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Realization of interventional therapeutic procedures with guidance of Magnetic Resonance Imaging (MRI) 

is a promising novelty in area of interventional surgery because of eliminating x-ray exposure to patient 

body. Together with radiation free nature, advances in MRI techniques present superior soft tissue contrast 

and real time physiologic parameters from related tissue. However, the strong static magnetic field, 

magnetic radiofrequency (RF) pulses, and time-varying gradient fields applied during MRI, may result in 

exceeded heating risk over interventional instruments and adjacent tissue inside patient body. Additionally, 

since real time tracking and determination of device position inside patient body is critical for operators, 

sufficient visibility under MRI is another challenging issue to overcome. Therefore, proper biomaterials 

must be utilized for designing and development of MRI compatible interventional instruments by 

considering many factors including biocompatibility, MRI safety, MRI visibility, and other mechanical 

needing. 
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Interventional therapeutic procedures of varied diseases generally benefits of x-ray based imaging 

modalities including fluoroscopy, computed tomography (CT), angiography and etc.   Together with well-

known deleterious effects of ionizing radiation on human body, infants are theoretically more vulnerable 

to the carcinogenic effects of ionizing radiation than adults, and new borns have a greater cancer risk as the 

long term chromosomal damage [1]. On the other hand x-ray based imaging modalities do not provide 

sufficient image contrast especially for the soft tissues that are generally necessary for tracking of implanted 

device inside the related tissue or vessel. Interventional therapeutic procedures under x ray-based modalities 

do not only suffer from poor soft tissue contrast, but also are not feasible due to the nephrotoxic effects of 

radio-contrast materials injected to the patient during imaging [2]. X-ray exposures during surgery also 

increases the risk of cataract [3] and protective lead clothes increase the risk of orthopedic injuries [4] for 

the personnel occupied in surgery room. 

 

Magnetic Resonance Imaging (MRI) guidance was intended to be a new platform by operators to 

realize imaging of implanted devices or materials for therapeutic procedures without usage of x-ray. 

Additionally, operators favor MRI to perform complex interventional operations because of many 

advantages of MRI including superior intrinsic soft tissue contrast and multi slice imaging technique [5]. 

Accordingly, it is possible to collect reliable and real time physiologic parameters from related tissue via 

MRI such as flow, volume, pressure, diffusion, perfusion, temperature, motion, etc. [6]. 

 

Biomaterials are natural or synthetic materials utilized for treating or replacing of all kind of 

damaged tissues, vessels, or organs to increase functionality in patient body. A biomaterial not only have 

to be non-toxic and compatible with the tissue, but also must keep mechanical properties without causing 

injuring or perforating the tissue structures. Biomaterials can be generally classified as metallic 

biomaterials, bioceramics, polymer biomaterials and biocomposites [7]. 

 

Since MRI physical nature has a high magnetic field inside operation room, there is a constraint to 

application of metallic based biomaterials for instruments and devices under MRI. Beside of MRI safety 

concerns with magnetic field effect and RF induced heating problems, medical devices implanted into 

patient body must be visible and possible for tracking while operator locating a specific material through a 

tissue or an organ. 

 

 
 

 

For the realization of invasive operations under MRI scanner, MRI safety is the most challenging 

issue to overcome. Presence of any kind of metal is not safe in the strong magnetic field environment of a 

1. INTRODUCTION 

 

2. VISUALIZATION OF DEVICES UNDER MRI 
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MRI scanner. Metallic biomaterial-based instruments have the potential to interact with the activated RF 

transmitter that result in amplified RF heating at vicinity tissue of the instrument [8]. 

 

RF induced heating problem under MRI is characterized by the specific absorption rate (SAR), 

which is expressed as the power dissipated in specific volume [9]: 

 

𝑆𝐴𝑅 =
𝜎𝐸2

2𝜌
    (1) 

where σ is the electric conductivity, ρ is the tissue density and E is the magnitude of the electric field. For 

all metallic components and conductive lines that interact with body under MRI, SAR must be examined 

because the electric field is maximum at the adjacent tissue. 

