
In the last decade, great amount of research has 
been performed in the field of unmanned air vehic-

les (UAV). Among them, rotary wing UAV’s i.e. qu-
adrotors or their derivatives such as hexarotors and 
octorotors drew the most interest due to their simpli-
city and capabilities [1], [2], [3] and [4]. They have the 
ability to take-off and land vertically, they have the 
capability of high maneuverability and they are able 
to stay in hover position. They are mostly used for 
rescue, surveillance, and photography.

Nowadays, aerial manipulation attracts the atten-
tion of researchers since it brings new capabilities to 
quadrotors such as carrying payloads and manipulating 
objects. In most of the aerial manipulation related stu-
dies, a robotic arm is added under the UAV. In [8], [9] 
and [10]; serial manipulators with various degrees of fre-
edom are studied. In [11], a parallel manipulator is exp-
loited. [5], [6] and [7] are a few studies in which a cable 
suspended manipulator is used in the quadrotor.

There are mainly two different approaches for mo-
deling of aerial manipulators. One approach is building 
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the kinematic and dynamic model of the UAV separa-
tely and taking the effects of the manipulator such as 
mass and inertia as a disturbance input to the UAV as 
in [12] and [13]. In the other approach, the UAV and the 
manipulator are modeled as a single system as in [8], [9] 
and [17]. For the control system design of aerial manipu-
lators, there are also different approaches in the litera-
ture. The first approach is the designing the control al-
gorithms by considering the disturbance forces that are 
applied to the system. In [14], a compliance controller is 
implemented to overcome the interaction forces betwe-
en the end-effector and the environment. To cope with 
interaction forces and uncertainties while providing 
precise trajectory tracking, a robust controller design is 
proposed in [15]. Another aspect of the controller design 
is whether a single controller is designed to stabilize the 
coupled system or decoupled controllers are implemen-
ted for the vehicle system. In [17] a computed torque 
method is used to control the UAV and the 2-DOF ro-
bot arm. In [8], a single controller is designed by using 
the coupled equations in order to generate control in-
puts for both controlling the UAV and the robotic arm. 
However, in [13], decoupled controllers are presented 
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( )a

ku  is the kth basis unit direction vector of the reference 
frame Oa. Their column matrix representation can be exp-
ressed as:

[ ] [ ] [ ]1 2 31 0 0 , 0 1 0 , 0 0 1T T Tu u u= = =         (1)

[ ]1 2

T
θ θΩ =  is the joint angles of the robotic arm. Ori-

entation of the center of mass of the quadrotor is represen-
ted by the set of Euler angles; roll, pitch and yaw angles 

[ ]T
φ θ ψϒ = . By using Euler angles, the rotation matrix 

between inertial-fixed reference frame to quadrotor body-
fixed reference frame can be written as:

( , )ˆ i b

c c c s s s c c s c s s
C s c s s s c c s s c c s

s c s c c

ψ θ ψ θ φ ψ φ ψ θ φ ψ φ
ψ θ ψ θ φ ψ φ ψ θ φ ψ φ
θ θ φ θ φ

− + 
 = + − 
 − 

  (2)

In Eq. (2), sα  and cα  denote sin( )α  and cos( )α , res-
pectively, and ( , )ˆ i bC  is the rotation matrix between frame i to 
frame b. For the robotic arm, Denavit–Hartenberg parame-
ters are shown in Table 1.

Position of the quadrotor, link-1 and link-2 in the iner-
tial-fixed reference frame can be written as:

[ ]( ) Ti
qp x y z= (3)

( ) ( ) ( , ) ( )
1 1

ˆi i i b b
qp p C p= +   (4)

( ) ( ) ( , ) ( )
2 2

ˆi i i b b
qp p C p= + (5)

( )i
qp  is the position of the quadrotor with respect to 

inertial frame, and ( )
1

bp  and ( )
2

bp  are the positions of the link-
1 and link-2 in quadrotor’s body-fixed reference frame, res-

to regulate each state of the quadrotor and the robotic arm.  
The other aspect of the controller implementation is whet-
her linear or nonlinear controllers are used to achieve stable 
system performance. In [16], the nonlinear model predictive 
control method is successfully studied to achieve optimized 
system performance. Linear controllers (PID) are designed 
to control the overall system via feedback linearized system 
equations [13].

