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n this paper, we show that the system of difference equations
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where the initial values X ,¥ ,Z are real numbers, are solvable in explicit form via
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some changes of variables and tricks. Also, we determine the forbidden set of the initial

values X ,¥ ,z for the above mentioned system and investigate asymptotic behavior of the

well-defined solutions by using these explicit formulas.
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INTRODUCTION

Nonlinear difference equations constitute an im-
portant class of difference equations and stud-
ying of this kind of equations have recently attracted
great interest. One can see this in some recent studies.
See, for example [2-4,7-8,15-16,18,24-27]. Particularly,
there have been a renewed interest on solvable ones of
such equations and systems. For example, published
papers on solvability of some types can be found in
the references [5-6,10-14,28,31]. Additionally, there
are some equations and systems whose solvability are
newly discovered. For example, the solvability of the
nonlinear difference equation
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where a€[0,) and the initial values x_.,x, are
real numbers, which was studied by Xianyi and Deming
in [29], is newly discovered. The fact remains that the
equations and the systems in the references [1,19-
21,23,30], are so.

Our aim in this study is to show that the following
systems of difference equations
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where real initial values x,, », and z, are real
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numbers, can be solved in explicit form. Also, we deter-
mine the forbidden set of the initial values x,, ¥, , z, for
the system and investigate asymptotic behavior of the
well-defined solutions by using these formulas.

Definition
Let

X, = (%00002,)s Vi = 8(%,002,)5
3

Zy = h(xn7yn’zn)’ neN,

where f :R* >R, g :R* >R and # :R* >R is
given functions, be a system of difference equations of
first-order, and D,, D, and D, be the domains of the
functions f, g and %, respectively. Forbidden set of
difference equation (3) is given by
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where D:=D,xD,xD, .Thisset contains all the initial
values which causes the undefinable solutions of the system.
That is, the initial values chosen from the complement of the
forbidden set always produce the well-defined solutions.

RESULTS

In this section, we give our main results by obtaining the
general solution in explicit form of the system (2). Next,
we determine the forbidden set of the initial values x,, ¥,

z, for the system (2). Additionally, we investigate asym-
"ptotic behavior of the well-defined solutions by using the-
ir explicit formulas.

The Explicit General Solution Of The System

To solve the system (2), we apply the changes of variables
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to the system. Then, we have the linear system

un+1 = un + Vn’
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et =V Wy Wy =W, 14, 1€ N (5)

The system (5) can be written as

U, —3u, ,+3u,,,—2u, =0, ne N, )
V=3V, +3v,,, —2v, =0, ne N, (7)
and

W,y —3W,, +3w,,, —2w, =0, ne N, (8)

which are disjoint. Note that the equations (6)-(8) are
in the same form. Therefore, we only solve one of them. Let
choose Eq. (6) which can be written as

(un+3 - 2un+2) - (un+2 - 2un+l) + (u - 2un) =0,ne NO'

n+l

Set u,,, —2u,, =14, , So, we get the linear equation of or-
der two

U, =i, =i, ,, n€N, ©
Eq. (9) is periodic with period 6 such that ., =%,
(z‘=ﬁ) which implies
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By adding the backward iterate of (10) to own itself, we
get

—2u.
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u6n+2+i - 2u6n+l+i + u6n+]+1‘ - 2u6n+i = ui+2 - 2ui+l + ui+l

or
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u6n+2+i - Z'1611+1+[ - 2u6n+i = ui+2

Eq. (6) can be also written in the further form

(g =ty 14, ) =20, 5 — 1, +u,) =0. (12)
If we apply the change of variables

Uy = Uy +U, =1, 13)
to Eq. (12), then, from Eq. (12), it follows that
a,,—2u,=0 (14)

whose the general solution is given by

i,=2"1, (15)
which implies
Upy = Uy + 1, =2"(y — 1y +11y). (16)

Eq. (16) can be decomposed in terms of its own subs-
cript as follows;

