Wu YC, Huang XY, Ng FL, Buddhakosai W, Huang PC, Lan KC, Huang CY, Weng SL, Cheng YN, Liang C, Hsu WL, Huang HD. miTarBase update 2018: a rosource for experimentally validated microRNA-target interactions. Nucleic Acids Research 46 (2018) D296-D302.
14. Davis JA, Saunders SJ, Mann M, Backofen R. Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Research 45 (2017) 8745-8757.
15. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science 304 (2004) 1321-5.
16. Thang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analysis. Nucleic Acid Research 45 (2017) W98-W102.
17. Grange C, Brossa A, Bussolati B. Extracellular vesicles and carried miRNAs in the progression of renal cell carcinoma. International Journal of Molecular Sciences 20 (2019) 1832.
18. Sanchez-Gastaldo A, Kempf E, del Alba AG, Duran I. Systemic treatment of renal cell cancer: A comprehensive review. Cancer Treatments Review 60 (2017) 77-89.
19. Alaghehbandan R, Montiel DP, Luis AS, Hes O. Molecular genetics of renal cell tumors: A practical diagnostic approach. Cancers 12 (85) 1-24.
20. Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B. MicroRNAs in renal cell carcinoma: A systemic review of clinical implications (Review). Oncology Reports 33 (2015) 1571-1578.
21. Sun HT, Cheng SX, Tu Y, Li XH, Zhang S. FoxQ1 promotes glioma
cells proliferation and migration by regulating NRXN3 expression. PLoS ONE 8 (2013) e55693.
22. Hirohata H, Yanagawa T, Takaoka S, Uchida F, Shibuya Y, Miyabe S, Tabuchi K, Akagi Y, Hasegawa S, Sakai S, Takeuchi Y, Ishibashi-Kanno N, Yamagata K, Bukawa H. Synaptic-adhesion molecules neurexin 1 and neuroligin 1 as novel prognostic factors in oral squamous cell carcinoma. Journal of Dentistry and Dental Medicine 1 (2018) 111.
23. Xiang XJ, Deng J, Liu YW, Wan LY, Feng M, Chen J, Xiong JP. MiR1271 inhibits cell proliferation, invasion and EMT in gastric cancer by targeting FOXQ1. Cellular Physiology and Biochemistry 36 (2015) 1382-1394.
24. Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C, Darnell RB. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes and Development 26 (2012) 1626-1642.
25. Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, Cote GJ. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain (2009) 2277-88.
26. Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, et al. Long noncoding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. British Journal of Cancer 111 (2014) 736-748.
27. Lou S, Ji J, Cheng X, Ruan J, Li R, Guo Z. Oncogenic miR 132 sustains proliferation and self renewal potential by inhibition of polypyrimidine tract binding protein 2 in glioblastoma cells. Molecular Medicine Reports 16 (2017) 7221-8.
28. Jiang J, Chen X, Liu H, Shao J, Xie R, Gu P, et al. Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM. American Journal of Cancer Research 7 (2017) 245-259.
29. Di Meo A, Saleeb R, Wala SJ, Khella HW, Ding Q, Zhai H, et al. A miRNA-based classification of renal cell carcinoma subtypes by PCR and in situ hybridization. Oncotarget 9 (2018) 2092-2104.
30. Ying G, Wu R, Xia M, Fei X, He QE, Zha C, et al. Identification of eight key miRNAs associated with renal cell carcinoma: A metaanalysis. Oncology Letters 16 (2018) 5847-5855.

APPENDIX

Table A.1. List of genes that are targeted by seven renal cell carcinomaassociated miRNAs simultaneously.

Gene ID	ComiR equal Abundance score
HS3ST1	0.9066
HECW1	0.9112
CFLAR	0.9157
SLC7A2	0.915
SARM1	0.9153
THSD7A	0.9116
LIG3	0.9065
KDM7A	0.907
CDKL5	0.9181
REV3L	0.9229
IYD	0.912
VTA1	0.9154

