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In recent years due to the limited production and 
lifetime of fossil resources on earth, and their ef-

fects on the health of organisms and climate, aware-
ness of renewable energy resources like geothermal 
energy has increased worldwide. Considering the is-
sues mentioned in terms of Turkey, the importance 
of geothermal energy as renewable energy is obvious. 
Geothermal energy is a clean, safe and reliable source 
of renewable energy [1]. Generally high temperature 
resources (T>150 °C) are used for electricity produc-
tion, while moderate (90 °C<T<150 °C) and low (T<90 

°C) temperature resources are used in more direct use 
areas. In recent times, very low temperature resour-
ces (T<35 °C) have been used in heat pump applica-
tions. The situation in Turkey is that moderate and 
high temperature resources and, due to the large 
profit margin, electricity production from these reso-
urces are chosen more often compared to other uses. 
The results clearly show that the installed power from 
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geothermal energy in Turkey has risen from 624 MW 
in 2015 to 821 MW in 2016. According to the Turkish 
Energy Atlas, Turkey contains 32 geothermal power 
plants (GPPs) with a total installed power of 921.5 
MW and this is corresponding to 1.2% of the 78497.4 
MW installed power in Turkey at the end of 2016 [2].

Currently with advanced level development of 
GPPs, the total geothermal installed power globally has 
reached 12640 MW [3]. This installed power comprises 
5079 MW from single flash cycle, 2863 MW from dry 
steam, 2544 MW from double flash, 1790 MW from bi-
nary, 182 MW from triple flash and 181 MW from back-
pressure cycle and hybrid cycle. However, in Turkey 198 
MW of the installed power comes from binary cycle, 178 
MW from double flash and 20 MW from single flash [3]. 
In Turkey it appears that binary organic Rankine cycle 
(ORC) are used more often than the other cycles. As a 
result, the design of a power plant is often a function 

A B S T R A C T

For engineering applications related to techniques that optimize power plants or ther-
mal systems, optimization techniques are very important. Power plants with wasted 

geothermal resources and inefficient organic Rankine cycle (ORC) attract the attention 
of researchers, engineers and decision-makers. In this study, the pressure and mass f low 
rates on turbine lines are optimized to maximize exergy efficiency in a binary ORC geo-
thermal power plant (GPP). With this aim, initially data collected from a real operating 
GPP are used to simulate the system. Then an artificial bee colony (ABC) algorithm is 
developed for this model. The results showed that, the total exergy efficiency of the system 
was 35.25% while its value increased with the ABC optimization in the maximum possible 
exergy efficiency of 38.45%. Optimizing the turbine lines in the system ensured improve-
ment rate of 4-6% for the turbines. As a result, the thermodynamic performance of the 
system is estimated at the same moment and with reasonable accuracy, it can be ensured 
that the physical process used for improvements is better understood.
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However, in the literature there are very few optimiza-
tion studies for ORC cycles used with geothermal resources. 
Clarke et al. [12] compared the performance of a genetic 
algorithm (GA) with that of a particle swarm optimization 
(PSO) for constrained, nonlinear, simulation-based optimi-
zation of a double flash GPP. Another study by Clarke and 
McLeskey Jr. [13] used a PSO with Pareto-optimal set to de-
termine the optimum use of a super heater and/or recupera-
tor for a binary GPP at environmental and geothermal fluid 
temperatures. Saffari et al. [14] used an ABC optimization 
algorithm to optimize the thermal efficiency of a binary tur-
bine based Kalina cycle with low-temperature. Additionally, 
the study researched the effects of separator input pressure 
and temperature, basic ammonia mass fraction and basic 
mass flow rate of working fluid on net power output and 
thermal efficiency of the cycle. Another study by Saffari et al. 
[15] compared the ABC, GA, PSO and differential evolution 
(DE) methods for the thermodynamic performance of the
Husaviv power plant with geothermal Kalina cycle. They
reported that ABC was more useful compared to the other
methods. Proctor et al. [16] used the VMGSim simulation
program to develop a dynamic model for a flash ORC GPP
in New Zealand and confirmed it with real data from the po-
wer plant. Li et al. [17] performed an off-design performance 
analysis for a geothermal resource-based Kalina cycle with
a thermodynamic platform (developed by Matlab and NIST 
Refprop). They used GA to maximize the net output power
and to determine the thermodynamic parameters in the de-
sign stage. Wu et al. [18] optimized the thermodynamic per-
formance of a GPP with trans critic ORC using CO2-based
binary zeotropic mixtures. They optimized the thermody-
namic performance of the system using the pattern search
algorithm (PSA) for 6 refrigerant mixtures in which CO2 co-
uld be added. Thermodynamic and economic analyses were 
also completed.

