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Over the years, several articles have been 

appeared in many journals relating the integer 

sequences to growth patterns in plants. Among these 

integer sequences, Fibonacci sequence has achieved 

a kind of celebrity status. It is famous for possessing 

wonderful and amazing properties. For example, it 

is defined by a recurrence relation, and the ratios of 

its consecutive terms converge to the golden mean. 

Since this sequence has very wide applications, ones 

can find many interesting generalizations, i.e., one 

of them is given by Stakhov [1]. Under the special 

assumptions, the Fibonacci p-sequence reduces to 

the classical Fibonacci sequence. In addition, Stakhov 

and Rozin have presented number of properties and 

many applications of the Fibonacci p-sequence [2].  

Kilic has studied the combinatorial representations, 

Binet formula and sums of Fibonacci p-sequence [3]. 

With the development of computer science and the 

onset of the digital age, the usual Jacobsthal sequence 

has extensively been investigated. It is defined by a 

recurrence relation, as the Fibonacci sequence. Horadam 

has given the important results for the Jacobsthal 

sequence [4]. Cerin has studied the sums of the terms 

of the Jacobsthal sequence [5]. In an investigation of the 

integer sequence defined by a recurrence relation, 
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matrix theory has played an important and effective 

role. Quite apart from pursuing the discovery of the 

additional formulas by the matrix technics, the different 

matrices for obtaining new results can be introduced. 

Chen and Louck have investigated an nxn companion 

matrix and shown the combinatorial representation of 

the sequence generated by the nth power of the matrix 

[6]. Considering the matrix theory, Koken and Bozkurt 

have presented the Jacobsthal F-matrix and some results 

[7]. In the literature, there exist many other references on 

the subject which are not given here.

The object of this article is to give a new definition 

for the generalization of the usual Jacobsthal sequence. 

The generating matrix, the Binet formula, characteristic 

equations, generating functions, combinatorial 

representations and sums of the terms of the generalized 

Jacobsthal sequence are respectively studied.

Generalized Jacobsthal p-sequence

Generalization of Jacobsthal Sequence

First of all, the generalization of the usual Jacobsthal 

sequence is denoted by Jp(n) and defined as follows: 

for p Z+ and n > p+1, 

(1)
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with initial conditions

 . (2)

Obviously, when p=1, the generalized Jacobtshal 

p-sequence reduces to the usual Jacobtshal sequence. If the 

generalized Jacobthsal p-sequence is extended to backwards 

by using Eqs. (1)-(2), the following statements are obtained:

(3)

Depending the choice of the value of p, both the 

recurrence relation and the initial conditions of considered 

sequence change. Hence, it is difficult and troublesome 

to compute the terms of the generalized Jacobsthal p - 
sequence for all the values of p. To facilitate this process, the 

generating matrix of the generalized Jacobsthal p-sequences 

is now presented as in the form

. 
(4)

Additionally, a new matrix is defined as follows:

 (5)

where

.        (6)

The matrix F
n
 will be called the generalized Jacobsthal 

p-matrix later. It should be noted that, for p=1, the 

generalized Jacobsthal p-matrix reduces to the usual form 

given by Koken and Bozkurt [7]. 

From Eq. (1), the following matrix can immediately be 

written 

. (7)

Then, the following theorem can be given.

Theorem 1 For any n;p>0,

. (8)

Proof. To prove the theorem, the induction method on n 

is used. Taking n=1 and considering Eqs. (1)-(3), F
1
=G

p
 is 

obtained. It is thus to be true for n=1. Now suppose that 

Eq. (8) holds for any n-1, namely F
n-1 

= G
p

n-1. From Eqs. (1) 

and (7) and the assumption, G
p

n = G
p
G

p
n-1 = G

p
F

n-1
 = F

n 
is 

found, which is the desired result.

Theorem 2 Let F
n
 be defined as in (5). Then, 

. (9)

Proof. Taking Theorem 1 into account, computing the 

determinant of the matrix G
p
 by the Laplace expansion 

with respect to (p+1)th column and considering the 

matrix identities, the proof can easily be obtained.

The following corollary can be written from the 

fundamental matrix identities such that F
n+m

=F
n
F

m
 or 

F
n-m

=F
n
F

-m
. It therefore is given without the proof.

