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Probability distributions are the basic tools of sta-
tistics and statistical inference. One of the main 

problems of mathematical statistics is finding a mea-
sure to distinguish one probability distribution from 
another. Moreover, in statistical inference a proba-
bility distribution is chosen from a set of candidates. 
This immediately brings up the question of what wo-
uld happen if a neighbor distribution is selected. One 
way to answer such questions is to introduce a notion 
of ”distance” between probability distributions.

Information theory originated in 1940’s by Shan-
non, [25]. The earliest ideas of combining statistics and 
differential geometry goes back 1945’s to Rao and Jeff-
reys [12, 23] who used independently Fisher information 
as a Riemannian metric. However, it was by Efron that 
the role of differential geometry started to play an im-

portant role in statistics. He defined the statistical cur-
vature for one-parameter statistical models in 1975, [11]. 
However, in Efron’s work tools of differential geometry 
was not used elaborately. The first step to use elegant 
differential geometry in the context of statistics was by 
Dawid, [10]. By using the notion of statistical curvature, 
he defined e-connection (exponential connection) on 
the space of positive probability distributions. Moreover, 
he also showed that on this space different connections 
may be defined. The (0)-connection (Levi Civita) and  
(m)-connection (mixture connection) of the Fisher met-
ric were the examples. Since the space of positive proba-
bility distributions is infinite dimensional, it is not easy 
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to see this space as a manifold. Amari [2] in 1980’s used 
tools of modern differential geometry and developed a 
systematic method to investigate informational theore-
tical concepts by taking projection of Efron’s model into 
finite dimensional models. He and Nagaoka considered  
(e)-connection and (m)-connection as a pair of dual con-
nections which will later be on the center of information 
geometry, [4]. Actually, Chentsov [7] had already been 
defined (α )-connections from a different viewpoint, 
however, the article was in Russian and their relations-
hip with statistical estimation was omit- ted in the artic-
le. Hence, his contributions are not well-known among 
statisticians. The standard references to get familiar 
with information geometry are [1, 2, 3, 4, 8, 14, 19,  and 
26].

Throughout this paper the close relationship bet-
ween statistical models and differential geometry, in 
particular affine differential geometry is emphasized. 
Most of the times, different schools of geometry pre-
fer to use different terminology for the same concepts 
which cause confusion for those that are not much fa-
miliar with the field. Therefore, such cases are highligh-
ted and nuances is also tried to be explained, as well.

STATISTICAL MODELS

The probability distributions on a set will be repre-
sented as follows: If χ  is a discrete set (with finite or 

A B S T R A C T

Information geometry is a modern differential geometric approach to statistics, in par-
ticular theory of information. The main motivation for this expository survey article 

is the lack of compact material that mainly address to mathematical audience because 
of the interdisciplinary content. Information geometry simply described as applying the 
techniques of differential geometry to statistical models, represented as manifolds of prob-
ability distributions. This can be done either done by putting the concept of divergences on 
the center or the Fisher metric. This paper is motivated from the latter approach.
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•	 Poisson Distribution
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KAHLER AFFINE MANIFOLDS, 
STATISTICAL MANIFOLDS AND 
DUALLY FLAT STRUCTURES

An affine manifold is a differential manifold whose coor-
dinate changes are affine transformations which imme-
diately give rise to existence of a torsion-free connection 
with vanishing curvature. Note that affine transformati-
ons are made up of a linear transformation followed by a 
translation. Since an affine manifold is a differentiable 
manifold with affine charts one may define a two tensor   

2
i j

ij i j
Fg dx dx

x x
∂

= ⊗
∂ ∂

 where ϕ  is a strictly convex function. 
Thus, g is symmetric and positive definite. Hence, it is a 
Riemannian metric on M which will be called a Kahler 
affine metric. Note that the coefficients of the metric ten-
sor g is invariant under affine transformations, [15, 16]. 
Such structures are first introduced by Cheng and Yau, 
[6]. Kahler affine metrics are called Hessian metrics by 
Japanese school due to the fact that gij is the Hessian of a 
convex local potential F, [26].

An affine manifold equipped with a Kahler affine met-
ric is called a Kahler affine manifold. One may recover du-
ally flat connections from this structure. Conversely, given 
mutually flat connections one may obtain local potential 
functions. The flat affine connection D  and its dual *D  are 
called dually flat connections with respect to the Kahler af-
fine metric g. In other words, for all vector fields X,Y on M, 

*( , ) ( , ) ( , ).X XXg Y Z g D Y Z g Y D Z= +  On the other hand, a sta-
tistical manifold is simply a Riemannian manifold (M,g) to-
gether with two torsion free connections ∇  and *∇  that 
satisfies a duality relation with respect to the Riemannian 
metric . Two torsion free connections ∇  and *∇  are called 
dual to each other with respect to a Riemannian metric g if

 

countably infinite cardinality), then a probability distri-
bution on χ  is a function :P χ →  which satisfies.