As can be seen in the above literature review, the ar-
tificial bee colony (ABC) algorithm has not been used for 
optimization of parameters (pressure and mass flow rate) 
on system turbine lines to maximize exergy efficiency of a 
binary GPP. Additionally, the effects of the turbine line on 
other components of the system have not been researched. 
In this study, these original issues mentioned have been 
addressed. Firstly, the thermodynamic performance of the 
system and its components are assessed with exergy analy-
sis. Then the parameters on the turbine line of the system 
are optimized with the ABC algorithm to maximize the 
thermodynamic performance of the system.

DESCRIPTION OF THE SYSTEM

As illustrated in Fig. 1, a geothermal power plant (GPP) 
with installed power of 24 MW operates in compliance 
with an air-cooled binary geothermal organic Rankine 

of the temperature and pressure of the existing geothermal 
resource. Thus, to meet the increasing electricity demands 
globally and in Turkey, geothermal power continues to de-
velop while engineers and policy makers desire data about 
feasibility and optimum design of GPPs within a spectrum 
of geothermal resource conditions and climates. Because of 
this reason, there is a need for scientifically prepared design, 
analysis and optimization guidelines.

After the petrol crisis occurring in the 1970s, it was un-
derstood that energy analysis alone did not determine how 
effectively energy is used. Thus, exergy analyses began to 
gain significant importance. İleri and Gürer [4] brought the 
energy use in addition to exergy use in Turkey up to 1995 to 
the agenda. The results of their study revealed how ineffici-
ent an apparently efficient system is when exergy analysis is 
completed.

When the literature about thermodynamic modelling 
and optimization of ORC is scanned, the following studies 
are found. To assess system performance, Wei et al. [5] pre-
sented a dynamic model to be used for design of an ORC 
system using waste heat recovery (WHR) with HFC-245fa 
as working fluid. The simulation software for this dynamic 
model was developed based on the platform of Modelica/
Dymola. When the ambient temperature was too high, they 
concluded that net power and efficiency of the system dete-
riorated. Another study by Wei et al. [6] compared two mo-
del approaches based on moving boundaries and discretiza-
tion techniques on the model developed for the same system 
under accuracy, complexity and simulation speed parame-
ters. Rashidi et al. [7] conducted an optimization process for 
regenerative ORC with two feed water heaters for exergy ef-
ficiency and specific work by using artificial neural network 
(ANN) and artificial bee colony (ABC) algorithms. Sun et al. 
[8] proposed an ROSENB optimization algorithm to maxi-
mize the net power generation or the thermal efficiency of
an ORC power plant with WHR. The effects of mass flow
rates of working fluid and air-cooled condenser fans and
inlet pressure of expander on thermal efficiency and net po-
wer generation of the system were investigated. Zhang et al.
[9] recommended a multivariate control strategy for ORCs
with WHR by combining a PI controller with a linear quad-
ratic regulator to ensure both temporary performance and
stable state energy saving. Bamgbopa and Uzgoren [10,11]
developed a strategy using a finite volume approach to set
evaporator flow rates to ensure stable working of a solar
ORC power plant. Both stable and temporary models were
developed for the system components (as pump, evaporator, 
expander and condenser). The model compared reasonable
benchmarking numerical and experimental data in situ-
ations where the thermal inputs of the basic assumptions
changed over time. The critical component of the system
was determined to be the evaporator.
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MASS, ENERGY AND EXERGY 
ANALYSES

For thermodynamic modelling of a binary GPP with 
ORC, the following assumptions were used in the study:

•	 Steady-state and steady-flow conditions are used.
• Potential and kinetic energy changes are negligib-

le.
•	 Heat losses of system components are negligible.
•	 Pressure loss in valves and pipes is negligible.
•	 The thermodynamic properties of water are used

in place of geothermal fluid properties.
•	 The air is accepted as an ideal gas.

cycle (ORC). In the GPP, to ensure mixing of the arte-
sian geothermal fluid obtained from production wells, a 
vertical separator in each wellhead separates two phases 
as geothermal fluid and steam. From the separators, first 
30% NCG (non-condensable gases) and nearly 70% geot-
hermal fluid steam is obtained. Then liquid geothermal 
fluid is obtained from the separators.