Corollary 3 Let Jp(n) be the nth generalized Jacobsthal 

p-number. Then
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Actually, for p-1, Eq. (10) becomes the well-known 

following formula given by Koken and Bozkurt [7]:

. 

Binet Formula and Generating Functions 

In this section, the Binet formula and the generating 

functions of the generalized Jacobsthal p-sequence will 

be studied. To do this, the limit of the ratio of the adjacent 

generalized Jacobsthal p-sequence for the case where 

n  is considered. First of all, the following definition 

is introduced:

 (11)

1 2 1J n m J n J m J n J m

n
n pF G

.
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F
n
V=VDn. Since F

p
 = [ fij], the following linear system of 

equations:

By the Cramer’s rule, the desired result is obtained.

Considering Lemma 4, 
2
=1/4<1, and p p  for p > 1, 

p , which is a contradiction. The equation f(z) = 0  does 

therefore not have multiple roots.

Suppose that f( ) is the characteristic polynomial 

of the generalized Jacobsthal p-matrix F
n
. Considering 

the identities of the companion matrix, then f( )= 
p p . Also p  represent the eigenvalues 

of the matrix G
p
. By Lemma 5, it is known that each 

of p are distinct from the other. Let  be 

a Vandermonde matrix of order (p + 1) x (p + 1) as 

follows:

(14)

In addition, the following column vector is defined:

The transpose of the matrix  is denoted by V, and V
j
(i) 

represents a (p+1 )x (p+1) matrix constructed by replacing 

the jth column of V by d
i
k. Then, the generalized Binet 

formula for the generalized Jacobtshal p -sequence can 

be given by the following theorem.

Theorem 6 Let Jp(n) be the nth generalized Jacobsthal 

p-sequence. Then

 ,

where F
n
 = [ fij].

Proof. To prove the theorem, a well-known method is 

applied. Since the eigenvalue of the matrix G
p
 are distinct, 

this matrix is diagonalizable. It is easy to show that

,

where D = diag ( p ). Considering the fact that 

Vandermonde matrix V is invertible, V-1G
p
V = D. Hence, 

the matrix G
p
 is similar to the diagonal matrix D. So, 

The ratio of the adjacent generalized Jacobsthal p 
-sequence is rearranged in the form

 (12)

Substituting the last equation into Eq. (11), the 

following algebraic equation for the generalized Jacobsthal 

p -sequence is obtained:

. (13)

It should be noted that Eq. (13) possesses the (p+1)th 

degree and (p+1) roots such as x
1
, x

2
,...,xp+1

 according to the 

famous “Fundamental Theorem of Algebra”. Also, when p=1 

Eq. (13) reduces to well-known form for the usual Jacobsthal 

sequence.

The Binet formula for the generalized Jacobsthal 

p-sequence will be investigated. But the following lemma is 

first recalled [3].

Lemma 4 Let . Then ap>ap+1
 for any p>1.

Then, the following lemma can be written.

Lemma 5 The characteristic equation of the generalized 

Jacobsthal p -sequence xp+1-xp-2=0 does not have multiple 

roots for p>1

Proof. Let f(x) = xp+1-xp-2. Suppose that  is a multiple 

root of f(x) = 0. Note that  and Since is a 

multiple root, f( ) = p+1- p-2=0 and f ( ) = p-1 ((p + 1) 

p)=0. Then, p p
. 

Consequently,

1 1 1
1 2 1

Tn p i n p i n p i
p

k
id

1 2 0p px x

1
1

10 2 2 2
1 1

p
p p

p
pf a

p p

det

detijf
i

jV

V

pG V = VD

1 1
1 1 2 1 , 1 1

1 1
1 2 2 2 , 1 2

1 1
1 1 2 1 , 1 1

p p p n i
i i i p

p p p n i
i i i p

p p p n i
i p i p i p p

f f f

f f f

f f f

21
1 21

2 3 1

p

p p pp

p p p

J n
J n J n J n pJ n

J n J n J n p



–

102

Consequently, the following corollary can be directly obtained from Theorem 6.

Corollary 7 For the nth term of the generalized Jacobsthal p-sequence,

                                                                  .

Now the generating functions of the generalized Jacobsthal p-sequence is presented by the following theorem.

Theorem 8 Let Jp(n) be the nth term of the generalized Jacobsthal p-sequence. Then for n > 1,

                                                                                                   

     .