In this paper, a UAV with a 2-DOF robotic arm mo-
unted at its bottom is studied. Dynamics of the combined 
system is obtained by using Lagrange-d’Alembert formu-
lation. Decoupled controllers are designed for controlling 
both the quadrotor and the arm. The performance and 
robustness of the controllers are shown using numerical 
simulations.

We improve the state-of-the-art in three different as-
pects. First, to the best of our knowledge, in most of the stu-
dies in the literature, the interaction of the end-effector with 
the environment is not modeled and most of the time the 
proposed controllers are tested without the interaction for-
ces. However, in order to use aerial manipulators for tasks 
such as opening a door or pushing a box; the interaction 
forces have to be considered. In this paper, we considered 
interaction forces and designed the controller to be robust 
against these forces and tested its performance accordingly. 
Second, unlike a few studies that considered 1-D and small 
magnitude interaction force, we considered larger magnitu-
de interaction forces in 3-D. Third, although the states of 
the aerial manipulator are highly coupled, our controller 
was able to control all states simultaneously unlike most of 
the studies in the literature.

The organization of this paper is as follows. In Section 
2, the kinematic and dynamic modeling of the system are 
introduced. In Section 3, controller design is discussed. The 
results of the simulations are presented in Section 4. Finally, 
in Section 5, discussion of the results and the conclusion of 
the study are made.

MODELING
Kinematics

Position Analysis

The position analysis is the key factor for the kinematic 
modeling. Here, the position relations of the combined 
system and Denavit-Hertenberg parameters of the robo-
tic arm are determined [17]. Fig. 1 shows some of the ki-
nematic parameters of the system. Let Oi,Ob,O1,O2 and Ob 
be the origin of the inertial, quadrotor’s body, link-1, link-
2 and end-effector fixed reference frames, respectively.

Figure 1. Side view of the unified system and some of the kinematic 
parameters

Table 1. Denavit-Hartenberg Parameters

k=1 k=2

kβ
2
π− 0

kθ 1
3
2
πθ + 2θ

bk b1 b2
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pectively.
Velocity Analysis

The linear velocities of the quadrotor, link-1 and link-2 in 
the inertial-fixed reference frame can be derived by ta-
king the time derivatives of the Eq’s. (3), (4), and (5).

[ ]( )     Ti
qp x y z=

   (6)

( ) ( ) ( , ) ( ) ( , ) ( )
1 1 1

ˆ ˆi i i b b i b b
qp p C p C p= + +

   (7)

( ) ( ) ( , ) ( ) ( , ) ( )
2 2 2

ˆ ˆi i i b b i b b
qp p C p C p= + +

   (8)

Then, linear velocities of the links are given in quadro-
tor body-fixed reference frame in terms of respective Jacobi-

an 
matrices, Ĵ  further as:

( )
1 1

ˆb
vp J= Ω    (9)

( )
2 2

ˆb
vp J= Ω (10)

Following that, Eq’s. (7) and (8) can be further written 
as,

( ) ( ) ( , ) ( ) ( ) ( , )
1 1 1

ˆ ˆ ˆ( )i i i b b b i b
q q vp p C SSM w p C J= + + Ω    (11)

( ) ( ) ( , ) ( ) ( ) ( , )
2 2 2

ˆ ˆ ˆ( )i i i b b b i b
q q vp p C SSM w p C J= + + Ω                  (12)

Where in these equations SSM is for the skew symmet-
ric matrix operation.