PRDM6	0.912	TMED8	0.907
NCKAP1	0.924	PPM14	0.9197
MON2	0.9217	SIX4	0.9147
EPN1	0.9219	DICER1	0.9219
CDON	0.9067	ZC3H14	0.9238
HIPK2	0.9225	PCNX	0.9116
GNAI3	0.924	RPS6KA5	0.9241
WDR3	0.9206	YY1	0.9196
MYLK	0.9202	RNF24	0.9207
SNAP91	0.915	NDUFAF5	0.9108
CYB5R4	0.9071	CDS2	0.9198
ASB1	0.9118	VAPA	0.9177
SLC9A7	0.9198	ST8SIA5	0.9155
CD84	0.9071	CEP192	0.9121
ATXN3	0.9237	MIB1	0.9208
RRP15	0.9154	XIAP	0.9206
POLR1A	0.9117	ZC3H12B	0.911
NUCKS1	0.9117	FGF14	0.9225
SH3BP2	0.9118	NDFIP2	0.9111
C14orf166	0.9153	FGF9	0.9105
KLHL42	0.9149	DGKH	0.9234
PTPN4	0.9228	KATNAL1	0.9119
MAVS	0.9198	INTS6	0.9234
ZBTB25	0.9224	NFAT5	0.9181
GPATCH2L	0.9238	SLC7A6	0.9151
IRAK3	0.9119	CMC2	0.9155
ZNF268	0.9181	MLYCD	0.9198
TNRC6A	0.9198	KNOP1	0.9205
OSBPL8	0.9115	ATP8B4	0.9068
WDR7	0.9218	DTWD1	0.9234
TXNL1	0.9154	SLC30A4	0.9118
NA	0.9154	MYEF2	0.9121
RGS17	0.9176	ZDHHC2	0.9174
AGO1	0.918	FZD3	0.92
RFFL	0.915	UBE2W	0.9154
NUP50	0.9107	ERII	0.911
SEC22C	0.9149	MTMR9	0.9175
CBX5	0.9199	FCGRT	0.9077
FKBP5	0.9154	DMPK	0.9216
MTAP	0.912	ELL	0.9103
CECR2	0.9067	AVL9	0.917
MAPK1	0.9217	GTPBP10	0.9207
ADRBK2	0.9179	CDK6	0.9122
MIEF1	0.9146	ITGB8	0.9148
TNRC6B	0.9236	MPP6	0.9154
KIAA0930	0.9066	TFEC	0.9196
DESII	0.9141	LMBR1	0.9118
KCNK10	0.9153	PLEKHA8	0.9207
NIN	0.9171	RBM28	0.9229
DDHD1	0.9181	TMEM106B	0.9074

FSDIL	0.9227	QKI	0.9218
NCS1	0.9107	CLIC5	0.915
ATRNL1	0.9149	TBX18	0.9191
RAB11FIP2	0.921	SEMA5A	0.918
PLEKHA1	0.9236	RNF130	0.9072
BMPR1A	0.9156	CDH6	0.9178
CPEB3	0.9153	NPR3	0.9113
MTPAP	0.911	PRLR	0.9155
CCNY	0.9106	SKP1	0.9209
TSPAN14	0.921	PPP2CA	0.9108
NUFIP2	0.9199	LIFR	0.9071
FBXL20	0.9073	RARS	0.912
CPD	0.9152	WWC1	0.9163
LUC7L3	0.9152	SMAD5	0.9152
SMURF2	0.9154	ARMC8	0.9099
TMEM33	0.912	XRN1	0.9068
DCUN1D4	0.9066	FXR1	0.9217
GAB1	0.9153	HEMK1	0.9074
TRIM2	0.9173	ACVR2B	0.9236
CLNK	0.9065	INO80D	0.9218
WHSC1	0.9154	PIKFYVE	0.9145
CTSC	0.9068	LANCL1	0.9099
CBL	0.9155	GGCX	0.9115
PVRL1	0.9107	KDM3A	0.9153
HIPK3	0.917	STRN	0.9117
FBXO3	0.9197	PRKD3	0.9101
SLC1A2	0.9156	KYnU	0.9239
SOX6	0.9069	ORC4	0.9176
LIN7A	0.922	AAK1	0.923
PPM1H	0.9116	PLEKHA3	0.92
KCNA1	0.9194	PARD3B	0.9067
C12orf49	0.9119	RALGPS2	0.9215
CAND1	0.912	KCNC4	0.9219
CPSF6	0.9116	RAP1A	0.9066
KRR1	0.9229	Clorf21	0.9181
NT5DC3	0.9177	SLC35D1	0.915
ST8SIA1	0.9179	TROVE2	0.9153
FRK	0.9229	TTF2	0.9154
RWDD1	0.9065	TMED5	0.9149
CEP85L	0.9212	DR1	0.9209
SASH1	0.9167	PTBP2	0.921
SOD2	0.9181	DIEXF	0.9203
MDGA1	0.9119	RCAN3	0.9068
GPR63	0.917	PROX1	0.9069
FBXL4	0.9152	RCN2	0.9066
E2F3	0.9138	STAG1	0.9174
SIM1	0.9069	CAMSAP2	0.9138
KIAA1244	0.918	ATF6	0.9115
SLC16A10	0.9228	CREB1	0.9069
PHACTR2	0.9217	FILIP1	0.9146