( ) 0,p x x χ≥ ∀ ∈     and    ( ) 1
x

p x
χ∈

=∑                        (2.1)

If nχ =   then it is a function :P χ →  which satisfies

( ) 0,p x x χ≥ ∀ ∈     and    ( ) 1.p x dx =∫                        (2.2)

Consider a family S  of probability distributions on   χ
Suppose that each element of S  , a probability distribution, 
may be parametrized using an n real-valued variables 

1,..., nξ ξ    so that

{ }1( ; ) | ,..., nS p p xξ ξ ξ ξ ξ = = = ∈Ξ 

where Ξ  is a subset of n
  and the mapping pξξ →  is 

injective. Such S   is called an n-dimensional statistical mo-
del, a parametric model, or simply a model on χ . Assump-
tions that we made on statistical models are:

•	 We may freely differentiate with respect to the pa-
rameters. Assume that Ξ  is an open subset of n

  and 
x∀ ∈Ξ  the function ξ →  is C∞ .

• The order of integration and the differentiation
may freely be rearranged. For instance,

( ; ) ( ; ) 1 0.i i ip x dx p x dxξ ξ∂ = ∂ = ∂ =∫ ∫

where .i iξ
∂

∂ =
∂

•	 The model S  is a subset of

{ }( ) : | ( ) 0, ( ) 1 .P p p x x and p x dxχ χ χ= → > ∀ ∈ =∫

Some Examples of Statistical Models

•	 Normal Distribution

[ ] [ ]{ }, 2, , , , | ,nχ ξ µ σ µ σ µ σ += = = Ξ = ∈ ∈  

2

2

1 ( )( , ) exp
22

xp x µξ
σπσ

 −
= − 

 

•	 Multivariate Normal Distribution

[ ]( 1), , ,
2

k k kn kχ ξ µ+
= = + = Σ

[ ]{ , | , :  }k k k positive definiteµ µ ×Ξ = Σ ∈ Σ∈ 

{ }2 1 2 1( ; ) (2 ) (det ) exp ( ) ( )n tp x x xξ π µ µ− − −= Σ − − Σ −
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The dual affine coordinate θ  is

,j iθ ϕ= ∂          (3.6)

and so also

.ij i jg θ= ∂ (3.7)

The corresponding local potential function can be cal-
culated by a Legendre transform

( ) max( ( )), ( ) ( ) . 0,i
ix

x x x xφ θ θ ϕ ϕ φ θ ξ= − + − =   (3.8)

and

( ), ( ).
j

j j ij i j

i

xx gφ θ φ θ
θ
∂

= ∂ = = ∂ ∂
∂

(3.9)

Therefore, a Kahler affine metric together with the flat 
affine connection yields a dual structure. Such structures 
constitutes the foundations of the information geometry. 
Conversely, from such a dually flat structure, the local po-
tential functions or the Kahler affine structure can be obta-
ined. Let (1)D = ∇  and * ( 1)D −= ∇  be dually flat connections 
and let { }1,..., nx x  be the affine coordinates that is obtained
from the flat connection D.

Hence, the vector fields i ix
∂

∂ =
∂

 are parallel. We define 
j∂

1
( , )

0
j j

i i

i j
g

i j
δ

=
∂ ∂ = =  ≠

and for every vector field X
*

,( ) ( , ) ( , ).j j j
i X i i XXg g D g D∂ ∂ = ∂ ∂ + ∂ ∂

i∂  is parallel for D so is j∂  for *D . Since *D  is torsion 

free, , 0j k ∂ ∂ =   for all j,k. Hence, the affine coordinates jθ

where j

jθ
∂

∂ =
∂

 is obtained.

