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• This paper investigates the effect of drivability calibration on the driving style of the driver. 

• A fuzzy logic approach is implemented in order to evaluate the driver behavior. 

• An automated driver classification algorithm is proposed based on experimental data. 
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Abstract 

Increased customer expectations lead the automobile manufacturers to develop innovative 

solutions, such as mode selection functions that provide different performance and comfort 

settings for the drivers. Almost all brands have different types of driving modes installed on their 

vehicles, such as sport mode, economy mode, off-road mode, etc. In the current technology, the 

mode selection is manually done by the driver. Thus, no effort is taken to match the driver style 

with available driving modes. However, driving mode selection should be done through an 

intelligent system such as vehicle control unit, in order to optimize customer expectations related 

to vehicle performance, driving comfort, and fuel consumption. This can be achieved by the 

analysis of all drivability maneuvers during any driving cycle. Based on the results of these 

analyses, drivability calibration settings of the vehicle can be adjusted depending on driver 

behaviors. In addition, fuel consumption can be improved using suitable calibration for each 

driver type. In this study, an experimental investigation is carried out in which vehicle data is 

collected for eleven different drivers at three different drivability calibrations. Furthermore, fuzzy 

logic algorithms are utilized in order to distinguish the driver characteristics. First, data from nine 

drivers are used in order to train the fuzzy logic approach. Then, the trained fuzzy logic scheme 

is used to assess the characteristics of two other drivers, who were left out in the training data set. 

Hence, it is aimed to obtain an intelligent prediction procedure that can estimate the characteristics 

of a driver based on their driving styles. 
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1. INTRODUCTION 

 

Performance of a vehicle, which is closely related with the acceleration perception, and driving comfort are 

two key parameters for customer satisfaction. However, there is a trade of between these two criteria, i.e., 

an increase in acceleration performance can disturb the driving comfort and any attempt taken to improve 

driving comfort may lead to a decrease in the acceleration performance. In automotive technology, the 

acceleration performance and driving comfort characteristics of a vehicle determine its drivability, which 

can be described as the smoothness of the vehicle motion and perception of performance. Furthermore, all 

dynamic maneuvers of a vehicle are controlled by drivability functions, which are acceleration, 

deceleration, gear shifting, launch maneuvers, etc. Note that the engine and transmission dynamics have an 

important effect on drivability characteristics of the vehicle, which are controlled by the vehicle control 

unit (VCU). Hence, one can assure that the drivability characteristics of the vehicle would be satisfactory 

if the VCU is properly calibrated. 
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Maneuvers such as tip-in and tip-out, which are sudden push or release of the acceleration pedal, lead to 

oscillations in transmission that would be hard to suppress through structural modifications. Though, proper 

control of driver behavior effects on drivetrain can prevent these vibratory responses easily. However, 

filtering the driver request would not be an effective solution, since these limitations can cause a decline in 

acceleration performance. Hence, calibrating the drivability functions is an important task that is essentially 

finding the optimal settings for the control of torque and its transition from engine to wheel, while keeping 

the acceleration performance and driving comfort at satisfactory levels. These optimal parameters are 

usually determined by the manufacturer as a part of the development process and cannot be altered during 

the operation of the vehicle. 

 

Classification of drivers and understanding their expectations from the vehicles is an important task for 

vehicle manufacturers. Hence, detailed experimental studies related to this objective have been conducted. 

In these studies, experiments have been conveyed in three different testing environments: 1) simulation 

platforms [1-3]; 2) model-based test platforms [4,5]; and 3) real vehicle tests [6-10]. Furthermore; fuzzy 

logic [11], neural network method [12] and machine learning [6] are some of the approaches that have been 

applied for the classification of drivers. Though none of these studies investigated drivability calibration 

effects on driving behavior. In addition, literature studies generally involve three input parameters for 

classification such as acceleration, velocity and fuel consumption [7,11-15]. In this study, seven parameters 

have been assumed to be inputs for the fuzzy logic algorithm, which is utilized for driver evaluation. 

 

The chief objective of this study is to develop a driver evaluation algorithm by using fuzzy logic approach. 

Hence the objectives of this study can be listed as: 1) to create a driving cycle on which the tests are 

conducted; 2) to develop three different drivability calibrations for the vehicle that is used in the 

experiments and collect driving data from eleven drivers at each calibration; 3) to identify necessary fuzzy 

logic membership functions for all drivability calibrations and create fuzzy logic rules, accordingly; 4) to 

generate a fuzzy logic prediction algorithm and investigate collected data with this algorithm in order to 

evaluate driver behavior; and 5) to investigate the effect of drivability calibration on driving style. 