 

Limited energy dissipation at adjacent tissue of biomaterials is possible under MRI by considering 

many factors including strength of the static magnetic field, the strength of the spatial gradient, the mass of 

the object, the shape of the object, and the magnetic susceptibility of the object [10]. For the detection of 

these conditions, electrical and magnetic computational analysis of biomaterials can be performed by using 

a computer environment based finite element method analysis [11]. 

 

Visualization of instruments and devices inside human body with the guidance of MRI is a place of 

interest by researchers for many years. While the interventionist locates an implant properly through a tissue 

or navigates vascular structures by using guidewires or catheters, a conspicuous distal tip and a detectable 

shaft under MRI is necessary during operation. 

 

Because metallic materials result in artifacts on image or cause heating risk under MRI, studies 

focus on plastic and polymer based materials, surfaces and coatings to develop invasive instruments, 

guidewires and catheters, that is difficult to visualize in MR imaging [10-13]. 

 

Considering both safety and visualization issues, 3 main approaches have been presented for 

tracking of instruments under MRI so far. 

 

A. Passive Imaging Techniques Using Biomaterials 

Passive device imaging corresponds to interventional instrument is directly visualized in the 

acquired image by its own effect on the spins in the specific area of the implant, catheter, or guidewire. 

Passive imaging techniques are based on markers with specific contrast agents or biomaterials mounted on 

instrument distal tip and/or shaft without any external connections to the MRI scanner. Since passive 

devices comprise paramagnetic, ferromagnetic and ferrimagnetic materials that result in distortion effect 

on T1 and T2 relaxation times of MRI signal, it is possible to obtain a positive or negative contrast between 

implanted instruments and background anatomy. Accordingly, passive devices do not incorporate metal 

components and conductive parts, threfore MRI safety concerns and many mechanical problems can be 

eliminated inherently [14]. 



Natural & Applied Sciences Journal Volume: Special Issue: 2nd International Congress of Updates in Biomedical Engineering 2020 
 

 

                         97 
 

 

The presence of biomaterials and markers with a magnetic susceptibility that are different from the 

magnetic susceptibility of background tissue distorts the uniform main magnetic field, B0. As a result of 

the difference in magnetic susceptibility with respect to the surrounding anatomy, the paramagnetic markers 

produce a local magnetic field inhomogeneity. This inhomogeneity results in magnetic field variations 

within voxels that cause spins to precess at different frequencies with respect to Larmor frequency of MRI 

scanner [14, 15]. 

 

Simplest way for implantation of passive tracking is contrast-enhanced MRI tools applied by 

utilizing implants, catheters or guidewires filled with some contrast agents such as 19F [16] and 

hyperpolarized 13C [17]. 

 

Positive contrast tracking technique may also consists of ring shaped paramagnetic markers such as 

dysprosium oxide (Dy2O3) [18], iron oxide particles [19], gadolinium diethylenetriamine pentaacetic acid 

(Gd-DTPA) [20-23] placed within the lumen or on the surface of an instrument that cause T1 shortening 

and bright signal spots (positive contrast) relative to adjacent tissue. The plastic multi chamber cylinders 

can be used for positioning of both titanium (paramagnetic) and graphite (diamagnetic) pieces over invasive 

implant within different layers to develop a positive contrast tracking device [24]. 

 

Similarly, negative contrast tracking usually benefits high magnetic susceptibility property of some 

ferromagnetic materials such as stainless steel, nickel, and copper zinc ferrite. These materials are utilized 

to impair magnetic homogeneity of main magnetic field under MRI and that result with local signal loss 

(void) due to intra-voxel dephasing [25-26]. 

