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1. Introduction

We study the following singularly perturbed boundary value problem with two nonlocal boundary conditions:

ε2u′′(x) + εb(x)u′(x) − g(x, u (x)) = 0, 0 < x < ℓ, (1.1)

u (0) −
∫ ℓ1

ℓ0

k0 (x) u (x) dx − A = 0, (1.2)

u (ℓ) −
∫ ℓ1

ℓ0

k1 (x) u (x) dx − B = 0, 0 ≤ ℓ0 < ℓ1 ≤ ℓ, (1.3)

where 0 < ε ≪ 1 is the perturbation parameter, A and B are given constants, the functions b(x) ⩾ 0 and g(x, u) are
sufficiently smooth on [0, ℓ] and [0, ℓ] × R, respectively, and k0 (x) and k1 (x) are continuous functions on [ℓ0, ℓ1] .We
note here that

0 < β ≤
∂g
∂u
≤ β∗ < ∞.

Singularly perturbation problems occur very frequently in fluid mechanics, fluid dynamics, quantum mechanics, elas-
ticity, aerodynamics, meteorology, plasma dynamics, magneto hydrodynamics, rarefied gas dynamics, oceanogra-
phy [13, 14, 22–25, 27].

The highest order derivative terms of such differential equations are multiplied by a small parameter ε. Therefore,
these differential equations are called singularly perturbed differential equations. Due to the parameter ε, a sudden and
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rapid change of thin transition layers occurs in the solution (around the points 0 and ℓ). In all domain except this thin
transition layers, the solution is regular and slow. For this reason, suitable numerical methods have been used to solve
such problems. For example, the finite elements method and the finite differences method [2, 3, 7, 9–11, 15]. In the last
two decades, a great deal of research has been made on numerical methods for solving singularly perturbed problems,
see [5, 12–14, 17, 20–25, 27, 29] and references herein. Existence and uniqueness of the solutions of such problems
are researched in [4, 6, 8]. When we look at similar problems in the literature, we see that the singularly perturbed
differential equation with two integral boundary conditions has been investigated with as the boundary function method
and the theory of differential inequalities were applied to obtain the uniformly valid asymptotic solution of the problem
in [22]. Another study is that the method of generalized quasilinearization for the boundary value problem with two
integral boundary conditions has been used in [23]. We can see various studies on singularly perturbed problems with
nonlocal boundary condition in the references [1–3, 9–11, 16, 18, 19, 26, 28, 30–32].

Studies above, related to different types of singularly perturbed equations were concerned only with integral condi-
tion. On the other hand, our problem is concerned with two parameter singularly perturbed problem together with the
two integral boundary conditions. We have also derived algorithms to obtain Bakhvalov-Shishkin mesh to the problem
for the first time. The Bakhvalov-Shishkin mesh gives a stronger error bound for ε ≤ CN−1. This is a modification
of the Shishkin mesh described by Bakhvalov. But the original Bakhvalov mesh requires the solution of a nonlinear
equation to determine the transition point where the mesh switches from coarse to fine. Instead, the transition points are
as in the Shishkin mesh [18]. There are many studies on the Bakhvalov-Shishkin mesh see references there in [33,34].

In this s, we examine some properties of the exact solution of (1.1)-(1.3) in Section 2. Finite difference scheme on a
non-uniform Bakhvalov-Shishkin type mesh for problem (1.1)-(1.3) are obtained in Section 3. Convergence properties
of the scheme are analyzed in Section 4. An example is presented in Section 5.

Assumption 1: In this study, C means a positive constant independent of independent of ε and the mesh parameter.
For any continuous function, ϑ(x), defined in the associated interval, maximum norm has the form ∥ϑ∥∞ = max

[0,ℓ]
|ϑ (x)| .

Assumption 2: Throughout the study, ε ≤ CN−1 will be assumed as in practice, where N is a positive even integer.

2. Preliminariy for Some Properties of the Exact Solution

In this part, we present some properties of the exact solution that are necessary in the application of the method used
in the study.

