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In this article, we investigate the inverse problem 
associated with the problem

( ) ( , )
( ) ( ),( , ) (0, ) (0,1)

t xxxu au d t u f x t
A x B t x t Q T
+ + =

= ∈ = ×
                       (1)

(0, ) (1, ) (1, ) 0xu t u t u t= = =                                       (2)

0( ,0) ( ), (0,1)u x u x x= ∈                                              (3)

to determine { },u A  where a  is positive constant, d  
is continuous function defined in [0, )∞ .

The dynamics of small, finite perturbation in an 
inhomogeneous media are given by equation (1) [3]. 
Korteweg-de Vries (KdV) equation has great interest 
and there are many studies on it [1]-[4].

The inverse problem theory for differential equati-
ons is being developed to solve problems of mathemati-
cal physics. In the study of direct problems, the solution 
of the equation is derived by means of supplementary 
conditions.

In the case of inverse problems, the form of the equ-
ation is known but the equation is not known exactly. To 
determine the corresponding equation and its solution, 
some additional conditions (final overdetermination 
conditions) must be imposed.

Inverse problems for partial differential equations 
are extensively investigated. Inverse problems are classi-
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fied according to the partial differential equations whe-
re they arise. The study of Prilepko and Orlovsky [5] is 
important for the systematic representation for elliptic, 
hyperbolic and parabolic inverse problems.

We are particularly interested in the inverse prob-
lems for determination of the source terms. Such prob-
lems have great interest [5, 6 ,7, 8, 9, 10, 11].

In the present study, we show the existence and 
uniqueness of the solution of the inverse problem to de-
termine the part of the source term of a modified KdV 
equation. We call the determination of ( , )u x t  when f  
is given in (1)-(3) as the direct problem. The determina-
tion of { },u A , in (1)-(3) with the final overdetermination

0 0( , ) ( ), (0, ), (0,1)u x t x t T xα= ∈ ∈                                 (4)

and B  is known, is called the inverse problem for reco-
vering the source term A  depending on x .

The corresponding direct problem (1)-(3), when 
0b ≡ , a real constant, is a particular case of the problem, 

studied by Larkin [1] .

The paper is organized as follows: In section 2, we 
give some notations, definitions and results about the 
direct problem. The third section is devoted to derive an 
equivalent fixed point system for our inverse problem. 
In the last section, the existence and uniqueness of the 
fixed point of the system is proved.

A B S T R A C T

We study an inverse problem to identify the source term depending on x  of a modi-
fied KdV equation. In order to recover source term, we define an inverse problem 

subject to an overdetermination condition. We converted this inverse problem to an opera-
tor equation. The existence and uniqueness of this operator equation is investigated.

INTRODUCTION 
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If we define

0 0

0 0

( , ) '''( ) ( ) ( )( )( ) : , ( ) .
( ) ( )

tu x t a x d t xLA x x
B t B t

α α+
Φ =

The relation between A  and u  may be specified via 

2 2: (0,1) (0,1)L L L→

with

( ) ( )( ) ( )A x LA x x= + Φ .                                                      (8)

Theorem 2. If the problem (1)-(4) has a solution if and only 
if the operator equation (8) has a solution.

Proof. Assume that the problem (1)-(4) has a solution. 
Then, if we follow the steps given above, we derive the 
operator equation (8).

If the operator equation has a solution ( )A x , we insert 
it in the equation (1). Since the problem (1)-(3) has a solution 
and it is unique by Theorem 1, we have to check whether 
this ( , )u x t  satisfies equation (4).

To this end, we assume that

0( , ) ( )u x t xβ=

then we have

0 0 0( , ) '''( ) ( ) ( ) ( ) ( )tu x t a x d t x A x B tβ β+ + = .                  (9)

If we subtract equation (6) from equation (9), we get

0( ''' ''') ( )( ) 0.a d tβ α β α− + − =                                      (10)

By denoting, yβ α− = , 0( )d t d= , equation (10) takes 

the form

''' 0ay dy+ = .                                                                      (11)

The characteristic polynomial ( )p r  of the differential 
equation (11) is

3( )p r ar d= + .