As seen in Fig. 1, this section is outside the scope of the 
study, which only includes the power plant section. Binary 
ORC consists of two classic Rankine cycles that are side by 
side and different from each other. The first cycle with 160 
kg/s is called level I (high pressure), while the second cycle 
with 196 kg/s is called level II (low pressure). The liquid ge-
othermal fluid first passes through level I and then level II. 
However, due to the low temperature and pressure, the geot-
hermal fluid steam produced from the separators is passed 
to level II. The geothermal fluid from both levels is pumped 
to re-injection wells. In both separate ORC levels, pentane 
as organic working fluid is used. In level I, different to level 
II, a recuperator is used to reduce the effect of the high tem-
perature from the turbine output on the condenser.

Additionally, the turbines in levels I and II balance the 
generator in a certain cycle. Some of the electricity produ-
ced by the GPP is used to sustain the system, while the rest 
of generated electricity is transmitted to switchyard and to 
the interconnected power lines. In this study, the real opera-
tional data of temperature, pressure and mass flow rates for 
exergy analysis and optimization processes were collected 
from a GPP belonging to Maren Geothermal Inc. on 14 Ap-
ril 2013. The operating data belonging to the GPP on this 
date are listed in Table 1.

Figure 1. Schematic flow diagram of a geothermal power plant

Table 1. The thermodynamics variables for line numbers on the system 
flow diagram illustrated in Fig. 1.

Line, i T (i) [°C] P (i) [kPa] m  (i) [kg/s] Ėx (i) [kW]

0 25 101

1 164 1040 445 47507

1’ 165 1040 5.83 631

1’ 165 1040 2.50 382

2 136 730 445 31701

3 110 690 445 19174

4 110 690 222.50 9587

5 110 690 222.50 9587

6 89 590 222.50 5681

7 81 570 222.50 4423

8 85 590 445 9910

9 107 690 0.83 34

10 107 690 5.25 214

10 107 690 2.25 259

11 105 1261 160 4080

12 137 1261 160 18508

13 82 150 160 5581

14 60 150 160 4675

15 31 150 160 89

16 37 1261 160 388

17 55 1261 160 855

18 106 687 169 4270

19 109 687 169 14859

20 69 119 169 4013

21 33 119 169 117

22 39 687 169 278

23 18 101 2000 0

24 19 106 2000 8238

25 18 101 2000 0

26 19 106 2000 8238
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• In condensers the air has homogeneous distribu-
tion.

• Isentropic efficiencies of turbines, pumps and
fans are fixed for the thermodynamic model and optimiza-
tion process. In Level I and II, the values are 0.92 and 0.81 for 
turbines, and 0.96 and 0.97 for pumps, respectively.

•	 For level I and II, the effectiveness of vaporizers is 
0.82 and 0.88, respectively.

•	 For level I and II, the effectiveness of preheaters is 
0.92 and 0.95, respectively.

•	 For level I and II, the effectiveness of condensers is 
0.68 and 0.75, respectively.

• The effectiveness of the recuperator is 0.49 for
only level I.

•	 The reference state temperature and pressure are
taken to be 25 °C and 101.325 kPa, respectively.

For a system, in general the mass, energy and exergy 
balances express as follows.

0out inm m− =∑ ∑    (1)

out out in inQ W m h m h− = −∑ ∑ 

  (2)

01 k in in out out
k

TI Q W m m
T

ψ ψ
 

= − − + − 
 

∑ ∑ ∑ 

            (3)

where m , Q , W , h and İ denote the mass flow rate, 
heat rate, work rate, specific enthalpy and exergy destructi-
on, respectively. kQ  is the heat transfer rate crossing the bo-
undary at temperature Tk at location k. The subscript 0 indi-
cates properties at the restricted dead state of P0 and T0, and  
ψ  is the specific flow exergy as expressed below:

0 0 0( ) ( )h h T s sψ = − − − (4)

where s denotes the entropy.