Definition 2.1 ( [10,11]). Let L, L0 and L1 be the finite difference operators in (2.3)-(2.5) and v ∈ C2[0, ℓ]. If L0(v) ≥ 0,
L1(v) ≥ 0 and L(v) ≤ 0 for all 0 < x < ℓ, then v(x) ≥ 0 for all 0 ≤ x ≤ ℓ.

Definition 2.2 ( [10, 11]). Let l, l0 and l1 be the finite difference operators in (3.6)-(3.8). If v is any mesh function
defined on ω̄N such that l0(v) ≥ 0, l1(v) ≥ 0 and l(v) ≤ 0 for all i = 1, 2, ...,N; then vi ≥ 0 for all i = 0, 1, ...,N.

Lemma 2.3. Let u(x) be the solution of the problem (1.1)-(1.3), b(x) ∈ C1[0, ℓ], γ =
∫ ℓ1
ℓ0

(|k0 (x)| + |k1 (x)|) dx < 1,
∂g/∂u − εb′ (x) ≥ β∗ and |∂g/∂x| ⩽ C for x ∈ [0, ℓ], then the following estimates hold,

∥u∥∞ ⩽ C0, (2.1)∣∣∣u′(x)
∣∣∣ ⩽ C

{
1 +

1
ε

(
exp(−

µ0x
ε

) + exp(−
µ1 (ℓ − x)
ε

)
)}
, 0 ⩽ x ⩽ ℓ, (2.2)

where
C0 = (1 − γ)−1

(
|A| + |B| + β−1 ∥G∥∞

)
,

G (x) = g (x, 0) , ∥u∥∞ = max
[0,ℓ]
|u (x)| ,

µ0 =
1
2

(√
b2 (0) + 4β∗ + c (0)

)
,

µ1 =
1
2

(√
b2 (ℓ) + 4β∗ − c (ℓ)

)
.
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Proof. Let us begin the proof of (2.1) by rewriting the equation (1.1)-(1.3) in the following form:

ε2u′′(x) + εb(x)u′(x) − c (x) u (x) = G (x) , 0 < x < ℓ, (2.3)

u (0) −
∫ ℓ1

ℓ0

k0 (x) u (x) dx = A, (2.4)

u (ℓ) −
∫ ℓ1

ℓ0

k1 (x) u (x) dx = B, (2.5)

where
c (x) =

∂g
∂u

(x, ξu (x)) , 0 < ξ < 1.

Using the maximum principle in (2.3)-(2.5), we obtain the inequality as

|u (x)| ≤ |u (0)| + |u (ℓ)| + β−1 ∥G∥∞ , x ∈ [0, ℓ] , (2.6)

where u(0) and u(ℓ) are given as

|u (0)| ≤ |A| +
∫ ℓ1

ℓ0

|k0 (x)| |u (x)| dx, (2.7)

and

|u (ℓ)| ≤ |B| +
∫ ℓ1

ℓ0

|k1 (x)| |u (x)| dx. (2.8)

Inserting (2.7) and (2.8) in (2.6), we have

|u (x)| ≤ C0.

So, this completes the proof of (2.1).
Now, let us use the problem (2.3)-(2.5) for proving the accuracy of (2.2) as follows.
Therefore, we first write the equation (2.3) as

Lv = Φ(x),
v(0) = u′(0), v(ℓ) = u′(ℓ),

where
u′(x) = v(x), Φ(x) = G′(x) − εb′(x)u′(x) + c′(x)u(x).

Now, we estimate v(x) by splitting it into v(x) = v1(x) + v2(x) and consider each term seperately, where v1(x) and v2(x)
are the solutions of the following problems, respectively,

Lv1 = Φ(x), v1(0) = 0, v1(ℓ) = 0, (2.9)

Lv2 = 0, v2(0) = u′(0), v2(ℓ) = u′(ℓ). (2.10)
For the solution of (2.9) we obtain

v1(x) ≤ β−1∥Φ∥C ,

so that by Lemma 2.1
|Φ(x)| ≤ C,

thus
|v1(x)| ≤ C.