So, the general solution of the equation (11) is written 

in the following form
(1/3) (1/3) (1/3)( / ) ( / ) 2 ( / )( ) d a x d a x d a xy x ke lxe mx e− − −= + + .        (12)

Now, we use the conditions given in (3).

PRELIMINARIES

In this section, we summarize the definition and results 
given in [1]. The usual notations of Sobolev spaces are 
used for the notations see [12]. For the properties of the 
solution of the problem (1)-(3), we refer the readers to [1].

Let us denote

( ) max(0, ( )), ( ) ( ) ( )d t d t d t d t d t+ − += = −

1
2

0

( , ) ( , ) ( , ) , ( ) ( , ).u v u x t v x t dx u t u u= =∫

The following theorem is proved in [1].

Theorem 1. If 0, , [0, ); ( ) 0, 0;a b d C a t a t∈ ∞ ≥ > ∀ ≥

1 2
0

0
(| ( ) | ( )) , (0, ), (0,1),

t
sup b t a t d L u L−
≥

+ < ∞ ∈ ∞ ∈  
1 2 3 2

0 0 0(0, ; (0,1)), (0,1) (0,1), (1) 0,xf L L u H H U∈ ∞ ∈ ∩ =  
1 2 2 2 1

0(0, ; (0,1)) (0, ; (0,1) (0,1)), (1, ) 0xf L L L H H f t∈ ∞ ∩ ∞ ∩ =  for 

a. e. 0t ≥  then (1)-(3) has a unique solution ( , )u u x t=         

such that 3 1 2 4
0(0, ; (0,1) (0,1)) (0, ; (0,1)),u C T H H L T H∈ ∩ ∩  

1
0(0, ; (0,1)), (1, ) 0t xu L T H u t∞∈ =  for all finite T .

DERIVATION OF A FIXED POINT 
SYSTEM

In this section, first we define our solution concept for 
the inverse problem (1)-(4) and construct an operator 
equation for the inverse problem. The equivalence of the 
operator equation and the inverse problem is proved.

Definition 1. We call the pair of functions ( ( , ), ( ))u x t A x  as a 
solution of the inverse problem (1)-(4), if 3(0, ; (0,1)u C T H∈  

1 2 4 1
0 0(0,1)) (0, ; (0,1)), (0, ; (0,1)), (1, ) 0t xH L T H u L T H u t∞∩ ∩ ∈ =  

for all finite T  and 2 (0,1)A L∈ .

In order to find ( )A x , first we replace t  by 0t  in equa-
tion (1) to get

0 0 0 0 0

0

( , ) ( , ) ( ) ( , ) ( , )
( ) ( )

t xxxu x t au x t d t u x t f x t
A x B t

+ + =

=
.              (5)

If we use equation (4) in (5), it turns to

0 0 0( , ) '''( ) ( ) ( ) ( ) ( )tu x t a x d t x A x B tα α+ + =                   (6)

By solving the equation (6) for ( )A x , we find

0 0

0 0

( , ) '''( ) ( ) ( )( ) .
( ) ( )

tu x t a x d t xA x
B t B t

α α+
= +                          (7)
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When 0x = , then (0) 0y = , it gives us that 0k = . So, 
( )y x  is of the form

(1/3) (1/3)( / ) 2 ( / )( ) .d a x d a xy x lxe mx e− −= +                                (13)

Since (1, ) 0u t = , then (1) 0y = . If we use it in equation 
(13), we get l m= − . The new form of the general solution is

(1/3) (1/3)( / ) 2 ( / )( ) .d a x d a xy x lxe lx e− −= −                                  (14)

Taking into account that the value of 
(1, ) 0 '(1) 0xu t y= = = , we can find the value of l  as zero. Con-

sequently, the problem (11) has only the solution 0y ≡ . It 
means ( ) ( ) ( ) 0y x x xβ α= − ≡ , hence ( ) ( ),x x xβ α= ∀ . It pro-
ves that 0( , )u x t  satisfies (4).