Angular velocity of the quadrotor with respect to the 
inertial frame can be written in body-fixed and inertial-fi-
xed reference frames, ( )b

qw  and ( )i
qw , respectively as:

( ) ˆb
qw L= ϒ (13)

( ) ( , ) ( )ˆi i b b
q qw C w= (14)

( ) ( , )ˆ ˆ ˆi i b
qw C L T= ϒ = ϒ  (15)

Where,

1 0
ˆ 0

0

s
L c c s

s c c

θ
φ θ φ
φ θ φ

− 
 =  
 − 

(16)

Where L̂  is the matrix that maps the Euler angular ra-
tes to the angular velocities in the quadrotor body-fixed re-
ference frame and  maps the derivative of the Euler angles to 
the quadrotor’s angular velocity in the inertial reference 
frame. Overhead dot (.) is used to represent the derivative of 
the corresponding variable.

The angular velocities of the links are given in the qu-
adrotor body-fixed reference frame in terms of the Jacobian 
matrices as,

( )
1 1

ˆb
ww J= Ω (17)

( )
2 2

ˆb
ww J= Ω (18)

Later, the angular velocities of the links in the inertial-
fixed reference frame are obtained as,

 ( ) ( ) ( , )
1 1

ˆ ˆi i i b
q ww w C J= + Ω (19)

( ) ( ) ( , )
2 2

ˆ ˆi i i b
q ww w C J= + Ω (20)

Now, let us define the generalized coordinates, and the 
generalized velocities of the unified system as follows,

[ ]1 2

1 2

T

T

q x y z

q x y z

φ θ ψ θ θ

φ θ ψ θ θ

=

 =  
   

  

(21)

By using the generalized velocities, the linear and an-
gular velocities with respect to the inertial-fixed reference 
frame can be written further in terms of velocity influence 
coefficients as [18].

( )
3 3 3 5

ˆˆ ˆ0i
q x x qp I q V q = = 
   (22)

( )
3 3 3 2

ˆ ˆˆ ˆ0 0i
q x x qw T q W q = = 

  (23)

( ) ( , ) ( ) ( , )
1 3 3 1 1 1

ˆ ˆˆ ˆ ˆ ˆ( )i i b b i b
x vp I C SSM p L C J q V q = − = 

    (24)

( ) ( , ) ( ) ( , )
2 3 3 2 2 2

ˆ ˆˆ ˆ ˆ ˆ( )i i b b i b
x vp I C SSM p L C J q V q = − = 

   (25)

( ) ( , )
1 3 3 1 1

ˆ ˆˆ ˆ ˆ0i i b
x ww T C J q W q = = 

  (26)

( ) ( , )
2 3 3 2 2

ˆ ˆˆ ˆ ˆ0i i b
x ww T C J q W q = = 

  (27)

In above equations, V̂  and Ŵ  are the linear and angu-
lar velocity influence coefficients, respectively.

Dynamics

Dynamic model of the unified quadrotor and the robotic 
arm is obtained by using Lagrange-d’Alembert formula-
tion [17]. It can be written as,

( ) ext

d L L u u
dt q q
L K U

∂ ∂
− = +

∂ ∂
= −

 (28)

where L is the Lagrange operator, K and U are the total 
kinetic and potential energies of the combined system. The 
terms u  and extu  are the generalized control input and the 
external interaction forces that are applied to end-effector, 
respectively.
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The total kinetic energy, K is written as the summation 
of the kinetic energies of the each mass elements that are 
quadrotor mass(mb), link-1 mass(m1) and link-2 mass(m2).

1 2bK K K K= + + (29)

( ) ( ), ,( )( ) (( ))1 1 ˆ
2

ˆ
2

ˆ i b i b Ti T i
b b q

i T i
qq bqK m C I Cp p ω ω= +                         (30)

( ) ( ) ( ) ( )( ) ( )
1

, ,1 ,1 ,( ) ( )
1 1 1 11 1

ˆ ˆ ˆ ˆ1 1 ˆ
2 2

i b bi T i b T i b Ti T iK m C C I Cp p Cω ω= +      (31)

( ) ( ) ( ) ( )( ) ( )
2

, ,2 ,2 ,( ) ( )
2 2 2 22

ˆ1 1 ˆˆ
2 2

ˆ ˆi i b b bT b Ti ii T iTpK m C C I Cp Cω ω= +  (32)

In these equations, Î is the constant inertia matrix at 
the corresponding reference frames of the vehicle body and 
the links bodies. 