In order to estimate the solution of the problem (2.10), we take as.

v2(x) = w0(x) + w1(x) + Rε(x),

where w0(x), w1(x) and Rε(x) are the solutions of the following problems, respectively:

ε2w′′0 (x) + εb(x)w′0(x) − c (x) w0(x) = 0, (2.11)

w0(0) = u′(0), w0(ℓ) = 0, (2.12)
ε2w′′1 (x) + εb(x)w′1(x) − c(x)w1(x) = 0, (2.13)

w1(0) = 0, w1(ℓ) = u′(ℓ), (2.14)
LRε = Ψε(x), (2.15)

Rε(0) = Rε(ℓ) = 0, (2.16)
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with
Ψε(x) = [b(0) − b(x)]εw′0(x) + [c(x) − c(0)]w0(x) + [b(ℓ) − b(x)]εw′0(x) + [c(x) − c(ℓ)]w0(x) ≤ C.

The solutions of the problems (2.11),(2.12) and (2.13),(2.14) can be easily obtained as □

w0(x) =
u′(0)sinh( µ0(ℓ−x)

2ε )exp(−b(0)x
2ε )

εsinh( µ0ℓ
2ε )

≤
Cexp(−µ0 x

2ε )
ε

,

and

w1(x) =
u′(ℓ)sinh( µ1 x

2ε )exp( b(ℓ)(ℓ−x)
2ε )

εsinh( µ1ℓ
2ε )

≤
Cexp(−µ1(ℓ−x)

2ε )
ε

,

where
µ0 =

( √
b2 (0) + 4c(0)

)
, µ1 =

( √
b2 (ℓ) + 4c(0)

)
.

The solution of problem (2.15)-(2.16) is estimated with the help of inequality (2.1) as follows
Rε(x) ≤ C.

Using the above bounds in the following inequality, we have the following inequality

|v2(x)| ≤ |w0(x)| + |w1(x)| + |Rε(x)| ≤ C
{

1 +
1
ε

(
exp(−

µ0x
ε

) + exp(−
µ1 (ℓ − x)
ε

)
)}
.

Finally, we find the evaluation as

u′(x) = v(x) = v1(x) + v2(x) ≤ C
{

1 +
1
ε

(
exp(−

µ0x
ε

) + exp(−
µ1 (ℓ − x)
ε

)
)}
.

This gives the proof of (2.2).

3. Application of the Finite DifferenceMethod

In this part, we construct the problem (1.1)-(1.3) using the finite difference method on Bakhvalov-Shishkin type
mesh.

Bakhvalov-Shishkin Mesh is defined as follow:
The interval [0, ℓ] is divided into the three subintervals [0, σ1], [σ1, ℓ − σ2] and [ℓ − σ2, ℓ] . Here σ1 and σ2 are

introduced as the transition points and are written as follows:

σ1=min
{

1
4
, µ−1

0 ε ln N
}
, σ2=min

{
1
4
, µ−1

1 ε ln N
}
.

The mesh points ω̄N = {xi}
N
i=0 are introduced through a set of the equalities:

xi =


−µ−1

0 ε ln
[
1 − 4(1 − N−1) i

N

]
, i = 0, ..., N

4 ,

σ1 + (i − N
4 )h, h = 2(1−σ2−σ1)

N , i = N
4 + 1, ..., 3N

4 ,

1 + µ−1
1 ε ln

[
1 − 4(1 − N−1)(1 − i

N )
]
, i = 3N

4 , ...,N.

The difference scheme will be constructed on the following nonuniform mesh

ωN = {0 < x1 < x2 < ... < xN−1 < ℓ} ,

and
ω̄N = ωN ∪ {x0 = 0, xN = ℓ} .