FBXO30	0.9179	AGO3	0.9237
MED28	0.9218	PCNXL4	0.9237
SLC16A7	0.9199	TRMT5	0.9142
KLF12	0.9229	BCL11B	0.9114
PCDH17	0.9173	MASP1	0.9102
CCND2	0.9068	Helb	0.9218
ELL2	0.917	RAP1B	0.9225
FKBP15	0.9114	RAB3IP	0.9121
ONECUT2	0.921	PTPRB	0.9067
YLPM1	0.9111	DYRK2	0.9198
AREL1	0.9104	FOXP2	0.9069
RBM25	0.9111	MKLN1	0.9199
NRDE2	0.9155	NDUFA5	0.9195
YIPF4	0.9218	MYO5C	0.9146
OGFRL1	0.9198	тTBK2	0.9197
PRLHR	0.9145	ICE2	0.912
WDR11	0.9109	FAM63B	0.9179
PANK3	0.9156	SPCS3	0.9167
TEK	0.9108	KIFIC	0.9139
TARDBP	0.911	CCNT1	0.9215
PAPD5	0.9179	TULP4	0.9065
NAA50	0.9152	PRRG1	0.9144
CD80	0.9139	GFAP	0.9177
ZMYM2	0.9177	RLIM	0.9118
GTDC1	0.9155	GRSF1	0.9068
ACVR2A	0.9201	XPO4	0.9208
SERAC1	0.9069	CHRM3	0.9118
ODF2L	0.9173	SCO1	0.9121
FAM126A	0.9181	MPRIP	0.9155
MED13L	0.9073	DCLK1	0.9071
RASSF8	0.9202	FAM83F	0.9219
NLN	0.907	TRPM1	0.9109
USP45	0.9117	SYT6	0.9147
FAM199X	0.907	WNT2B	0.9121
METTL8	0.9155	KIDINS220	0.9208
ACVR1C	0.9208	RSAD2	0.9158
LPGAT1	0.9154	IL6ST	0.9071
TtPAL	0.9067	NAV1	0.9153
NCOA3	0.9109	CRB1	0.9068
VAPB	0.912	EMP1	0.9151
ZNF831	0.9173	SOX5	0.9174
RAB22A	0.9071	KLRD1	0.9234
BCAS4	0.9068	DSC2	0.9228
ATP8A1	0.9222	ELP2	0.9153
SSR1	0.9199	CLOCK	0.9217
ATXN1	0.9155	DZIP1	0.9171
EFNB2	0.9108	ARHGAP32	0.9117
ATP5S	0.9154	KLB	0.9101
GTF3C4	0.912	APC	0.9228
CEP250	0.9222	HRK	0.9114