Note that, when passing from x-coordinates to θ -co-
ordinates i∂  transforms contravariantly, whereas j∂  trans-
forms covariantly. The transformation rule between x and   
θ  coordinates is given by ( )j j i

ix∂ = ∂ ∂  and ( ) .j
i i jθ∂ = ∂ ∂  In 

the following sequel the metric tensor g in x and θ -coordi-

nates will be calculated. Since : ( , ),ij i jg g= ∂ ∂  ( , )ij i jg g= ∂ ∂  

and ( , )j j
i ig δ∂ ∂ =

j
ij ig

x
θ∂

=
∂

.
i

ij

j

xg
θ
∂

=
∂

for  all  vector  fields  X,Y on M, *( , ) ( , ) ( , ).X XXg Y Z g Y Z g Y Z= ∇ + ∇  
If *∇ =∇  the geometry reduces to the Riemannian one. One 
may refer to the works of Lauritzen, Kurose and Noguchi  
[19, 17, 22]  for a detailed study of statistical manifolds. There 
is a close relationship between the statistical manifolds and 
Kahler affine manifolds. It can be seen from definitions that 
every Kahler affine manifold is a statistical manifold. Howe-
ver, not all statistical manifolds are Kahler affine. Consider    

n
 with is standard affine coordinate system { }1,..., nx x  and 

let D be the canonical flat affine connection, i.e., 0.
i

j
x

D
x∂

∂

∂
=

∂
Let nΩ⊂   be a domain and let ϕ  be a strictly convex func-

tion on .Ω .With the Kahler affine metric 
2

,i j
i jg dx dx

x x
ϕ∂

=
∂ ∂

the triple ( , , )D gΩ  is a Kahler affine manifold. This triple is 
a flat statistical manifold. Conversely a flat statistical mani-
fold is locally isometric to the Kahler affine manifold 
( , , ).D gΩ  

The α -Connection

Let M be a Kahler affine manifold for 1 1α− ≤ ≤  the α
-Connection is defined by

( ) (0)

2ijk ijk i j k
α α ϕΓ = Γ − ∂ ∂ ∂ (3.1)

where the Levi-Civita connection of g is denoted by  
(0)
ijkΓ  and

(0) (0) , .
i

ijk j k
x x x∂

∂

∂ ∂
Γ ∇

∂ ∂
(3.2)

From (3.1) and (3.2)

(0) 1 ,
2ijk i j kϕΓ = ∂ ∂ ∂     (3.3)

and

( ) 1 (1 ) .
2ijk i j k

α α ϕΓ = − ∂ ∂ ∂               (3.4)

Since 3.4 is symmetric with respect to i and j, ( )α∇  is 
torsion free. Moreover,

( ) ( ) (0) ( )2 ,ijk ijk ijk
α α α−Γ + Γ = Γ ∇  and ( )α−∇ ) is dual to each othei 

with respect to g. In other words, for all vector fields X,Y,Z 

( ) ( )( , ) ( , ) ( , ).Z ZZg X Y g X Y g X Yα α−= ∇ + ∇                      (3.5)

Since (1) (1)0,ijkΓ = ∇  defines a flat structure and 
x-coordinates are an affine coordinate system for (1).∇  The-
refore, the connection ( 1)−∇  is dual to the connection (1)∇

and its Christoffel symbols in x-coordinates is of the form

( 1) .ijk i j kϕ
−Γ = ∂ ∂ ∂
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We would like to find the local potential functions 
( )xϕ  and ( )φ θ  that satisfy ( ),i i xθ ϕ= ∂  ( ).i ix φ θ= ∂  The first 

equation can be solved locally if i j j iθ θ∂ = ∂  using the fact 
that the metric tensor g is symmetric. Hence, ij i jg ϕ= ∂ ∂  
and ϕ  strictly convex function. : i

ixφ θ ϕ= −  is defined from 
the duality to get

.
j j

i i i
j j

i i

x xx x
x

φ θ ϕ
θ θ
∂ ∂ ∂

∂ = + − =
∂ ∂ ∂

 Since ϕ  and φ  are 

strictly convex functions, they relate to each other by a Le-
gendre transform

( )( ) max ( )i
ix

x xφ θ θ ϕ= − −                                           (3.10)

( )( ) max ( ) .i
ix x

θ
ϕ ξ φ θ= − −                                         (3.11)

Moreover, Christoffel symbols of the metric ijg  in 
x-coordinates are

1 ,
2ijk i

i
j

jk
kϕ−Γ = − ∂ ∂ ∂′Γ = (3.12)

( ) ( ).
2

ijk ijk

i j k ijk

α αα ϕ −′ ′Γ = Γ − ∂ ∂ ∂ = −Γ (3.13)

Consequently, Γ′(1) = −Γ(−1). Hence, −Γ(−1) = 0 in θ -co-
ordinates.