 

Despite many advantages of passive approaches such as cost effectiveness, resistance to health 

hazards, and practical to manufacture compared to other methods, generating sufficient contrast between 

the implanted instruments and adjacent tissue is still a problematic issue. For better depiction of markers 

and suppression of background signals, additional subtraction sequences or post processing reconstruction 

methods can be needed that result with additional time consumption. Besides, susceptibility artifact of 

markers that is necessary for imaging also result in obstruction at surrounding anatomy that hampered to in 

vivo diagnostic or therapeutic procedures [17, 18, 27]. 

 

B. Active Imaging Techniques 

The active visualization methods rely on hardware components connected to the MRI scanner via a 

coaxial cable or a fiber optic cable. Active tracking techniques comprise small receiver coils or antennas 

placed into the interventional instruments for receiving and/or transmitting the signal via separate channels 

to the MRI scanner. The implantation can be performed independently from the imaging and so more 

detailed imaging can be achieved together with accurate coordinates of interventional devices through 

tissue or vessels. Contrary to passive techniques, long conductive lines used in active approaches for 

transporting electrical signals between the catheter and MRI scanner, result in significant heating that is 
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induced during RF transmission [28]. Active catheterization may also suffer from limited ability to steer 

and flexibility in tortuous blood vessels and cardiac chambers due to the rigid and nonflexible mechanical 

properties of incorporated RF receiver coils and antennas [29]. 

 

C. Semi-Active (Hybrid) Imaging Techniques 

Semi-active imaging techniques can also be named as hybrid imaging technique since it embodies 

some of the specific properties of both passive and active imaging techniques. Semi-active methods benefit 

wireless resonant circuits (RC) as a fiducial RF marker that inductively couples the standard 

transmitter/receiver coil of MRI scanner without any connection hardware in between. Excitation of RF 

signal by transmit coil results in locally induced B1 field over the RF coil and thus substantially enhancing 

the excitation angle in the directly adjacent surroundings of the RF marker [30]. For semi-active designs 

since the RF coil is completely activated by RF coupling, heating hazards caused by long conductive lines 

will be avoided inherently. 

 

Two of the most recent and promising studies presented ultra-thin, flexible and MRI compatible RF 

markers that provide a robust localization under MRI [31, 32]. As a result of evaluations in phantom and 

in vitro experiments, the proposed structures may be accepted as feasible for anatomic marking, 

miniaturization of device and safety. However, the coupling between RF resonator and transmitter and so 

the visualization of the RF marker is still directly depending on resonator's orientation with respect to the 

standard transmitter of the MRI scanner [32]. 

 

D. Nanoparticles For MRI 

Many studies were presented for biomedical applications that benefit nanoparticles with specific 

electronical (semiconductor etc), optical and magnetic (metal, etc.) properties [33]. Nanoparticles are 

generally utilized with varied medical imaging modalities as contrast agents and signaling molecules that 

increase diagnostic capability, drug delivery carriers and therapeutic elements [7].  Radiocontrast agents 

comprise iron oxide nanoparticles are novel agents for MRI to advance imaging contrast. Semiconducting 

quantum dots act as optical labels for imaging cells under MRI [33]. 

 

 

 

In this review, approaches to develop MRI safe and compatible interventional devices composed of 

biomaterials has been discussed that will provide sufficient image contrast without impairing effect of 

mechanical properties and visibility under MRI. Fabrication of interventional instruments that will be used 

under MRI guidance should be realized by considering many factors involving B0 magnetic strength, B1 

field orientation, minimization of RF heating, re-manufacturability, biocompatibility, and mechanical 

properties. These parameters are directly effective on performance of MRI safe and compatible devices 

including induced current, tuning, Signal to Noise Ratio (SNR), and Quality factor (Q). 

 

3. DISCUSSION  
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Although all mentioned approaches are promising for construction of safe and visible MRI 

compatible devices, studies should devote more time to present optimized and robust designs to overcome 

challenges for realization of interventional procedures under MRI. 
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