Using the data listed in Table 1, the above-mentioned 
assumptions and thermodynamic balance equations, a code 
is developed on the MATLAB program [19] platform. The 
thermodynamic properties of water, air and n-pentane in 
the developed code are provided by the COOLPROP prog-
ram [20,21]. In the literature, there are many studies on 
thermodynamic modelling of binary GPP with ORC [22-
25]. However, for the sake of simplicity, the thermodynamic 
balance equations at the component level used in the ther-
modynamic model of the system are not given in the text.

ARTIFICIAL BEE COLONY AS 
OPTIMIZATION ALGORITHM

Optimization algorithms are used in the majority of 
energy system applications. In this study, the artificial 
bee colony (ABC) developed by Karaboğa [26] to deter-
mine the optimum exergy efficiency of a thermal system 

is used. This optimization algorithm simulates the in-
telligent food search behavior of bee colonies [27]. Thus, 
it attempts to iteratively find the point providing the 
problem’s minimum or maximum solution in space. As 
an optimization method for the majority of multi modal/
dimensional and multipurpose problems, the ABC algo-
rithm contains fewer control parameters and provides 
better or equal performance than other optimization 
methods [14,15,28,29].

The optimization process of the ABC algorithm comp-
rises the following steps [27,30-32]:

1. It occurs by generating a random value between
the upper and lower limits of each parameter using Eq. (5). 
In this situation the ABC algorithm randomly produces the 
first solutions to the problem. Random values are produced 
between the lower and upper limits for each parameter as in 
the follow.

( )( )min max min 1,...,
0,1

1,...,ij j j j

i SN
x x rand x x

j D
=

= + −  =
 (5)

where SN and D denote the food sources number and 
the parameters number to be optimized, respectively.

2. After finding food sources, worker bees then be-
gin to carry nectar to the hive. The number of worker bees 
assigned represents the cost function (fi=f(xi)) of each (xi) 
solution. A fitness value (fit) is calculated for the solution to 
the problem within the limits as given in:

1 , 0
1
1 , 0

i
ii

i i

f
ffit
f f

 ≥ += 
 + <

(6)

3. Then each worker bee provides information to
observer bees about the state of the food source (is the food 
source abundant or is a new source needed). This informa-
tion is provided through dance displayed in the dance area 
[33]. In the basic ABC algorithm, this is fulfilled using a rou-
lette wheel selection process linked to the fit value [34]. This 
is presented in the below.

1

i
i SN

ii

fitp
fit

=

=
∑

(7)

4. If the source is consumed, the explorer bee is di-
rected to search for a new source. The worker bee determi-
nes a new food source near the food source it is working and 
assesses its quality. The new source is stored in memory if 
the new source is better. The simulation of determination of 
new sources adjacent to current sources is given by

( ) 1,2,...,
1,2,...,ij ij ij ij kj

j SN
v x x x

k SN
φ

=
= + −  =

(8)
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where φ is a random number in range of [-1,1] and j≠k. 
The difference between the random values of xij and xkj 
decreases; in this instance, solutions become more similar. 
Therefore, the amount of variation in the xij parameter di-
minishes. A greedy selection process is applied related to the 
nectar amounts of xi and vi as the fit value [34]. The nectar 
amount from the new vi solution is higher than the previous 
amount (xi), thus the old one is deleted from the memory of 
the worker bee, and the newly vi source is stored.

5. In the ABC algorithm, a repetitive optimization
process continues until the required solution is obtained.

The parameters used in the ABC algorithm are listed 
in Table 2. In Table 2, the optimized number of parameters 
(D) is 1 and the single target function is the total exergy ef-
ficiency of the system. Within these parameters, there are a 
total of 4 decision variable parameters of the 2 turbine out-
put pressures on the turbine line and the 2 mass flow rates
for the working fluid on level I and level II. The minimum
and maximum limits for these decision variables are pre-
sented in Table 2. The ABC algorithm parameters for the
optimization process are set to the parameters in Table 2. In 
conclusion, an attempt was made to find appropriate results 
by repeating each optimization process at least once.