The total potential energy of the unified system can be 
expressed as,

1 2bU U U U= + + (33)

( )
3
t i

b b qU m gu p= (34)

( )
1 1 3 1

t iU m gu p= (35)

( )
3 22 2
t iU m gu p=    (36)

where g is the gravity. After the Eq’s. (29) and (33) are 
plugged into Eq. (28) the following form of the equation of 
motion of the unified system can be obtained as:

ˆ ˆˆ ( ) ( , ) ( ) extM q q C q q q G q u u+ + = +   (37)

where M̂  is positive definite and symmetric inertia 
matrix, Ĉ  consists of centripetal, Coriolis, gyroscopic 
terms, and Ĝ  consists of gravity terms.

Alternatively, to find these matrices, the following for-
mulations are used. The total kinetic energy can be expres-
sed in terms of the inertia matrix as [18],

1 ˆ ( )
2

TK q M q q=   (38)

By using the Eq’s. (22), (23), (24), (25), (26), (27), and (38), 
the inertia matrix can be further written as,

( , ) ( , )

2
( , ) ( , ) ( , ) ( , )

1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( )

T T i b i b T
q b q q b q

T T i b b k i b b k T
k k k k k k

k

M q V m V W C I C W

V m V W C C I C C W
=

= + +

+∑
                (39)

Also, the elements of the Coriolis matrix can be expres-
sed as follows [19].

8
, ,,

,
1

1
2

a j j ba b
a b

j j b a

m mm
c

q q q=

 ∂ ∂∂ = + − 
∂ ∂ ∂  

∑ (40)

Finally, the column matrix Ĝ  can be obtained by using 
the total potential energy as,

ˆ ( ) UG q
q

∂
=
∂

(41)

The generalized input force, u  and the externally app-
lied disturbance forces, extu  are obtained by using the virtu-
al work principle method and expressed as follows.

( , )( ) ( )
3 3 3 2

( ) ( )
3 3 3 2

12 122 3 2 3 2 2

ˆ ˆ ˆ0 0
ˆ ˆ ˆˆ0 0

ˆ ˆ ˆ0 0

i bb b
x xq q

b t b
q x x q

x x x

Cf f
u S L

I

τ τ
τ τ

    
    

= =     
    
     

                        (42)

where, ˆdet( ) cos( )S θ=

Therefore, if 
2

n πθ π≠ − , n Z∈  then, Ŝ  is an invertible 
matrix. For our case, the pitch angle satisfies this condition.

3 3 3 3

( )
3 3

ˆ

ˆ ˆ

ˆ 0
ˆ( )

T T
e

x x

b
ext

v

e

e

x

I

u SSM p I P

J J ω

 
 

=  
 
  

(43)

where the subscripts ‘*x*’ shows the size of the matrices.
( )b
ep   is the position of the end effector in quadrotor body 

fixed frame. ( )b
qf  and ( )b

qτ  are the forces and torques genera-
ted by the quadrotor motors, and 12τ  is the vector of arm’s 
joint torques.

[ ]( ) 0 0 Tb
q zf f=    ,   ( )

1 2 3

Tb
q q q qτ τ τ τ =             (44)

Also, P  is the vector of the interaction force, F  and 
moment, M̂ .

[ ]1 2 3 1 2 3

TP F F F M M M= (45)

In addition, the quadrotor’s rotors rotational speeds, ϖ
’s can be mapped to the generated forces and torques by the 
following relation.

2
1
2

1 2
2

2 3
2

3 4

0 0
0 0

z T T T T

q T T

q T T

q Q Q Q Q

f c c c c
dc dc

dc dc
c c c c

ϖ
τ ϖ
τ ϖ
τ ϖ

− − − −     
     −     =     −
     

− −          

(46)

Where Tc  and Qc  are the dc motors’ thrust and drag 
coefficients, respectively. d is the distance between one dc 
motor and the center of mass of the quadrotor. The above 
relation is obtained by assuming that the square of the rota-
tional speeds of each rotor is proportional to the generated 
forces and moments [1].