GEOMETRY OF STATISTICAL MODELS

In particular, why differential geometry is useful for sta-
tistics? A statistical model is a set of probability distri-
butions to which we believe that the true distribution 
belongs. It is a subset of all possible probability distri-
butions. One often uses a statistical model to carry out 
statistical inference, assuming that the true distribution 
is in the model. However, the true distribution may not 
be in the model but only close to it. Therefore, in order to 
evaluate statistical inference procedures, it is important 
to know what part the statistical model occupies in the 
entire set of probability distributions and what shape the 
statistical model has in the entire set of models. Hence, 
it is expected that a fundamental role is played in statis-
tics by the geometric quantities such as the distance or 
divergence of two probability distributions, the flatness 
or the curvature of the statistical model. Statistical in-
ference may be carried out more and more precisely as 
the number of observations increases so that one could 
construct a universal asymptotic theory of the statistical 
inference in the regular case. Since the estimated proba-
bility distribution lies very close to the true distribution 
in this case, it is sufficient when evaluating statistical 
procedures to take account of only local structure of the 
model in a small neighborhood of the true or estimated 
distribution. Thus, one can locally linearize the model 
at the true or estimated distribution even if the model is 
curved in the entire set.

Let { }|S pξ ξ= ∈Ξ  be an n-dimensional statistical mo-
del. Given a point ξ , the The Fisher Information Matrix of   
at ξ  is an nxn   matrix ( )ijg ξ    is defined by

( )ij i j i jg E l l l l p dxξ ξ ξ ξ ξ ξξ  = ∂ ∂ = ∂ ∂  ∫ (4.1)

where ( ; ) log ( ; )l l x p xξ ξ ξ= =  and is called log likeliho-
od in statistics. Although there are some models in which 
the above integral diverges, we assume that ijg  is finite for 
all i,j and that :ijg Ξ→  is C∞ . Note that one can write ijg  
as:

( ) .ij i jg E lξ ξξ  = − ∂ ∂         (4.2)

Another important representation is

( ) 4 ( ; ) ( ; ) .ijg p x p x dxξ ξ ξ= ∫       (4.3)

In finite case, it becomes

1
1 .n k k

k i j
k

p p
p ξ ξ=

∂ ∂
Σ

∂ ∂
  (4.4)

which is the Shashahani metric in mathematical bio-
logy, [13, 14]. This is simply the metric obtained on the simp-
lex 1n−Σ  when identifying it with the spherical sector 1nS −

+  
via the map 2p q= , 1nq S −

+∈ . If the second derivatives vanish, 
i.e., if ( ; )p x ξ  is linear in ξ   then

2

1 1
1 log

i
n nk
k k k k ki j i j

k

p p p p
p

ξ
ξ ξ ξ ξ= =

∂ ∂ ∂
Σ = Σ

∂ ∂ ∂ ∂

where 1 logn
k k kp p=Σ  is the entropy. As will be discussed 

later, negative of the entropy is a potential for the metric. 
The Fisher metric then induces a metric on any smooth fa-
mily of probability measures on Ξ . Families of the form

1( ; ) exp( ( ) ( ) ( ))n i
i ip x x f xθ γ θ ϕ θ== + Σ −

where 1( ,..., )nθ θ θ=  is an n-dimensional parameter 
and ( )xγ  and 1( ),..., ( )nf x f x  are functions on Ω  are called 
exponential families. Of course the family is defined only for 
those θ  for which exp( ( ) ( ) ) .i

ix f x dxγ θ+ Σ < ∞∫

Fisher Metric Calculations For Some 
Distributions

Example 1 The normal distribution

The normal distribution 
2

2
1 ( )exp( )

22
x µ
σπσ
−

−  on   with 
parameters µ  and σ  can easily be written in this form 
by putting,

2 1 2
1 2 2 2

1( ) 0, ( ) , ( ) , ,
2

x f x x f x x µγ θ θ
σ σ

= = = = = −

2 1 2

2 2 2

( ) 1( ) log 2 log( ).
2 4 2
µ θ πϕ θ πσ
σ θ θ

= + = − + −
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For an exponential family, we have

2 2

log ( ; ) ( ) ( )

log ( ; ) ( )

ii i

i j i j

p x f x

p x

θ ϕ θ
θ θ

θ ϕ θ
θ θ θ θ

∂ ∂
= −

∂ ∂
∂ ∂

= −
∂ ∂ ∂ ∂

This expression no longer depends on x, but only on the 
parameter θ . Therefore, the Fisher metric on such a family 
is given by

2

2 2

( ) ( log ( ; ))