In thermodynamic evaluation (ExA), the exergy effi-
ciency in system and component levels can respectively be 
expressed as

,

1 sys
sys

in sys

I
Ex

ε = −




 (single objective function)	             (9)

and

,

1 k
k

in k

I
Ex

ε = −




(10)

In the optimization process (ABC algorithm), the ma-
ximum possible exergy efficiency in system and component 
levels can respectively be given as

,min
max ,

,

1 sys
possible sys

in sys

I
Ex

ε = −




(11)

and

,min
max ,

,

1 k
possible k

in k

I
Ex

ε = −




(12)

RESULTS AND DISCUSSION
Primarily, exergy analysis (ExA) is considered to assess 
the effect of the turbines on maximum exergy efficiency 
in a binary GPP system. The results obtained from exergy 
analysis are listed in Table 3. Regarding Table 3, nearly 
17101 kW of the total exergy input into the system is the 
exergy destruction rate due to components in the whole 
system. The highest exergy destruction rate in the system 
occurs in condenser CON 2 with 3342 kW. This is follo-
wed by condenser CON 1, vaporizer VAP 2 and turbine 
TURB 2 with 3251 kW, 2443 kW and 1840 kW, respecti-
vely. The exergy destruction rate for turbine TURB 1 is 
calculated as 871 kW. The components mentioned above 
are the components that require priority improvement 
to maximize the performance of the system. As can be 
seen in Table 3, the total exergy efficiency of the system is 
35.25%. This value is the single objective function chosen 
for the optimization process.

The artificial bee colony (ABC) algorithm is used to 
maximize the total exergy efficiency of the system. Therefo-
re, the real and optimum values for the selected decision 
variables along the two turbine lines are given in Table 4. It 
can be observed from Table 4 that the collected values for 
output pressure from the turbines are close to the optimum 
values, while the mass flow rates collected from the turbine 

Table 2. The parameters of the ABC algorithm.

Parameters Symbol Unit
Value or 
Constraint 

range
Number of colony size NP 20

Number of food sources Food number 20
Food source which could not be improved 

though trials Limit 100

Number of cycles for foraging Max cycle 100
Number of parameters to be optimized 

(for single objective) D 1

Turbine outlet pressure at level I  P13 kPa 159.6–161.6

Turbine outlet pressure at level II P20 kPa 167–172

Mass flow rate of n-pentane at level I
12m kg/s 115–185

Mass flow rate of n-pentane at level II
19m kg/s 90–150

Table 3. The exergetic variables for the system and its components.

Component, k İ (k) [kW] ε (sys) [%]

Level I

PRE-HE 1 681.90

VAP 1 1378.46

TURB 1 871.37

RECUP 438.10

CON 1 3251.48

PU 1 611.68

Level II

PRE-HE 2 1171.77

VAP 2 2443.01

TURB 2 1840.19

CON 2 3342.00

PU 2 1070.67

Overall system, sys 17100.63 17100.63
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lines are distant from the optimum values. For example, the 
collected value for 19m  was 119 kg/s, while the optimized 
value was nearly 149 kg/s. As a result, if the decision variab-
les can reach the optimum values, the exergy efficiency of 
the whole system will reach maximum.

The convergence behavior of the ABC algorithm du-
ring the maximizing process (optimization) of the exergy 
efficiency of the system is shown in Fig. 2. Regarding Fig. 2, 
the total exergy efficiency of the system is maximized in the 
third cycle. As seen on Fig. 3, the total exergy efficiency of 
the system is 35.25%. The results of optimization process 
with the ABC algorithm can increase this value to 38.45%. 
This value is called as the maximum possible exergy effici-
ency (εmax possible).

For the exergy analysis and the ABC algorithm, the 
changes of exergy destruction rates of system components 
in the GPP are presented in Fig. 4. From Fig. 4, on the route 
to maximize the total exergy efficiency, the exergy destruc-
tion results for system components with ABC optimization 
completed for decision variables chosen on the turbine line 
is observed to lower the exergy analysis results even further. 
As seen on Fig. 4, condensers CON 1 and CON 2 have hig-
hest exergy destruction rates. These values are 3342 kW and 
3251 kW, respectively, while after the optimization process 
these values may be lowered to 2535 kW and 1675 kW. Addi-
tionally, these are the components with greatest reductions 
among system components of 24% and 48%, respectively. 
However, the result of the optimization process causes a 21% 
increase in the exergy destruction rate due to the recupera-
tor RECUP. The effects of the optimization process on other 
system components may be observed.

Referring to Fig. 5, the exergy destruction rates for tur-
bines TURB 1 and TURB 2 are 871 kW and 1840 kW, res-
pectively, while these values could only be optimized by 6% 
and 4% (816 kW and 1773 kW). With the ABC optimization 
process, the exergy destruction rates from turbines are re-
duced though by a small value, as clearly seen on Fig. 5.