CONTROLLER DESIGN

The decoupled controllers are designed for the position 
and attitude control of the quadrotor and the angular po-
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sition control of the robotic arm joints. While developing 
controller algorithms, the linearized decoupled equati-
ons of motion of the combined system is used. The cont-
roller architecture of the combined system is depicted in 
Fig. 2. The controller contains an outer and an inner loop.

Outer Loop Control

Quadrotor is an underactuated vehicle that has four 
control inputs while having 6-DOF to be controlled. In 
other words, in order to have a translation motion in 
x-direction, the pitch angle should be changed. The same 
logic is valid for the translational motion in y-direction.
The difference is that the roll angle should be changed.
Therefore, these four states are heavily coupled with each 
other. To overcome this problem, an outer loop controller 
designed to compute the motion references for the roll
and pitch angles from the reference values of the transla-
tion in x and y directions.

x and y Position Controllers

In this controller, for the desired positions in x and y, in-
termediate control inputs θ  and φ  are calculated and fed 
to the inner loop controller. To obtain control law, the 
following relation is written by using Eq. (42).

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

(cos sin cos sin( )sin  )

(sin( )sin cos  cos sin )
z

z

u f

u f

ψ θ φ ψ φ

ψ θ φ ψ φ

= +

= −
        (47)

By putting 0ψ =  , Eq. (47) can be written further as for 
the desired roll and pitch angles as,

1

2

z

z

u mx f
u my f

θ
φ

= =
= = −





    (48)

For Eq. (48), following control law is obtained via PID 
control law with feedback linearizing logic. Where e is the 
error between desired (des) and measured (mes) states.

des mes

des mes

x

y

e
e

x x
y y=

−
−

=
(49)

0

( )( ( ) ( ) )
t

x
des des px x ix x dx

z

m de tx K e t K e d K
f dt

θ τ τ= + + +∫      (50)

0

( )
( ( ) ( ) )

t
y

des des py y iy y dy
z

de tm y K e t K e d K
f dt

φ τ τ= − + + +∫  (51)

Where Kp, Ki, and Kd are the proportional, integral and 
the derivative gains of the PID controller. m is the total mass 
of the combined system.

Inner Loop Control

The calculated roll and pitch angles are used as reference 
values for the roll and pitch controllers. For yaw and alti-
tude controllers, reference values are fed from the outside.

Altitude Controller

A PID control law is proposed by using the following rela-
tion that is obtained from Eq. (42).

3 zu mz f mg= = +   (52)

The control input can be calculated by using following 
relation.

0

( )( ( ) ( ) )
t

z
z des pz z iz z dz

de tf m z K e t K e d K mg
dt

τ τ= + + + −∫ (53)

Attitude Controller

From Eq. (42), the following relations can be written.

4 1xx qu I φ τ= =    (54)

5 2yy qu I θ τ= =   (55)

6 3zz qu I ψ τ= =   (56)

The attitude controllers have a cascaded structure as 
in Fig. 3. There is an inner loop that regulates the angular 
velocity and there is an outer loop that controls the angular 
position. Inner loop is stabilized by the PI controller and the 
outer loop is controlled by the P controller.  The control in-
puts can be written as follows,

des meseφ φ φ= −


      (57)

1 2
0

2 2
0

3 2
0

( ( ) )[ ( ) ( ) ]

( ( ) )[ ( ) ( ) ]

( ( ) )[ ( ) ( ) ]

t

q p p i

t

q p p i

t

q p p i

K e t K e t K e d

K e t K e t K e d

K e t K e t K e d

φ φ φ φ φ φ

θ θ θ θ θ θ

ψ ψ ψ ψ ψ ψ

τ φ τ τ

τ θ τ τ

τ ψ τ τ

= − +

= − +

= − +

∫

∫

∫

   

   

   







      (58)

Figure 2. The controller architecture of the unified system
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Robotic Arm Joint Angles Controller

For the joints, the following relations are used to obtain 
PID control laws. In these equations, I12 is total the inertia 
of the two arms about their total mass centers and I2 is 
the inertia of the second link. With the small joint angle 
assumptions, the following relations are a good approxi-
mation for the controller design. 