Ugpszes = Ueponsr Flgny = 2 (U =y +1,), i = 0.5 A7)
By subtracting (11) from (17), we get the formula
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for the solution (u,) of Eq. (6). We also state the formu-

la (18) explicitly such that
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Ugp1 = 3 uy + 3 Vo + 3 Wos (20)
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Ugpia = 3 U, + 3 Vot 3 Wos (1)

26n+3 _ 2 26;1+3 + 1 2611+3 + 1
Ugniz = 3 Uy + 3 Vot 3 Wos (22)
26n+4 _ 1 26n+4 _ 1 26)1+4 + 2
Ugnia = 3 U, + 3 Vot 3 Wos (23)
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for neN,, Consequently, by the change of variables

x, =4, we have the formulas
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which are the formulas of the variable x,, for ne N,
The formulas of y, can be obtained by the first equation of
(2). That is, by solving ¥, in this equation, we have

X X
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From (25)-(31), it follows that
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for neN,, Similarly, from the second equation of (2),
we obtain
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for ne N, , along with (32)-(38).

The Forbidden Set Of The Initial Values

The above obtained formulas exactly determine the solu-
tions of the system (2). But, some initial values yield un-
definable solution of the system. Now, we give the set of
such initial values by using the formulas. To do this, we
use the changes of variables (4) along with the formula
(18) and so get the closed formula of x, as follows:

2

zenﬂ 26n+l 2§11+l 2
1+x, 3 3 1+2z, 3 1+x; 1=y + 1
1-x, 1-z, 1-x, 1+

for i=0,5 and neN,, Itis easy to see that the formula
(39) is undefinable, if

1+x, 1+ y, 1+ 2z, 1+x, -y, _
1-x, 1=y, 1=z, I=x, ) 1+,

for i=0,5 and neN, Similarly, we have the closed for-
mulas of y, and z, as follows

(39)
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for i=0,5 and neN, respectively. Consequently, we
find the forbidden set of the initial values x,, »,, z, as fol-
lows:
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Asymptotic Behavior Of The Well-Defined
Solutions

We investigate the asymptotic behavior of the well-
defined solutions of the system (2). The main result of
this subsection is given by the following theorem.

Theorem

Suppose that the sequence (x,,¥,,z, )nzo is a well-defined
solution of the system (2), that is, (xo,yo,zo) ¢ F , Then,

) =(L1),

lim(

n—w

V4

Xals|Val>

Proof

I-x

To prove, we use the function f(X):“f” along with the
formulas (39)-(41). Before proving, we can say that the po-
ints (0,0,0), (LLD and (-1,-1,-1) are equilibrium points
of the system (2). That is, equilibrium solutions of the
system (system) are given by (x,.,.z,).,=(0,0,0),
(55 =(L11) and (5,3,0,),., =(L-L1), respec-
tively. We here deal with nonequilibrium solutions of the
system (2). We observe for the function f that if

xe(-0,0), then f(x)e(-L1); if xe(0,1)u(L»), then
S (x)e(=»,~1)u(1,®), Hence, we prove the theorem in
three cases:

(i)  If x5, ¥0.2, €(—%,0)\ F, then
S(x), /(%) f(z,)€(=L1), Therefore, from the for-
mulas (39)-(41), we get the limit

lim(x,,v,,z,)=(LL1). as n >0,
(i) If xp ¥,z €(0,1)U(L,0)\ F, then
F(%)./ (30):f(25) € (—0,=1)U(1,0), Therefore, from

the formulas (39)-(41), we get

lim(x,,y,,z,)=(-1,-1,-1).

(iif) If x,, ¥,y €(—,)\ F , then we can not say abo-
ut the quantities f(x,), f(») and f(z,) exactly. But,
the sequences

and

o 1+x, o 1+y, o 1+z, o 1+z ’ 1-x,,
! 1-x, 1-y, 1-z, 1-z ) (1+x,,

tend to either to 0 or to . So, by the formulas (39)-(41),
we obtain the limit

lim(

n—w

)=(LL1).

which completes the proof.

xn’yn’Zn
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