Before describing the numerical method, we introduce some notations for the mesh functions. We set vi = v(xi) for
any v(x) on ω̄N . For any mesh function vi defined on ω̄N we use the following finite difference operators:

vx̄,i =
vi − vi−1

hi
, vx,i =

vi+1 − vi

hi+1
, v0

x,i
=

vx,i + vx̄,i

2
,
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vx̂,i =
vi+1 − vi

ℏi
, vx̄x̂,i =

vx,i − vx̄,i

ℏi
, ℏi =

hi + hi+1

2
,

∥v∥∞ ≡ ∥v∥∞,ω̄N
:= max

0⩽i⩽N
|vi| , hi = xi − xi−1, i = 1, 2, ...,N.

The discretization for (1.1) begins with the identity

χ−1
i ℏ
−1
i

xi+1∫
xi−1

Lu(x)φi(x)dx = 0, 1 ⩽ i ⩽ N − 1, (3.1)

where the basis functions {φi(x)}N−1
i=1 are of the form

φi(x) =


φ(1)

i (x), xi−1 < x < xi,

φ(2)
i (x), xi < x < xi+1,
0, otherwise.

The functions φ(1)
i (x) and φ(2)

i (x) are defined by

φ(1)
i (x) =

e
bi(x−xi−1)

ε − 1

e
ihi
ε − 1

, φ(2)
i (x) =

1 − e−
bi(xi+1−x)

ε

1 − e−
bihi+1
ε

.

The coefficient χi in (3.1) is given as follow:

χi = ℏ
−1
i

xi+1∫
xi−1

φi(x)dx =
{
ℏ−1

i

(
hi

1−e
aihi
ε

+ hi+1

1−e−
aihi+1
ε

)
.

We easily rearrange (3.1) and write

−ε2χ−1
i ℏ
−1
i

xi+1∫
xi−1

φ′i(x)u′ (x) dx+εbiχ
−1
i ℏ
−1
i

xi+1∫
xi−1

φi(x)u′ (x) dx,

− f (xi, ui) + Ri = 0, i = 1, 2, ...,N − 1, (3.2)
by letting

Ri = εχ−1
i ℏ
−1
i

xi+1∫
xi−1

[b (x) − b (xi)]φi(x)u′ (x) dx,

−χ−1
i ℏ
−1
i

xi+1∫
xi−1

dxφi(x)

xi+1∫
xi−1

d
dx

f (ξ, u (ξ) )K∗0,i (x, ξ) dξ, (3.3)

where
K∗0,i (x, ξ) = T0 (x − ξ) − T0 (xi − ξ) , T0(λ) = 1, λ ⩾ 0; T0(λ) = 0, λ < 0.

Using the interpolating quadrature rules (2.1) and (2.2) from [18] with weight functions φi(x) on subintervals (xi−1, xi+1)
for (3.2), and we obtain

ε2
{
χ−1

i

(
1 + 0.5ε−1ℏibi

(
χ2,i − χ1,i

))}
ux̄x̂,i + εbiu0

x,i
− f (xi, ui) + Ri = 0,

where

χ1,i = ℏ
−1
i

xi∫
xi−1

φ(1)
i (x)dx =

{
ℏ−1

i

(
ε
bi
+ hi

1−e
bihi
ε

)
,

χ2,i = ℏ
−1
i

xi+1∫
xi

φ(2)
i (x)dx =

{
ℏ−1

i

(
hi+1

1−e
bihi+1
ε

− εbi

)
.

The following difference approach is obtained from the above equations

εθiux̄x̂,i + εbiu0
x,i
− f (xi, ui) + Ri = 0, 1 ⩽ i ⩽ N − 1,
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where
θi = χ

−1
i

(
1 + 0.5ε−1ℏibi

(
χ2,i − χ1,i

))
. (3.4)

After some calculations of (3.4), we deduce that

θi =

 aiℏi
2ε

 hi+1

(
e

bihi
ε −1

)
+hi

(
1−e−

bihi+1
ε

)
hi+1

(
e

bihi
ε −1

)
−hi

(
1−e−

bihi+1
ε

)
 .