1 2
12 1 1 12 1sin( )( )

2
b bI m gθ τ θ +

= −   (59)

2
2 2 2 2 2sin( )( )

2
bI m gθ τ θ= − (60)

From the above equations, by using feedback lineari-
zing logic, the control inputs can be written as,
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SIMULATION RESULTS

The performance of the controllers are assessed using si-
mulation-based analysis as detailed in this section.

Simulation Parameters and Scenario

The proposed control algorithms are tested in MATLAB/
Simulink simulation environment. For the controller out-
puts, the saturation blocks are added to avoid unrealistic 
inputs to the system. The rotational speeds of the rotors 
are limited to the 800 rad/sec, the torque inputs of the 
servo motors are limited to the 3 Nm and the intermedia-
te control inputs; phi and theta are limited to the 17 deg-
rees. The numerical parameters of the combined system 
are presented in the Table 2.

Figure 3. Roll Controller Structure

Table 2. Numerical Parameters of the Combined System 

mb [kg] 2.6550 d [m] 0.3435

m1,2 [kg] 0.1700 b0 [m] 0.3435

Ixx,b [kgm2] 0.0457 b1,2 [m] 0.3000

Iyy,b [kgm2] 0.0457 c1,2 [m] 0.0500

Izz,b  [kgm2] 0.0846 d1,2 [m] 0.0500

Ixx,12 [kgm2] 7.0830e-05 gravity [m/s2] 9.8100

Iyy,12 [kgm2] 0.0013 cT [N/(rad/s)2] 2.7400e-05

Izz,12 [kgm2] 0.0013 cQ [Nm/(rad/s)2] 0.0470e-05

Table 3. The Gains of the Proposed Controllers

x y z φ θ ψ
1θ 2θ

Kp 24.790 24.790 39.430 1.959 1.959 1.269 1325 4669

Ki 12.360 12.360 27.880 20.880 20.880 4.390 6169 40370

Kd 9.407 9.407 12.170 - - - 70.450 129.800

Kp2 - - - 9.172 9.172 3.339 - -

Table 4. The Reference Values of the Controlled Variables

Time [s] 0-9 10-19 25-30 30-60

x [m] 0-5 5 5 5

y [m] 0-3 3 3 3

z [m] - -2 -2 -2

φ  [deg] - - - -

θ  [deg] 0-(-5) - - -

ψ  [deg] 0 -5 -5 -5

1θ  [deg] 0 0-15 15 15

2θ  [deg] 0 0-10 10 10

F1 [N] 0 0 0-5 5

F2 [N] 0 0 0-2 2

F3 [N] 0 0 0-6 6
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The gains of the designed controllers are given in Table 
3. These gains are obtained by using the root locus method
of the classical control theory.

The proposed controllers are tested with a simulation 
scenario. This scenario is shown in Table 4 and Fig. 4.

Firstly, the quadrotor is commanded to move to the 
predefined positions (5 m in x, 3 m in y, and -2 m in z) and 
yaw angle joint angles of the robotic arm are kept at 0. Then, 
the robotic arm is moved to the predefined angles (15 degree 
in 1θ  and 10 degree in 2θ ). Finally, the disturbance forces 
are applied to the end-effector of the serial manipulator (6 N 
in +x-direction, 2 N in +y-direction and 6 N in +z-direction).

Quadrotor Position Control

The performance of the position controller is evaluated 
and the response of the aerial manipulator in the inertial 
reference frame is depicted in Fig. 6 and Fig. 7.

Although the robotic arm is active and external distur-
bances are applied to the system, the quadrotor tracked the 
input well (Fig. 6) and the maximum absolute error is less 
than 0.03 m during the course of the motion (Fig. 7).

Quadrotor Attitude Control

Due to the underactuated nature of the quadrotors, the 

attitude dynamics of quadrotors is manipulated to move 
the quadrotor to a desired position. Fig. 8 and Fig. 9 pre-
sent the reference and actual values of the Euler angles 
during the position control in Section 4.2. Fig. 10 shows 
the corresponding absolute error due to the difference 
between the desired and achieved values.