( ; ) ( )

ij p i j

i j i j

g p E p x

p x dx

θ
θ θ

θ ϕ θ
θ θ θ θ

∂
= − =

∂ ∂
∂ ∂

=
∂ ∂ ∂ ∂∫

For the normal distribution, we compute the metric in 

terms of 1θ  and 2θ , using 
2

( )i j ϕ θ
θ θ
∂

∂ ∂
 and transform the 

result to the variables µ  and σ  to obtain

2 2

1 2( , ) ( , ) 0 ( , ) .g g g
µ µ σ µ σ σ σ σ
∂ ∂ ∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

As the Fisher metric invariant under diffeomorphism 
of ,Ω =   and since x x µ→ −  is such a diffeomorphism, it 
suffices to perform the computation at µ  = 0. The metric 
computed there, however, up to a simple scaling is the 
hyperbolic metric of the half plane

{ }: ( , ); , 0 .H µ σ µ σ= ∈ >

Therefore, the Fisher metric on the family of normal 
distributions is the hyperbolic metric. To summarize, the 
Fisher metric is constructed as the natural Riemannian 
metric on a projective space over a linear space. In the finite 
case, this projective space is simply a spherical sector. In par-
ticular, this metric is the standard metric on the sphere, and 
it therefore has sectional curvature 1κ = . This fact is valid 
for the general case, as well. As a consequence, the Fisher 
metric is not Euclidean.

These type of calculations can be carried out faster and 
with less pain without a coordinate change by using the pro-
perties of the ex-pected value function. The expected value 
function for the discrete and continuous models are defined 
as follows:

• [ ] ( ),
x X

E x xf x
∈

= ∑  discrete model.

•	 [ ] ( )E x xf x dx
∞

−∞
= ∫  , continuous model, where 

( )f x  represents the related probability density function.

Let 1 2, , ,..., nX X X X  be real valued random variables 
with a common mean µ  and 1 2, ,..., ,na a a  c be arbitrary 
constants.In this case, some useful properties of the expec-
ted value function is listed below:

1. [ ] ,E c c=

2. 1 1 [ ],n n
i i i i i iE a X a E X= = Σ = Σ   Linearity.

3. [ ]iE X µ=  for all 1,...,i n=  and 1
n
i iY X== Σ  then 

E Y[ ] = nµ .

4. [ ] [ ] [ ]i j i jE X X E X E X=  if Xi and Xj 

5. [ ] [ ] 0E X E Xµ µ µ µ− = − = − =  since [ ] .E X µ=

Moreover, the nth moment E(Xn) and nth central mo-
ment [( ) ]nE X µ−  provides simplicity to the calculations. 
Since [ ] 0E x µ− =  and the 3rd central moment 3[( ) ] 0E x µ− =

2

11 1 1 2 2

1 1 1 ( )( ) [ ] exp( )
22

xg E l dxξ ξ
µξ

σ σπσ
−

− ∂ ∂ = −∫

let x tµ
σ
−

=  and use the Gaussian integral 

2exp( )x dx π
∞

−∞
− =∫  to get 11 2

1( ) .g ξ
σ

=

Similarly,

3

12 1 2 3 5

3
3 5

( ) ( )( ) [ ] [ ]

1 1[( )] [( ) ] 0.

x xg E l l E

E x E x

ξ ξ
µ µξ

σ σ

µ µ
σ σ

− −
= ∂ ∂ = − + =

− − + − =

As a Riemannian metric Fisher information metric is 
symmetric hence 21( ) 0.g ξ =

One may compute 22 ( )g ξ  from the definition of varian-
ce 2 2[( ) ]E x µ σ− =

2
22 2 2 2( ) [ ] [ ]g E l l E lξ ξ ξξ = ∂ ∂ = − ∂

2
2

2 4 4 2

2 2 2

1 3( ) 3 1[ ] [( ) ]

3 1 2

xE E xµ µ
σ σ σ σ

σ σ σ

−
= − − = − − =

− =

Example 2 Multivariate normal distribution

In the following sequel the sample space will be n
  in its 

standard vector coordinates 1
{ } .i

i
x n

x
≤ ≤  Let µ∈  be a 

mean vector and [ ]ijσΣ =  be an nxn symmetric, positive 
definite covariance matrix. Hence, the multivariate Ga-
ussian distribution in mean and covariance parameters 
can be written as

1 2 11( ; ; ) (2 ) exp ( ) ( )
2

Tp x x xµ π µ µ− − Σ = − − Σ − 
 

For the multivariate Gaussian distribution, compo-
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nents of the Fisher information matrix is as follows:

1 1 1
( , )