Now let us determine approximation for (1.2) and (1.3). Let xN0 and xN1 be the mesh points nearest to ℓ0 and ℓ1,
respectively. ∫ ℓ1

ℓ0

k0 (x) u (x) dx =

∫ xN0

ℓ0

k0 (x) u (x) dx +
∫ xN1

xN0

k0 (x) u (x) dx

+

∫ ℓ1

xN1

k0 (x) u (x) dx,

and ∫ xN1

xN0

k0 (x) u (x) dx =

N1∑
i=N0

(∫ xi

xi−1

k0 (x) dx
)

u (xi) + r̄i

= M0 (u) + r̄i,

where

M0 (u) =
N1∑

i=N0

(∫ xi

xi−1

k0 (x) dx
)

u (xi) , (3.5)

r̄i =

N1∑
i=N0

∫ xi

xi−1

k0 (x) dx
∫ xi

xi−1

u′ (ξ) (T0 (x − ξ) − 1) dξ,

We find the following approximation for (1.2):

u0 − M0 (u) = A + r0, (3.6)

where

r0 =

∫ xN0

ℓ0

k0 (x) u (x) dx +
∫ ℓ1

xN1

k0 (x) u (x) dx + r̄i. (3.7)

For (1.3), we find the following approximation similar to (1.2):

uℓ − M1 (u) = B + r1, (3.8)

where

M1 (u) =
N1∑

i=N0

(∫ xi

xi−1

k1 (x) dx
)

u (xi) , (3.9)

r1 =

∫ xN0

ℓ0

k1 (x) u (x) dx +
∫ ℓ1

xN1

k1 (x) u (x) dx + r̃, (3.10)

r̃ =
N1∑

i=N0

∫ xi

xi−1

dxk1 (x)
∫ xi

xi−1

u′ (ξ) (T0 (x − ξ) − 1) dξ.

If we neglect the error functions Ri, r0 and r1 in (3.3), (3.7) and (3.10), then we deduce the following finite difference
scheme for the problem (1.1)-(1.3):

ε2θiyx̄x̂,i + εbiy0
x,i
−g (xi, yi) = 0, 1 ⩽ i ⩽ N − 1, (3.11)

y0 − M0 (y) = A, (3.12)

yN − M1 (y) = B, (3.13)
where θi, M0 (y) and M1 (y) are given by (3.4), (3.5) and (3.9), respectively.
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4. Analysis of Stability

In this section, we will investigate the stability of the method by applying Lemma 4.1. Here we denote the estimate
of error functions Ri, r0 and r1 with Lemma 4.2.

We define error function zi as zi = yi − ui, which is the solution of the discrete problem (3.11)-(3.13).

ε2θizx̄x̂,i + εbiz0
x,i
−

[
g (xi, yi) − g (xi, ui)

]
= Ri, 1 < i < N, (4.1)

z0 − M0 (z) = r0, (4.2)
zN − M1 (z) = r1. (4.3)

Lemma 4.1. If zi is the solution of (4.1)-(4.3), then the following estimate holds:

∥z∥∞,ω̄N
≤ C

(
β−1 ∥R∥∞,ωN

+ |r0| + |r1|
)
.

Proof. We rewrite the problem (4.1)-(4.3) in the form

lzi := ε2θizx̄x̂,i + εbiz0
x,i
−cizi= Ri, 1 < i < N, (4.4)

l0z := z0 − M0 (z) = r0, (4.5)
l1z := zN − M1 (z) = r1, (4.6)

where

ci =
∂g
∂u

(xi, ui + ηzi) , 0 < η < 1,

and ui + ηzi is the intermediate point.
Using the maximum principle in (4.4), it is easy to obtain that

∥z∥∞,ω̄N
≤ |z0| + |zN | + β

−1 ∥R∥∞,ωN
. (4.7)

Using the boundary conditions (4.5) and (4.6), we find that

|z0| ≤ |r0| +

N1∑
i=N0

(∫ xi

xi−1

|k0 (x)| dx
)
|zi| , (4.8)

|zN | ≤ |r1| +

N1∑
i=N0

(∫ xi

xi−1

|k1 (x)| dx
)
|zi| . (4.9)

By inserting the inequalities (4.8) and (4.9) in (4.7), we obtain

∥z∥∞,ω̄N
≤ β−1 ∥R∥∞,ωN

+ |r0| +

N1∑
i=N0

(∫ xi

xi−1

|k0 (x)| dx
)
|zi|

+ |r1| +

N1∑
i=N0

(∫ xi

xi−1

|k1 (x)| dx
)
|zi|

≤ β−1 ∥R∥∞,ωN
+ |r0| + |r1| +

+ ∥z∥∞,ω̄N

(∫ ℓ1

ℓ0

|k0 (x)| dx +
∫ ℓ1

ℓ0

|k1 (x)| dx
)
.