BDP1	0.9141	AKR1C2	0.9098
TNFAIP8	0.9117	KIN	0.915
GFOD1	0.9154	WWC2	0.915
IRAK1BP1	0.9174	BICD1	0.9151
MMS22L	0.9112	GABRA2	0.9153
FAXC	0.9209	CACUL1	0.9218
TBC1D32	0.9151	RABGAPIL	0.9114
CLVS2	0.9236	FAM168B	0.9067
RNF217	0.9234	PTPN14	0.9229
SHPRH	0.9156	MGAT5	0.9144
CREB5	0.9217	PDK1	0.9225
EGFR	0.9178	UHMK1	0.912
ATXN7L1	0.91	GUCY1A2	0.9157
TMEM168	0.9117	CCDC50	0.9217
NLGN4X	0.9101	CAMK4	0.9219
LANCL3	0.9122	GPR180	0.9155
CASK	0.9237	WDR78	0.9198
FBXO25	0.9073	FARP1	0.9069
ERLIN2	0.9144	ZNF117	0.9232
TACC1	0.9194	RAB3C	0.918
WHSC1L1	0.9176	SREK1IP1	0.9217
PMP2	0.9141	SCOC	0.9204
VLDLR	0.9222	HNRNPU	0.9107
NFIB	0.912	ASAP1	0.9069
CEP78	0.9071	PLEKHG4B	0.9067
NTRK2	0.9152	CNKSR3	0.9238
SNX30	0.9197	DGKE	0.9155
NR6A1	0.9115	HS2ST1	0.9206
WDR31	0.9102	CACNA2D1	0.9109
USP6NL	0.921	PPP2R5E	0.9175
ZEB1	0.9236	CHST9	0.9181
EIF4EBP2	0.9155	OTULIN	0.907
CNNM2	0.9225	UBASH3B	0.9068
ADAM12	0.9194	TBRG1	0.9107
SLC5A12	0.9065	PITPNC1	0.9149
CELF1	0.9152	PRKCA	0.9153
SESN3	0.9179	abcas	0.9107
TENM4	0.9066	ENAH	0.92
ZC3H12C	0.9154	CCSAP	0.9066
HMGA2	0.9209	PDE1C	0.912
CDH8	0.9224	ADAMTS5	0.912
LPHN3	0.9207	TTC39B	0.9199
CD226	0.9073	C16orf8 7	0.9119
FREM2	0.9155	MIER3	0.9116
THRB	0.9151	FAM126B	0.9228
GXYLT1	0.9177	SLC26A2	0.9119
AKAP6	0.9071	AFF2	0.9218
ADAMTS12	0.9171	GNAQ	0.9152
FER	0.918	MMP16	0.9237
FAM160B1	0.9166	KCNMA1	0.9155

SNTB2	0.9228	PEAK1	0.9233
SPRY3	0.9155	NABP1	0.9199
IRS1	0.9177	CHD2	0.9188
MECP2	0.9121	CEP83	0.916
RAB3B	0.9122	SUlTib1	0.9069
B3GALNT1	0.9096	NUDT4	0.9122
SHE	0.9118	SCAI	0.9199
SLC33A1	0.9119	AGFG1	0.9178
PTK2	0.9111	PHC3	0.9218
PLEKHA2	0.9065	UBXN2A	0.9115
C15orf40	0.9072	CD34	0.9071
LUZP1	0.915	CYB561D1	0.9149
REPS2	0.9215	ATP2A2	0.9116
OTUD3	0.9152	TMEM167A	0.9174
MAP3K2	0.9217	C4orf32	0.9121
TMEM154	0.9209	FZD4	0.9193
SIK2	0.9071	PDE12	0.912
RNF150	0.9069	GK5	0.911
USP38	0.9066	VCPIP1	0.9069
LONRF2	0.92	ZNF654	0.9143
NUDCD2	0.9197	CADM2	0.9156
SGCD	0.9231	PPM1E	0.9173
ATF7	0.9148	SMAD2	0.9241
SOCS6	0.9191	ARL10	0.9181
TTLL6	0.9136	PPP2R2D	0.9072
FOXN2	0.9109	DPP10	0.9144
PYGO1	0.9217	ALG10B	0.918
INSR	0.9171	SLC35E3	0.921
KCNK3	0.9148	CREG2	0.9195
CLCN5	0.9119	ZDHHC21	0.9231
APLN	0.9076	UNC119B	0.9111
KSR2	0.9122	JAKMIP2	0.9177
MCC	0.9114	IP6K1	0.9121
ZNF562	0.9157	SPRYD4	0.9209
ATF7IP	0.9175	SYNE3	0.9224
PCDHB1	0.9146	KIAA2018	0.9069
PTEN	0.9198	RNF152	0.9155
MALT1	0.9094	POLE	0.9067
NEGR1	0.9199	ZBTB34	0.9232
CERS6	0.907	RIMKLA	0.918
ARNT2	0.9203	RPS6KA3	0.9151
FUT9	0.9239	CHD9	0.9113
ZNF24	0.912	MIEF2	0.9153
ZMAT3	0.9198	NR2C2	0.9179
COROIB	0.9098	ZBTB33	0.9104
DCP2	0.9218	ST8SIA3	0.9121
BNC2	0.9232	TBL1XR1	0.915
VANGL1	0.9071	IL17RA	0.9112
STOX2	0.9071	FAM26E	0.9121
SFT2D3	0.9103	C2orf69	0.9092

