
Computational techniques have been developed 
to reveal the biological significance of the lar-

ge transcriptomic datasets with the emergence of 
microarray technique in 2000s, which allows high-
throughput measurement of gene expression data at 
the genome level. These techniques are largely based 
on clustering algorithms, mathematical modeling and 
network analysis. In addition to the applications of a 
wider range of mathematical approaches, there are 
also mathematical approaches developed specifically 
for this biological context. The most common of the-
se approaches is Zhang and Horvath's weighted gene 
co-expression analysis (WGCNA) approach, publis-
hed in 2005 [1]. This method was later improved by 
many studies [2-9], expanded for meta-analysis [10] 
and R ready-to-run software was also provided [11]. 
The WGCNA approach has been used in many stu-
dies and has received thousands of citations [12-16].

First, WGCNA numerically calculates the correla-
tions of gene expression across different conditions or 
temporal points between each gene pair. It then thres-
holds these pairwise correlation coefficients to trans-
form them into discrete values - which is defined as 
solid thresholding - or uses the force function or the sig-
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moid function to inflate high attenuation and weaken 
weak attenuation, which is called soft thresholding [1].

In the WGCNA approach, α (when sigmoid functi-
on is used), β (when force function is used), and τ (when 
hard-thresholding used) variables are determined in a 
way that ensure the network will be independent of the 
scale, because biological networks are known to be sca-
le-free [17].

By using sigmoid function for transformation, gene 
pairs whose correlation coefficient is slightly higher 
than the saddle point, which supposed to be 0.5 are 
overrated that is why power function is much more 
common in the literature. On the other hand, by using 
power function, correlation coefficients that are slightly 
lower than 1.0 are underrated. Intuitively, it can be 
hypothesized that shifting saddle point of sigmoid func-
tion upwards, i.e. asymmetric sigmoid function, can be 
used for transformation to avoid both of the drawbacks. 
However, asymmetric sigmoidal functions have more 
than one coefficients which complicates the parame-
terization step. Here in this study we attempted to de-
velop a pipeline to use asymmetric sigmoidal function 
for soft-thresholding in WGCNA. We used an RNAseq 

A B S T R A C T

The expression of genes that are functionally related is considered to change together in
response to deterioration of internal or external order. The system-level analysis of these 

changes has become widespread in recent years. Weighted gene co-expression network analy-
sis (WGCNA) is an important tool in the literature. This method has two options in the form 
of hard and soft thresholding. The power function is used commonly in soft thresholding 
option. The other alternative of soft thresholding, symmetric sigmoid function, may give less 
importance to the meaningful co-expression data and not preferred frequently. Both func-
tions has some drawbacks. In this study, it was tried to increase the efficiency of WGCNA 
approach by using asymmetric sigmoid function. RNA-seq dataset on adaptation of E.coli to 
alternating substrate conditions was re-investigated with this modified approach and its use 
was proven by GO and pathway enrichment analysis.
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In scale-free networks degree distribution follows po-
wer law distribution that is why it should be linear in loga-
rithmic scale. If a line fit to a distribution by linear regressi-
on with a slope less than -0.5 and an R2 value higher than 0.7 
the degree distribution was accepted as scale-free. Hereby 
one can conclude that the constructed network is biologi-
cally relevant. A typical scale-free network were plotted by 
using Cytoscape in order to display the structure (Fig. 2).

It was found that minimum τ value for hard-
thresholding was 0.76 to attain scale-free criteria and mini-
mum β value for soft-thresholding with power function was 
7. Scale-free criteria could not be attained with sigmoidal
function with any parameter.

As a forth thresholding strategy, here in this study, asy-
mmetric sigmoidal function with two parameters (Eq. 1) 
was used as a novel transformation function.

       (1)

The effect of different values of α and µ were simulated 
to display the transformation that they can cause (Fig. 3).

dataset on adaptation of E.coli to alternating substrate con-
ditions to validate this novel approach.

MATERIALS AND METHODS
RNA-seq dataset of E.coli was retrieved from GEO with 
the accession code of GSE97944 [18]. Quantifications of 
the dataset was in terms of fragments per kilobase per 
million (FPKM) and obtained by cufflinks [19] following 
alignment by using Bowtie 2 algorithm [20].

Cytoscape version 3.6.1 was used to visualize networks 
[21].

MATLAB R2018b platform was used for thresholding 
calculations.

When clustering with the WGCNA approach, the exis-
ting package on the R platform was used [11].

By using gene ontology and pathway enrichment analy-
zes, the biological significance of the resulting modules was 
examined. DAVID 6.8 web-based software tool was used for 
this purpose [22].

RESULTS
RNA-seq dataset of E.coli is composed of expression le-
vels of 3754 genes at 8 conditions. One of the advantages 
of WGCNA approach is making use of the whole dataset 
instead of reducing to a subset of differentially expres-
sed genes. First of all for each gene pair a distance metric 
(Pearson Correlation Coefficient) is calculated to quan-
tify the similarities between expression profiles accross 8 
conditions. Secondly, a thresholding approach is followed 
to reduce the noise. Three basic thresholding approaches- 
hard thresholding, soft thresholding with power func-
tion and soft thresholding with sigmoid function- were 
used to assess the scale-free networks. Transformation 
functions with different parameters of sigmoid function 
(Fig. 1A) and power function (Fig. 1B) were plotted. Sig-
moid function provides little transformation while power 
function leads a huge difference between high similari-
ties. 

Figure 1. Sigmoid functions with various α values (A) and power 
function with various β values (B)

Figure 2. A typical scale-free network with a degree-distribution that 
fit to a linear decrease of frequency with increasing degree on log-scale 
(R2 = 0.918).

Figure 3. Effect of parameterization on transformation by asymmetric 
sigmoid function
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Two hundred different combinations of α and µ were 
searched by grid search approach and scale-free nature of 
resulting network for each combination was investigated. 
The lowest possible µ value was picked first and lowest pos-
sible α in combination with the fixed µ was chosen. As a 
result 0.8 for µ and 17 for α parameters were identified to be 
attaining scale-free criteria (Fig. 4).

Resulting modules calculated by using the parameteri-
zed asymmetric sigmoidal function through the R-package. 
Biological significance of the modules identified by using 
power function and asymmetric sigmoidal function were 
compared with respect to gene ontology and pathway en-
richments.

It was observed that larger modules with finer associ-
ation to specific biological roles were attained by using asy-
mmetric sigmoidal function. For instance; KEGG pathway 
ribosome was found to be associated with a module with 
a size of 40 genes with a p-value of 2.42E-04 with power 
function whereas there is a larger module of 56 genes with 
a more significant association to the same pathway with a 
p-value of 1.65E-13.

Resulting enrichment analysis were also showed that 
genes involved in following biological processes and path-
ways mediates adaptive response of E.coli to alternating 
substrate conditions; oxidative phosphorylation, biosynthe-
sis of amino acids, flagellar assembly and response to stress.

DISCUSSION
WGCNA is one of the most common approaches for 
transcriptomic data analysis. It is shown in this study 
that asymmetric sigmoidal function with two parameters 
can improve performance of WGCNA and its usefullness 
was shown in adaptive response of E.coli to alternating 
substrate conditions. The parameterization process sho-
uld be validated across different datasets and a systematic 
procedure should be developed to standardize the future 
effords. And as another further work this approach sho-
uld be included into automated R-packages of WGCNA 
for its wider use.
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