From here, we have
∥z∥∞,ω̄N

≤ (1 − λ)−1
(
β−1 ∥R∥∞,ωN

+ |r0| + |r1|
)
,

where λ =
∑N1

i=N0

∫ xi

xi−1
(|k0(x)| + |k1(x)|) dx < 1. So, the proof of Lemma 4.1 is completed. □

Lemma 4.2. Under the assumptions of Section 1 and Lemma 2.1, the following estimates are valid for the error
functions Ri, r0 and r1 :

∥R∥∞,ωN
≤ CN−1,

|r0| ≤ CN−1, (4.10)
|r1| ≤ CN−1. (4.11)
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Proof. From the expression (3.3) for Ri in the Bakhvalov-Shishkin mesh we have the following evaluation

|Ri| ≤ C

hi + hi+1 +

xi+1∫
xi−1

(
1 +

∣∣∣u′ (ξ)∣∣∣) dξ

 , 1 ≤ i ≤ N.

This inequality, together with (2.2), enables us to write as follows:

|Ri| ≤ C

hi + hi+1 +
1
ε

xi+1∫
xi−1

(
e−

µ0 x
ε + e−

µ1(ℓ−x)
ε

)
dx

 . (4.12)

1) The remainder term R1
i is evaluated as. For xi ∈ [0, σ1] , σ1 ≤

1
4 :

xi−1 = −µ
−1
0 ε ln

[
1 − 4(1 − N−1)

i − 1
N

]
, i = 1, ...,

N
4
,

hi = −µ
−1
0 ε ln

[
1 − 4(1 − N−1)

i
N

]
+ µ−1

0 ε ln
[
1 − 4(1 − N−1)

i − 1
N

]
, (4.13)

hi+1 = −µ
−1
0 ε ln

[
1 − 4(1 − N−1)

i + 1
N

]
+ µ−1

0 ε ln
[
1 − 4(1 − N−1)

i
N

]
. (4.14)

Applying the mean value theorem in (4.13)-(4.14), we obtain that

hi = µ
−1
0 ε

4(1 − N−1)N−1

1 − 4i1(1 − N−1)N−1 ≤ CN−1, hi+1 ≤ CN−1. (4.15)

From (4.12) and (4.15), we have

|Ri| ≤ C
{

CN−1 +CN−1 + µ−1
0

[
e
−µ0 xi−1
ε − e

−µ0 xi+1
ε

]
− µ−1

1

[
e
−µ1(1−xi+1)

ε − e
−µ1(1−xi−1)

ε

]}
≤ CN−1, i = 1, ...,

N
4
− 1,

where

e−
µ0(xi−1)
ε − e−

µ0(xi+1)
ε ≤

1
N

e
−µ0(i−1− N

4 )h
ε

(
1 − e

−2µ0h
ε

)
≤ CN−1,

and similarly

e−
µ1(1−xi+1)

ε − e−
µ1(1−xi−1)

ε ≤ CN−1.

From (4.12), we come to conclusion as

|Ri| ≤ CN−1, i = 1, ...,
N
4
.