1( ) ( ) ( ( ) ( ))
2

T
i j i iI Trµ µ µ− − −

Σ = ∂ Σ ∂ + Σ ∂ Σ Σ ∂ Σ

Since the parameter space of multivariate Gaussian 

Distribution is ( 1)
2

n nn +
+  dimensional with the Fisher met-

ric it becomes a ( 1)
2

n nn +
+  dimensional Riemannian mani-

fold. On the other hand, we can express the same distributi-
on in its natural or in other words exponential parameters. 
In this case the probability density function and the Fisher 
metric can be expressed in terms of a potential function φ . 
One can rewrite the distribution in exponential or in other 
words natural coordinates defining

1θ µ−= Σ

11
2

−Θ = − Σ

Representing ϑ  as ( ; )ϑ θ= Θ  we may write our proba-
bility density function in ϑ  coordinates as

( ; ) exp( ( ))T Tp x x x xϑ θ φ ϑ= + Θ −

where 11 1( ) log 2 log( 2) | |
2 2

T nnφ ϑ π θ θ− = − Θ − − Θ 
 

The detailed computations for the components of the 
Fisher metric in different coordinates can be found in [28] 
and [20].

Example 3 Poisson distribution

{0,1,2,...}, 1, { | 0}nχ ξ ξ= = Ξ = >

( , ) exp( )
!

x

p x
x
ξξ ξ= −

Since 1n =  coefficients of the Fisher metric is represen-
ted by 1x1 matrix.

log ( ; ) log( ) log( !)p x x xξ ξ ξ= − + −

log ( ; ) 1p x xξ
ξ ξ

∂
= − +

∂

2
2

2

2 2

( ) [( log ( ; )) ] [ log ( ; )]

1[ ] [ ]

G E p x E p x

xE E xξ

ξ ξ ξ
ξ ξ

ξ ξ

∂ ∂
= = − =

∂ ∂
−

− =

where

0 1
1

1

[ ] exp( ) exp( )
! !

exp( )
( 1)!

x x

x x
x

x

E x x x
x x

x

ξ ξξ ξ

ξ ξ ξ

∞ ∞

= =

−∞

=

= − = − =

−
−

∑ ∑

∑

Since 
1

1
exp( ),

( 1)!

x

x x
ξ ξ

−∞

=

=
−∑  [ ] .E x ξ=  Therefore, the coef-

ficients of the Fisher metric is 1( )G ξ
ξ

= .

Example 4 ( )P χ  for finite χ

0 1{ , ,..., }nx x xχ =

1

1
{[ ,..., ] | 0, ), 1}

n
n i i

i
iξ ξ ξ ξ

=

Ξ = > ∀ <∑
Then,

1

1
( ; )

1 0

i

i n i
i

i n
p x

i
ξ

ξ
ξ=

 ≤ ≤= 
− Σ =

By using similar computations, on can shoe that the co-
efficients of the Fisher metric for finite discrete distribution 
is the nxn matrix

1
1 1

2
1

1 1

1 1 1. .
1 1

1 1. . .
1

. . . .
1 1 1. .

1 1

n i n i
i i

n i
i

n i n i n
i i

ξ ξ ξ

ξ ξ

ξ ξ ξ

= =

=

= =

 + − Σ − Σ 
 

+ − Σ 
 
 
 + − Σ − Σ 

Connections

( ; )p x ξ  be a n-dimensional smooth family of probability 
density functions depending on the parameter ξ . The 
components of the Fisher metric is of the following form:

( ) [( log (.; ) log (.; ))]ij i jg E p pξξ ξ ξ
ξ ξ
∂ ∂

=
∂ ∂

              (4.5)

log ( ; ) log ( ; ) ( ; )i jp x p x p xξ ξ ξ
ξ ξ
∂ ∂

=
∂ ∂∫                     (4.6)

The Levi-Civita connection of the Fisher metric can be 
computed from the following formula:

, , ,
1 ( )
2

k kl
ij il j jl i ij lg g g gΓ = + −                                            (4.7)

and note that l
ijk il jkgΓ = Γ  where

2
(0) 1( log log

2
1 log log log )
2

ijk i j k

i j k

E p p

p p p

ξ ξ ξ ξ

ξ ξ ξ

∂ ∂
Γ = + +

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

                      (4.8)

yields the Levi-Civita connection (0)∇  for the Fisher 
metric. More generally, a family of connections depending 
on a parameter α ∈  can be defined as follows

2
( ) 1[( log log

2
1 log log log )]
2

ijk i j k

i j k

E p p

p p p

α
ξ

α
ξ ξ ξ

ξ ξ ξ

∂ − ∂
Γ = + +

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
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( ) (0) [ log log log ]
2ijk ijk p i j kE p p pα α

ξ ξ ξ
∂ ∂ ∂

Γ = Γ −
∂ ∂ ∂

  (4.9)

In particular, since this expression is symmetric in in-
dices i and j, all the connections ( )α∇  are torsion-free and

( ) ( ) (0)
ijk ijk ijk
α α−Γ + Γ = Γ

Therefore, the connections ( )α∇  and ( )α−∇  are dual to 
each other.