Proof. (Induction method on n) It is clear that the equation holds for n = p+1. Suppose that the equation holds for any 

n > p+1. Hence, by the assumption and the definition of the generalized Jacobsthal p-sequence, 

is obtained. So, the proof is completed. 

Combinatorial Representations 

Now the combinatorial representations of the generalized Jacobsthal
 
p-sequence are investigated. First of all, introduce 

the following companion matrix:

(15)

Also, recall that the following theorem which give the opportunity to derive the elements in the nth power of the matrix 

C [6].

Theorem 9 Let the matrix C = (cij)kxk be as in (15). The element cij 
(n) in the matrix Cn is given by the formula

, (16)

where the summation is over non-negative integers satisfying t
1
+ 2t

2
 + ... + ktk = n - i + j, and the coefficients are defined 

as 1 for n = i-j. 

Thus the following lemma can immediately be obtained from the above theorem without the proof.
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where the summation is over non-negative integers 

satisfying m
1
 +2m

2
+ ... + (p+1)mp+1

 = n + p .

ii.  

where the summation is over non-negative integers 

satisfying  m
1
 +2m

2
+ ... + (p+1)mp+1

 = n - 1.

Sum Formula 

To find the sum of terms of the generalized Jacobsthal 

p-sequence, certain methods are now used. To do this,

some generating matrices by extending the matrix G
p

will be used. Let S
n
 be the sums of the generalized Jacobs-

thal p-sequence as follows:

 
 (17)

Also, the following matrices are defined:

(18)

Lemma 10 Let the matrix G
p

n = [gij
(n)] be as in (6). Then,

 ,

w

here the summation is over non-negative integers satisfying 1 2 12 1 pm m p m n i j .

Finally, the following corollaries can directly be written from Lemma 10.

Corollary 11 Let Jp(n) be the nth term of the generalized Jacobsthal p-sequence. Then

i. 
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(19)

Thus, the following theorem can be given.

Theorem 12 For the matrices T and A
n
, 

(20)

Proof. (Induction method on n) When n = 1, it is clear 

that the equation holds. Suppose that Eq. (20) holds for 

n. On the other hand, by the assumption and Sn+
1 = Jp

(n+1) + Sn,

, 

which completes the proof.

Before the main result, the following useful lemma is 

presented.

Lemma 13 Let Jp(n) be the nth term of the generalized 

Jacobsthal p-sequence. Then, for all the integers n,m ≥ 0,

n
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1n n
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Proof. The proof can easily be obtained by the definition 

of the generalized Jacobsthal p-sequence.

A new matrix is defined in the form

,    (21)

where i (i = 1, 2 , ..., p + 1) have been defined before.

Then the following theorem is given to compute the 

sums of the generalized Jacobsthal p-sequence by using 

matrix method.

Theorem 14 Let Sn 
be as in (17). Then

Proof. Computing detW by the Laplace expansion of the 

determinant with respect to the first row, detW=detV 

is obtained, where V is defined as before. Hence the 

characteristic equation of the matrix W is (x-1)x(xp-xp-1-1). 

It can be said from Lemma 5 that the eigenvalues of the 

matrix W are 1, ,…, p  and different from each other. 

Therefore, TW=WD can be written, where D = diag (1, 
,…, p  Consequently, A

n
W=WDn. The element (2,1)th 

in the matrix A
n 

=
 
[aij](p-2)x(p+2)

 is a
21

=Sn , and by Lemma 13, 

the desired result is directly obtained.

1 2 1

1 1 1 1
1 2 1

1 2 1

1 0 0 0 0
1
2
1
2

1
2
1 1 1 1 1
2

p p p p
p p

p p p p
p p

p p

W

1 1 1
2n pS J n p

CONCLUSION

In this study, the new generalization of the usual 

Jacobsthal sequence is presented, which is called as “the 

generalized Jacobsthal
 

p-sequence”. The generating 

matrix of this generalized sequence is given, and a few 

important results are obtained by employing the matrix. 

Also the generating matrix is extended to certain matrix 

representations, and it is shown that the sums of the 

generalized Jacobsthal p-sequence could be derived 

directly by using the representations. Moreover the 

generalized Binet formula, the generating functions and 

the combinatorial representations of the generalized 

Jacobsthal p-sequence are presented.
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