PDE4DIP	0.9152	GPRIN3	0.921
LCORL	0.9112	SV2B	0.9179
GEN1	0.9179	LSAMP	0.9121
CD28	0.9109	BRWD1	0.9177
EPM2AIP1	0.9175	C16orf52	0.9147
ERBB4	0.9155	KCNQ5	0.9143
CSRNP3	0.9121	PIGP	0.912
KCTD12	0.9067	PTCH1	0.9228
CLK3	0.9179	LRCH3	0.9206
CIITA	0.9069	MARC1	0.9069
AKAP5	0.9067	MKL2	0.907
FAM73A	0.9112	KPNA4	0.9216
SSTR2	0.9194	PCLO	0.9146
PCGF5	0.9178	LYRM7	0.9068
YOD1	0.9213	PPARA	0.9198
CHRM2	0.911	NAP1L1	0.9218
ZNF678	0.9223	AKR1C1	0.9117
PLAG1	0.9222	TSPYL4	0.9107
RFX7	0.9178	SESTD1	0.9199
RNF41	0.9115	FAM9C	0.9116
MGAT4C	0.9241	DCC	0.9117
ZNF716	0.9106	TET3	0.9119
ZNF708	0.9213	LIN28B	0.9193
EXT1	0.9195	ZNF626	0.9149
FIGN	0.9179	ZC3H6	0.9198
CLN8	0.9068	NCR3LG1	0.9115
PAPPA	0.9178	DCUN1D3	0.9116
C16orf72	0.9181	ZNF793	0.9066
GJC1	0.9153	CENPP	0.9155
CADM1	0.9208	ZNF559	0.9096
SLC8A1	0.9226	PDCD1	0.9106
CALN1	0.907	CHM	0.9108
CHST6	0.9151	PTAR1	0.9217
CTNNA3	0.9224	vWC2	0.9122
GRIN2A	0.9156	RPL14	0.9106
FAM46C	0.9102	BEND4	0.912
LHFP	0.9077	LRRK2	0.9177
MACC1	0.9229	PTPLAD2	0.9072
KCTD16	0.9234	SF3B3	0.
B3GALT5	0.9181	TMEM194B	0.9113
ST6GALNAC3	0.9196	ILIRAP	0.9144
PCDH9	0.924	PTPRT	0.9121
AMER1	0.9171	ACADSB	0.9198
SDR42E1	0.9156	LCOR	0.9178
RBM33	0.9069	XPNPEP3	0.9207
FLRT2	0.9241	ZNF471	0.9068
PURA	0.9232	ZNF493	0.9166
ZBTB37	0.9237	FUT4	0.9114
HS6ST3	0.9227	ZNF774	0.9067
RAD51D	0.9176	ZNF765	0.9153