Example 5 The exponential family

( ; ) exp( ( ) ( ) ( ))i
ip x x f xθ γ θ ϕ θ= + −

(1) 0ijkΓ =  is obtained by substituting 1α =  in equation 
4.9. Thus, θ  yields an affine coordinate system for the con-
nection (1)∇ . This flat affine connection is called the expo-
nential connection and abbreviated as e-connection.

Example 6 The mixture family

1( ; ) ( ) ( )d i
i ip x c x g xη η== + Σ

is an affine family of probability density functions. A 
simple computation yields ( 1) 0ijk

−Γ = . In other words, η  is an 
affine coordinate system for the connection ( 1)−∇  so called 
the mixture or m-connection. One can find local potential 
functions of the Fisher metric in x and n-coordinates as in 
section 3.1. It is important to note that ( 1)−∇  is not flat in   
n-coordinates. Therefore, two flat affine connections ∇(1) 

and   ∇(−1) that are dual to each other with respect to the 
Fisher metric is obtained. To summarize, the space of proba-
bility measures can be viewed as a linear space in two diffe-
rent manners: 

        On one hand, as in the finite case, it can be repre-sented 
as a simplex in a vector space. Thus, any probability meas  
ure can be represented as a convex linear combination of 
certain extremal measures which is called the mixture 
representation. 
 
        On the other hand, space of probability measures can be 
represented as the exponential image of a linear tangent 
space which gives the so-called the exponential rep-
resentation.

As it is discussed throughout the sections 3 and 4, these 
two structures are dual to each other, in the sense that each 
of them is the underlying affine structure for some connec-
tion, and the two corresponding connections are dual with 
respect to the Fisher metric. Of course, neither of these 
connections can be the Levi-Civita connection of the Fisher 
metric as the latter does not have vanishing curvature, [14]. 
Note that these results are valid locally for the global beha-

vior one may refer to [5].

CURVATURE COMPUTATIONS AND 
SECOND ORDER ESTIMATION

As it is mentioned in sections 3 and 4, dually flat structu-
res are defined through the affine structure by mutually 
dual flat affine connections, namely the exponential and 
the mixture connections. Since these connections are 
not Levi-Civita connection of the Fisher metric unless 
the underlying statistical manifold or distribution is flat 
Riemannian. The dually flat structure allows to define 
dual parallel transports, dual potential functions and 
geodesics by means of which alternative Taylor approxi-
mations of a function can be defined. On the other hand, 
probability distributions can be considered as Riemanni-
an manifolds equipped with the Fisher information met-
ric. Thus, curvatures of the induced geometry may be 
computed and used for the purposes of inference. Both 
perspective has advantages and disadvantages.

On an Kahler affine manifold, the differential Dγ  of 
the difference tensor ,D∇ −  where ∇  is the Levi-Civita 
connection of the Kahler affine metric, is called the 
affine(Hessian) curvature tensor and denoted by Q . Unlike 
the Riemannian curvature tensor on a Kahler affine mani-
fold, affine curvature reflects the affine structure since its 
defined through the flat affine connection. Affine curvature 
tensor is of type (1, 3) and in local affine coordinates its com-
ponents are of the form

,
i
jli

ijk kQ
x
γ∂

=
∂

(5.1)

[26, 27]. One can easily observe that for the Kahler af-
fine metric

2

ij i jg
x x
ϕ∂

=
∂ ∂

4 3 31 1
2 2

rs
ijkl i j k i k r j l sQ g

x x x x x x x x x
ϕ ϕ ϕ∂ ∂ ∂

= −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

        (5.2)

and its relation between Riemannian curvature tensor 
is given by

2 ijkl ijkl ijklR Q Q= −                                                              (5.3)

where the components of the Riemannnian curvature 
tensor is given by

3 3 3 31
4

ijkl

mn
m l i n k m m n j n k i

R

g
x x x x x x x x x x x x

ϕ ϕ ϕ ϕ

=

 ∂ ∂ ∂ ∂
− ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

  (5.4)