2) The remainder term Ri is evaluated as. For xi ∈ [σ1, 1 − σ2] :

xi = σ1 + (i −
N
4

)h, i =
N
4
+ 1, ...,

3N
4
, (4.16)

where

h =
2(1 − σ2 − σ1)

N
. (4.17)

From (4.12), (4.16) and (4.17), we have

|Ri| ≤ CN−1, i =
N
4
+ 1, ...,

3N
4
,

where

e−
µ0(xi−1)
ε − e−

µ0(xi+1)
ε ≤

1
N

e
−µ0(i−1− N

4 )h
ε

(
1 − e

−2µ0h
ε

)
≤ CN−1,
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and similarly

e−
µ1(1−xi+1)

ε − e−
µ1(1−xi−1)

ε ≤ CN−1.

3) The remainder term Ri is evaluated as. For xi ∈ [1 − σ2, 1]:

xi−1 = 1 + µ−1
1 ε ln

[
1 − 4(1 − N−1)(1 −

i − 1
N

)
]
, i =

3N
4
, ...,N,

hi = µ
−1
1 ε

{
ln[1 − 4(1 − N−1)(1 −

i
N

)] − ln[1 − 4(1 − N−1)(1 −
i − 1

N
)]
}
. (4.18)

By applying the mean value theorem in (4.18), we obtain

hi ≤ CN−1. (4.19)

Using the inequality (4.19), we have

ℏi ≤ CN−1. (4.20)

Thus, from (4.12), (4.19) and (4.20), we can write

|Ri| ≤ CN−1, i =
3N
4
, ...,N,

where

e−
µ1(xi−1)
ε − e−

µ1(xi+1)
ε = e−µ1(1+µ−1

1 ε ln[1−4(1−N−1)(1− i−1
N )])

− e−µ1(1+µ−1
1 ε ln[1−4(1−N−1)(1− i+1

N ]) ≤ CN−1.

Now, we evaluate (3.7) for the proof of (4.10) as

|r0| ≤

N1∑
i=N0

∫ xi

xi−1

dx |k0 (x)|
∫ xi

xi−1

∣∣∣u′ (ξ)∣∣∣ |T0 (x − ξ) − 1| dξ

+

∫ xN0

ℓ0

|k0 (x)| |u (x)| dx +
∫ ℓ1

xN1

|k0 (x)| |u (x)| dx

≤ h max
[xi−1, xi]

|k0 (x)|
N1∑

i=N0

∫ xi

xi−1

∣∣∣u′ (ξ)∣∣∣ |T0 (x − ξ) − 1| dξ + O (h)

≤ 2h max
[xi−1, xi]

|k0 (x)|
∫ ℓ

0

∣∣∣u′ (x)
∣∣∣ dx + O (h)

≤ Ch. (4.21)

When
[
xN0 , xN1

]
is inside the interval [σ1, ℓ − σ2] , we obtain from the inequality (4.21)

|r0| ≤ CN−1.

When
[
xN0 , xN1

]
, by the inequality (4.21), we have

|r0| ≤ Ch ≤
Cε ln N

N
≤ CN−1.
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The same estimate is done for the interval [ℓ − σ2, ℓ] in a similar way. The proof of (4.11) from (3.10) is given as

|r1| ≤

N1∑
i=N0

∫ xi

xi−1

dx |k1 (x)|
∫ xi

xi−1

∣∣∣u′ (ξ)∣∣∣ |T0 (x − ξ) − 1| dξ

+

∫ xN0

ℓ0

|k1 (x)| |u (x)| dx +
∫ ℓ1

xN1

|k1 (x)| |u (x)| dx

≤ h max
[xi−1, xi]

|k1 (x)|
N1∑

i=N0

∫ xi

xi−1

∣∣∣u′ (ξ)∣∣∣ |T0 (x − ξ) − 1| dξ + O (h)

≤ 2h max
[xi−1, xi]

|k1 (x)|
∫ ℓ

0

∣∣∣u′ (x)
∣∣∣ dx + O (h)

≤ Ch. (4.22)

If
[
xN0 , xN1

]
is inside of the intervals [0, σ1] , [σ1, ℓ − σ2] and [ℓ − σ2, ℓ] , respectively, we have from the inequality

(4.22)
|r1| ≤ CN−1.

All these complete the proof of Lemma 4.2. □

Finally, from Lemma 4.1 and 4.2, the following significant theorem gives us convergence result of the proposed
method.