TSC22D2	0.9218	MBD5	0.9117
ESRRG	0.9112	FAM155A	0.9198
GDAP2	0.9227	C9orf170	0.9103
AJAP1	0.9209	ZNF468	0.9195
MYO6	0.9149	PCDHA4	0.9218
HDAC2	0.9218	SLC35B4	0.9214
WNK3	0.9206	TMEM170B	0.9209
SLC30A10	0.9133	CCDC85C	0.9181
ZNF431	0.9225	ITPRIPL2	0.9116
NF1	0.912	DOK6	0.9198
vKORC1L1	0.9067	TMEM200C	0.9197
CD47	0.9065	VGLL3	0.9181
NHLRC2	0.9156	TRIM71	0.9117
SCN8A	0.9173	XKR4	0.9234
FLNA	0.9222	STK38L	0.911
TMEM26	0.9108	C17orf51	0.9224
SRGAP1	0.924	ZNF611	0.9203
ZNF138	0.9217	DENNDIB	0.9195
GMFB	0.9198	FGFRIOP	0.9181
ZNF257	0.9227	ARHGAP19	0.9172
DDI2	0.9156	PPP1CB	0.9191
TRIM33	0.9176	DNASE1	0.9176
ZNF655	0.9174	GANC	0.911
DCHS2	0.9104	ZNF891	0.9226
ZNF81	0.9152	LYRM4	0.915
ZNF780A	0.9118	HAUS3	0.9108
PLCG2	0.9108	EML6	0.9092
MBP	0.9072	PEX26	0.9123
DLGAP2	0.9154	SIAH3	0.9152
MRPL42	0.92	APOL6	0.9121
ZNF273	0.9202	ANKRD34C	0.9111
ZNF667	0.9145	SHISA9	0.9068
SVIP	0.9114	N4BP2L2	0.918
Cacnale	0.918	NA	0.9212
Helz	0.9209	FMN1	0.918
ASPH	0.9176	PCDHA10	0.9238
GFPT1	0.9178	ATXN7L3B	0.9231
ZNF26	0.9238	PCDHGA6	0.9105
ITSN2	0.9107	SOGA3	0.9156
NUDT16	0.9118	NOX5	0.9153
TLK1	0.9165	CLLU1	0.9101
IPO9	0.9217	CUX1	0.9209
SLC5A3	0.9234	FRRSIL	0.912
LRIG2	0.918	TMEM178B	0.9199
MFAP3L	0.9067	GAN	0.9181
RORB	0.9155	DYNLL2	0.907
ZNF525	0.9199	RNF115	0.9179
INF2	0.9234	RASSF5	0.9174
CHIC1	0.9117	GTF2H5	0.9217
BMPR2	0.918	NUDT3	0.9181

GRIN2B	0.9241
ZBTB8B	0.9229
NA	154
SOCS7	0.9118
TRPM1	0.9109
NA	0.9191
PIP4K2B	0.9147
ZNF8	0.9152

Table A.2. The list of genes including T-UCR in their exonic regions according to the study [2].

UCR number	Length (bp)	Gene Name
uc. 13	237	EIF2C1
uc. 28	355	SFRS11
uc. 33	312	PTBP2
uc. 45	203	HNRPU
uc. 46	217	HNRPU
uc. 48	298	PUM2
uc. 49	207	BC060860
uc. 50	222	SFRS7
uc. 61	326	BCL11A
uc. 77	296	ZFHX1B
uc. 97	442	HAT1
uc.102	338	PTD004
uc.129	212	MBNL1
uc. 135	201	AK096400
uc.138	419	SFRS10
uc.143	218	AB014560
uc.144	205	HNRPDL
uc.151	214	ZFR
uc.174	203	Mc. 183

uc. 209	250	TRA2A
uc. 233	266	CENTG3
uc. 263	207	HNRPK
uc. 264	267	HNRPK
uc. 280	220	PBX3
uc. 282	207	GRIN1
uc. 285	232	CARP-1
uc. 292	217	MLR2
uc. 313	231	TIAL1
uc. 324	225	C1lorf8
uc. 330	207	RBM14
uc. 331	218	DLG2
uc. 333	270	FLJ25530
uc. 338	223	PCBP2
uc. 339	252	ATP5G2
uc. 356	251	MBNL2
uc. 375	300	MIPOL1
uc. 376	290	PRPF39
uc. 377	217	PRPF39
uc. 378	251	NRXN3
uc. 393	275	CLK3
uc. 395	249	RBBP6
uc. 406	211	NFAT5
uc. 409	244	L32833
uc. 413	272	BC060758
uc. 414	246	THRA
uc. 419	289	SFRS1
uc. 436	210	TCF4
uc. 443	239	HNRPM
uc. 454	208	SLC23A1
uc. 455	245	RNPC2
uc. 456	320	SFRS6
uc. 471	239	DDX3X
uc. 473	222	NLGN3
uc. 474	210	ZNF261
uc. 475	397	OGT
uc. 477	209	RAB9B
uc. 478	252	GRIA3
uc. 479	302	GRIA3

[^0]: 1. Okoń K. Pathology of renal tumors in adults. Molecular biology, histopathological diagnosis and prognosis. Polish Journal of Pathology 59 (2008) 129-76.
 2. Choueiri TK, Je Y, Cho E. Analgesic use and the risk of kidney cancer: a meta-analysis of epidemiologic studies. International Journal of Cancer 134 (2014) 384-96.