EXISTENCE OF THE SOLUTION OF THE 
OPERATOR EQUATION

In this section, we study the existence and uniqueness of 
the fixed point of the derived operator equation (8).

Theorem 3. If 

1/2
1

0
0

(| '( ) | )( ) (0, ), ( ) 0, 1,
( )

tB t e e ceB t C T B t
B t

γ γξ γξ+ − +
∈ ≠ <  

( ) 0, ,b t a R≡ ∈  then (8) has a unique fixed point.

Proof. For the proof, we estimate the norm of L . To this end, 
first we differentiate (1) with respect to t  to find

'( ) ( , ) ( ) ( , )
( ) '( )

tt xxxt tu au d t u x t d t u x t
A x B t
+ + +

=
.                         (15)

If we multiply (15) with tu  and integrate with respect to 

x  from 0 to 1, we get

1 1 1

0 0 0
1 1

0 0

'( )

( ) '( ) ( ) .

tt t xxxt t t

t t t

u u dx a u u dx d t uu dx

d t u u dx B t A x u dx

+ +

+ =

∫ ∫ ∫

∫ ∫
                             (16)

First integral in (16) is

1 1
22

0 0

1 1( ) .
2 2tt t t t

d du u dx u dx u
dt dt

= =∫ ∫                              (17)

If we use integration by parts for the second term in 

(16);

1

0
1

0

(1, ) (1, )

(0, ) (0, ) .

xxxt t xxt t

xxt t xxt xt

u u dx u t u t

u t u t u u dx

=

− −

∫

∫
                                         (18)

If we use (3) in (18), it becomes

1 1

0 0

.xxxt t xxt xtu u dt u u dx= −∫ ∫                                                   (19)

Since 21 ( )
2xxt xt xt

du u u
dx

= , then (19) can be written as

1 1
2

0 0

1 ( (0, )) .
2xxxt t xxt xt xtu u dt u u dx u t= − =∫ ∫                        (20)

The third term in (16) is

1 1
22

0 0

1 1( ) .
2 2t

d duu dx u dx u
dt dt

= =∫ ∫                                (21)

By the definition of the norm, the forth term of (16) is

1
2

0

.t t tu u dx u=∫                                                                  (22)

By Cauchy's Inequality, the last term of (16) is estimated 
to be

2 21

0

( ) .
2 2

t
t

A u
A x u dx ≤ +∫                                               (23)

With (17), (20), (21), (22) and (23), the equation (16) be-
comes

2 2

2 2
2

1 1 '( )
2 2

( ) | '( ) | .
2 2

t

t
t

d d t du u
dt dt

A u
d t u B t

+

 
 + ≤ +
 
 

                              (24)

Rearranging (24), it takes the form

2 2( ( ) | '( ) |) | '( ) |t t
d u d t B t u B t A
dt

+ − ≤                  (25)
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Substituting 2: ,( ( ) | '( ) |)ty u d t B t γ= − = , then (25) 
becomes

2

[0, ]
'( ) ( ) ,where max | '( ) | .

t T
y t y t D A D B tγ

∈
+ ≤ =        (26)

Solving the inequality (26), we get

2( ) | '( ) | ( ) ( ) .ty t B t A e e y eγ γξ γξξ≤ − +                         (27)

If we employ proposition 4 in [1], we get the inequality

2 2( ) | '( ) | ( ) .ty t B t A e e c A eγ γξ γξ≤ − +                       (28)

(28) shows that

2 2( ) (| '( ) | ) .t
tu t B t e e ce Aγ γξ γξ≤ + − +                      (29)

The norm of the operator   can be estimated by using 
(29) as

1/ 2
0

0 0

( , ) (| '( ) | )
( ) ( )

t
tu x t B t e e ceLA A
B t B t

γ γξ γξ+ − +
= ≤ . (30)

If we impose the condition

1/ 2

0

(| '( ) | ) 1
( )

tB t e e ce
B t

γ γξ γξ+ − +
<                                      (31)

the operator L  is contraction, so it has a unique fixed 
point [13].
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