Due to the underactuated nature of the system, the 
performance of the attitude control system is effective in 
the performance of position control. The quadrotor tracks 
the desired attitude values well (Fig. 8). During the transient 
period, the maximum error is around -4 degrees in theta 
and 2 degrees in phi (Fig. 9). The maximum absolute error is 
almost 1.2 degrees in theta (Fig. 10).

Figure 4. The Desired Values of the Directly Controlled Parameters

Figure 5. The Applied Disturbance Forces

Figure 6. The Desired and Achieved Cartesian Position of the 
Quadrotor

Figure 7. The Absolute Error Between Desired and Achieved Inertial 
Position of the Quadrotor

Figure 8. The Desired and Achieved Attitude of the Quadrotor
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DISCUSSION AND CONCLUSION
In this paper, decoupled controllers are proposed for an 
aerial manipulation system composed of a quadrotor and 
a serial 2-DOF robotic arm. First, for the position of the 
quadrotor and joint angles, decoupled PID controllers 
are designed by using feedback linearization technique. 
Then, cascaded PID controllers are proposed for the at-
titude dynamics of the quadrotor. Here, reference values 
of the roll and pitch angle of the quadrotor are the output 
of the position controllers of the x and y. Designed cont-
rollers are tested in a simulation environment with highly 
nonlinear dynamic models.

At first, nonzero cartesian positions and yaw angle are 
commanded to the quadrotor. The aerial manipulator re-
aches these reference trajectories in 9 seconds. Due to the 
transient and coupled dynamics of the system, there are 
some oscillations. However, these oscillations are suppres-
sed with the action of the controllers (Figs. 6, 7 and 8). Also, 
there are some small deviations from the zero reference va-
lues of the joint angles as shown in Figs. 11, 12 and 13. This 
is caused by the faster pitch dynamics of the quadrotor and 
the transient dynamics of the system. These oscillations are 
controlled by the joint controllers. Then, at 10 seconds, the 
serial manipulator is commanded to track the reference va-
lues. The joint controllers track these references successfully. 

Robotic Arm Joint Angles Control

The coupled arm is controlled during the position cont-
rol experiment. The reference and actual values of the 
joint angles is depicted in Fig. 11 and its zoomed version 
is depicted in Fig. 12. Fig. 13 shows the corresponding 
absolute error due to the difference in the reference and 
the actual values.

The robotic arm tracked the desired angles well both 
in the steady state (Fig. 11) and transient (Fig. 12) periods. 
The maximum absolute error in both axes is less than 0.5 
degrees (Fig. 13).

Figure 9. The Zoomed Version of the Desired and Achieved Attitude 
of the Quadrotor

Figure 10. The Absolute Error Between the Desired and Achieved 
Attitude of the Quadrotor

Figure 11. The Desired and Achieved Joint Angles of the Robotic Arm

Figure 12. The Zoomed Version of the Desired and Achieved Joint 
Angles of the Robotic Arm

Figure 13. The Absolute Error Between the Desired and Achieved Joint 
Angles of the Robotic Arm
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The quadrotor is affected from this action slightly, but it is 
suppressed by position controllers. Finally, the disturbance 
forces are applied to the end-effector of the serial manipula-
tor at 25 seconds as shown in Fig. 5. The quadrotor deviates 
from its original position, but it comes to the reference posi-
tion very fast with the action of the controllers. The attitude 
controllers tilt the quadrotor to balance these multi-directi-
onal forces as illustrated. Thus, it has nonzero roll and pitch 
angles as illustrated in Fig. 9 after the disturbance forces are 
applied. The joint controllers deal with these disturbances 
very effectively.

To sum up, the controllers’ performances are tested 
with the coupled reference commands and disturbance 
forces. The performance of the controllers is found to be 
satisfactory.

As a future work, the sensor models of the accelerome-
ter, gyro, and the indoor localization system will be imple-
mented into simulation environment. Then, the gains of the 
controllers will be updated. Finally, we plan to implement 
the developed controller algorithms in a real system.
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