Theorem 4.3. Suppose that b(x), f (x) ∈ C1 [0, ℓ] . Let u be the solution of (1.1)-(1.3) and y be the solution of (3.11)-
(3.13). Then, the following ε− uniform estimate satisfies

∥y − u∥∞,ω̄N
≤ CN−1.

5. Numerical Illustration

Here we will test the difference scheme on a problem. We solve the nonlinear problem (3.11)-(3.13) using the
following quasilinearization technique [10]:

ε2θiy
(n)
x̄x̂,i + εbiy

(n)
0
x,i
− f

(
xi, y

(n−1)
i

)
−
∂ f
∂y

(
xi, y

(n−1)
i

) (
y(n)

i − y(n−1)
i

)
= 0,

y(n)
0 =

N1∑
i=N0

hik0,iy
(n−1)
i + A,

y(n)
N =

N1∑
i=N0

hik1,iy
(n−1)
i + B,

for n ≥ 1 and y(0)
i given for 1 ≤ i ≤ N.

Example 1. Our test problem is as follows:

ε2u′′ + ε (1 + x) u′ − 2u + arctan (x + u) = 0, 0 < x < 1,

u (0) =
∫ 1

0.5
cos (πx) u (x) dx + 2, u (1) =

∫ 1

0.5
sin(πx)u (x) dx + 3.

The exact solution of this example is not available. Hence we compare approximate solutions in double mesh as.

eN
ε = max

i

∣∣∣yε,Ni − ỹε,2N
2i

∣∣∣ .
Convergence rates are defined as:

PN
ε =

ln
(
eN
ε /e

2N
ε

)
ln 2

.
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The ε−uniform errors eN are estimated the following form:

eN = max
ε

eN
ε .

The rates of uniform convergence PN
ε for different values of ε and N are presented in Table 1. These increase mono-

tonically towards one. It is understood from the results of the numerical experiment is consistent with the theoretical
results. In Figure 1, as N values increase, the graph gets closer to the coordinate axes in the boundary layer regions
around x = 0 and x = 1.

Table 1. Approximate maximum errors eN
ε and the rates of convergence pN

ε on ω̄N for values of ε
and N of Example 1.

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

2−10 0.228121 0.116023 0.058333 0.029137 0.014051 0.007009
0.97 0.99 1.00 1.00 1.00

2−12 0.230496 0.116093 0.058346 0.029115 0.014008 0.007001
0.98 0.99 1.00 1.05 0.99

2−14 0.230540 0.116110 0.058349 0.029112 0.014559 0.007102
0.97 0.99 1.00 1.07 1.08

2−16 0.230549 0.116116 0.058351 0.029111 0.014531 0.007102
0.98 0.99 1.00 1.00 1.03

2−18 0.230548 0.116125 0.058331 0.029112 0.014499 0.007106
0.98 0.99 1.00 1.00 1.02

2−20 0.230559 0.116150 0.058287 0.029140 0.014359 0.007001
0.98 0.99 1.00 1.02 1.03

eN 0.230559 0.116150 0.058351 0.029140 0.014559 0.007009
pN 0.98 0.99 1.00 1.02 1.08

Figure 1. Error distrubition for ε = 2−14 and N values.

6. Conclusion

We have studied the finite difference method on the non-uniform mesh for solving singularly perturbed semilinear
boundary value problem with two integral boundary conditions. We have applied the present method on a test prob-
lem. As a result, the method has ε-uniform convergence with respect to the perturbation parameter ε in the discrete
maximum norm. The obtained numerical results have been tabulated in terms of maximum absolute errors and rates of
convergence (see Table 1). Approximate solution curves have been shown in Figure 1, in terms of ε and for increasing
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Figure 2. The rates of convergence PN
ε for ε = 2−14, N = 64, 128, 256, 512, 1024.

and N. As N value increases, the convergence values get closer to one, which also proves how perfect the method is in
Table 1. The scheme can be effectively applied also in the case when the original problem has a solution with certain
singularities.
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