It is remarkable that the Riemannian curvature of a 
Kahler affine metric depends only on the derivatives of the 
potential function to order at most three, whereas one wo-
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uld expect fourth derivatives of it to appear. Duistermaat 
gives some explanation for this phenomenon [9]. This pro-
perty of the Fisher information metric allows us to avoid 
prolix Riemannian curvature computations in case of mul-
tivariate Gaussian distributions. On contrary to Riemanni-
an curvature, affine curvature does not have this property 
which make its computation lengthy. Similary, one may de-
fine affine scalar curvature in local coordinates taking met-
ric trace of the affine Ricci curvature tensor k

ij ikjQ Q=  as fol-
lows:

ij
scal ijQ g Q=                                                                      (5.5)

The concept of sectional curvature can also be carried 
to Kahler affine manifolds, [8, 26]. In this case, constant af-
fine (Hessian) sectional Kahler affine manifolds can be 
constructed. There is a relationship between constant affine 
sectional Kahler affine manifolds and Riemannian mani-
folds of constant sectional curvature. If a Kahlerian mani-
fold (M,g) is of constant affine sectional curvature c then 
(M,g) as a Riemannian manifold has constant sectional cur-

vature .
4
c

−

Example 7 Curvature computations for normal 
(univariate Gaussian) distribution

Consider the normal distribution 
2

2
1 ( )( ; , ) exp{ }

22
xp x µµ σ
σπσ
−

= −  with mean µ  and varien-

ce σ . In this case, Ricci tensor is of the form

2

2

1 0
2

10
ijR σ

σ

 − 
=  
 −  

                                                     (5.6)

Being the metric trace of Ricci curvature scalar curva-
ture of the normal distribution is equal to -1. On the other 
hand, normal distribution in its natural coordinates is an 
exponential family with the coordinates 1

2
1

2
θ

σ
=  and   

2
2
µθ
σ

=  where 1 2[ , ].θ θΘ =  For 
1 2 1 2{[ , ] | , }θ θ θ θ θ+∈Θ = ∈ ∈   normal distribution in its 

natural coordinates is of the form
1 2 1 2

1 2( ; , ) exp( ( ) ( ) ( ))p x x xθ θ γ θ γ θ ϕ= + − Θ

where 
2 2

2
1 2 1 1

( ) 1( ) , ( ) , ( ) log( ).
4 2

x x x x θ πγ γ ϕ θ
θ θ

= − = = +

Then, the components of the Fisher metric and that of 
its inverse are as follows:

2 2 2

1 3 1 2 1 2

2

1 2 1

( ) 1
2( ) 2( ) 2( )

[ ( )]
1

2( ) 2

ijg

θ θ
θ θ θ

θ
θ
θ θ

 −
+ 

 =
 −
 
  

,                          (5.7)

1 2 1 2
1

1 2 1 2 2

2( ) 2
[ ( )] .

2 2 2( )
g

θ θ θ
θ

θ θ θ θ
−  

=  + 
                               (5.8)

Therefore,

1 2 2 1 1 2 2 2

1 3 1 3

1 1 2 2 2

1 3 1

( ) ( )
4( ) 4( )

( )
( ) 1

4( ) 4

ijR

θ θ θ θ θ θ
θ θ

θ
θ θ θ θ

θ θ

 + + +
− 

 =
 + +
 
  

    (5.9)

is the Ricci tensor of the normal distribution in its na-
tural coordinates and hence the scalar curvature is

1 2 1 2 2 2 3

1 2

( ) ( )
( )

R θ θ θ θ θ
θ

+ +
=                                             (5.10)

The Riemannian curvature can be extended to α -con-
nections. In section 3.1, α -connections are defined by 3.1 as   

( ) (0)

2ijk ijk i j k
α α ϕΓ = Γ − ∂ ∂ ∂ .

Then, α -curvature tensor can be calculated from

( ) ( ) ( ) ( ) ( ) ( ) ( )
, , .i i i i n i n

jkm jm k jk m nk jm nm jkR α α α α α α α= Γ − Γ + Γ − Γ − Γ − Γ (5.11)

Note that original Riemannian curvature tensor is ob-
tained for 0α = . Dual affine connections corresponds to 
the cases 1α =  and 1α = − , respectively.

For the normal distribution, only independent non-
zero component of the α -curvature tensor is given by

2
( )
1212 4

1R α α
σ
−

=                                                                   (5.12)

Furthermore, only non-zere component of the α -Ricci 
tensor is

2
( )
11 2

1
2

Ric α α
σ
−

=                                                              (5.13)

Note that more computations on different families of 
probability distributions one may refer to [1] and [24].
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