Fig. 6 shows the variation in maximum possible exergy 
efficiency for system components obtained from the ABC 
optimization process. As seen on the figure, when the ABC 
optimization process is completed, the exergy efficiency 
values for all system components are high, apart from the 

Figure 2. Convergence behavior of the ABC algorithm for optimization 
process

Table 4. The collected and optimized values of the decision variables for 
the turbine lines.

Decision variables Collected 
value

Optimum 
value

P13 - Turbine outlet pressure at level I   160 159.96

P20 - Turbine outlet pressure at level II 169 167.73

12m  - Mass flow rate of n-pentane at level I 150 161.20

19m  - Mass flow rate of n-pentane at level II 119 148.54

Figure 3. Total system exergy efficiency for the ExA and ABC methods

Figure 4. Changes in exergy destruction rate of the system components

Figure 5. Changes in exergy destruction rate of the turbines in level 
I and II
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recuperator. This means that optimization processes comp-
leted on the turbine lines in the system will only produce 
maximum possible exergy efficiency for system compo-
nents. As observed on Fig. 6, the greatest increase in exergy 
efficiency occurs in the condensers with 31% for CON 2 and 
30% for CON 1. However, there is a 14% reduction in exergy 
efficiency observed for the recuperator RECUP. In Fig. 7, the 
variation in exergy efficiency of the turbines on level I and 
II is given. While the exergy efficiency for turbines TURB 1 
and TURB 2 were 93.26% and 83.03%, respectively, after op-
timization of the system turbine lines the maximum possib-
le exergy efficiencies were observed to be 93.45% and 83.47%.

Finally, to maximize the total exergy efficiency of a bi-
nary GPP, the mass flow rates and turbine output pressures 
for the working fluid are optimized on level I and level II. 
The results of the optimization process found that the flow 
rates and turbine output pressures in the cycle levels should 
be larger than the operating system values.

CONCLUSION

In this study, the artificial bee colony (ABC) algorithm is 
used to maximize the total exergy efficiency of a binary 
GPP with ORC. For the optimization process, decision 
variables on the turbine lines of level I and II of the system 
are used. These variables are mass flow rate and the tur-
bine output pressure of the working fluid on the turbine 
lines. The results of the study show that the total exergy 
efficiency and maximum possible exergy efficiency of 

the system were 35.25% and 38.45%, respectively. While 
the total exergy destruction rate for system components 
was 17101 kW, with the ABC algorithm this value could 
be lowered to 14227 kW. As a difference of these values, 
more exergy may be produced at 2874 kW. While imp-
roving system components, the system components with 
greatest optimization possible are the condensers CON 2 
and CON 1. Optimizing the turbine lines in the system 
with the ABC optimization algorithm ensures improve-
ment rates of 4-6% for the turbines. Thus, the rotational 
imbalances that occur in the connection of two turbines 
to the generator with the same shaft in binary cycles and 
the quality of steam content at the turbine outlet to pre-
vent corrosion in turbine blades may be improved. Finally, 
the ABC optimization method can provide higher quality 
information than the exergy analysis.
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NOMENCLATURE

D		 number of parameters to be optimized 
(-)

Ėx		 exergy rate (kW)
f		 cost function (-)
fit		 fitness value (-)
h		 specific enthalpy (kJ/kg)
İ		 exergy destruction (kW)
m mass flow rate (kg/s)
NP		 number of colony size (-)
P		 pressure (kPa)
Q heat transfer rate (kW)
s		 specific entropy (kJ/kgK)
SN		 number of food sources (-)
T		 temperature (°C or K)
W work rate, power (kW)

Greek symbols

ε		 exergy or second law efficiency (%)
φ		 random number [-1,1]
ψ		 flow exergy (kJ/kg)

Subscripts

in		  input
min		  minimum
out		 output
sys		  system
0		 reference state

Figure 6. Changes in exergy efficiency of the system components

Figure 7. Changes in exergy efficiency of the turbines in level I and II
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Abbreviations

ABC		 artificial bee colony
ANN	 artificial neural network
ExA		 exergy analysis
CON	 condenser
GPP		 geothermal power plant
NCG	 non-condensable gases
ORC		 organic Rankine cycle
PRE-HE	 preheater
PU		  pump
RECUP	 recuperator
TURB	 turbine
VAP		 vaporizer
WHR	 waste heat recovery
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