 

2. DRIVING STYLE CLASSIFICATION AND DRIVABILITY CALIBRATION EFFECTS 

BASED ON EXPERIMENTAL DATA 

 

In this study, driver evaluation is performed with the use of experimental data. As mentioned before, 

experiments have been conducted on a vehicle at three different drivability calibrations by eleven different 

drivers. Hence, a light duty vehicle with 2.0 liter diesel engine equipped with a manual transmission is 

utilized. The vehicle has a total mass of 2950 kg and the maximum power of the engine is 125 kW. 

 

2.1. Experimental Procedure 

 

Data is collected on a public road, though the route is kept intact for all drivers. Furthermore, all tests were 

performed on the weekdays during the hours 11:00 – 15:00 in order to avoid high traffic jam, ambient 

temperature variations and pedestrian activities. The test path is selected accordingly, so that a speed range 

of 0 – 100 km/h can be achieved. Furthermore, the path that is 10.2 km long allows drivers to perform 

different maneuvers such as deceleration, acceleration, gear shifting, launching, etc. 

 

Drivers are selected depending on their driving experience, i.e., minimum of two years of experience is 

sought. Eleven drivers have been asked to drive the vehicle three times, in each only the drivability 

calibration is changed. Thus 33 runs are performed and data is collected accordingly. 

 

The drivability calibrations developed in this study are labelled as relax, normal and aggressive. These 

calibrations are obtained by altering several VCU settings such as torque request characteristics, torque 

ramp limits, additional torque requests for launch maneuver, additional engine speed request for gearshift 

maneuvers. Details of these drivability calibrations are tabulated in Table 1. 
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Table 1. Three drivability calibrations and levels of corresponding characteristics 

Calibration Torque Request Torque Ramp 
Additional Torque 

Request on Launch 

Additional Engine 

Speed on Gear Shift 

Relax Low Low Low Low 

Normal Medium Medium Medium Medium 

Aggressive High High High High 

 

Data during tests are collected with a 10 Hz sampling rate and collected data is investigated in time domain. 

First, the idling maneuvers are extracted from the raw data.  Then, the mean values for acceleration, fuel 

consumption, engine speed, acceleration pedal position and speed are evaluated with a moving average 

filter, where the window and data size are taken as 9 and 6, respectively as also recommended by Murphey 

et al. [1]. 

 

2.2. Test Data Evaluation 

 

In this study, the driving styles are analyzed with seven parameters, which are extracted from the data 

collected during the tests. These parameters are: 1) vehicle speed; 2) vehicle acceleration; 3) engine speed; 

4) acceleration pedal position; 5) fuel consumption; 6) engine speed at gear shifting instance and 7) launch 

time. Among these data, vehicle speed, vehicle acceleration, engine speed and acceleration pedal position 

are directly obtained from the CAN bus of the vehicle. However, the other parameters are calculated from 

the relevant measured data. 

 

Total fuel consumption 𝐹𝑡𝑦 is one of these calculated data by the time-based fuel consumption information 

available from CAN bus. The calculation is performed as shown with Equation (1), where Δ𝑡 indicates the 

sampling time, 𝜆(𝑡) refers to the time-based fuel consumption, 𝑛 is the number of samples collected during 

the driving cycle, 𝑡 is the time and 𝑋𝑡𝑡 is the total distance covered during one driving cycle 

 

𝐹𝑡𝑦 = Δ𝑡
(𝜆(𝑡0)+2∑ 𝜆(𝑡𝑖)

𝑛−1
𝑖=1 +𝜆(𝑡𝑛))

2𝑛
𝑋𝑡𝑡 . (1) 

 

The parameter called as engine speed at gear shifting instance refers to the speed of the engine at which the 

driver shifts gear. This data may reveal important information about the characteristics of the driver. For 

example, if the driver prefers to shift gear at high engine speeds, it is assumed as an aggressive driving 

style. Since this data is not directly available, it has to be extracted from engine speed data. Though, first it 

is required to detect gear shifting instances. Therefore, a gear shift detection algorithm is developed with 

the following rules. Here, it should also be mentioned that the test vehicle is not equipped with a gear 

position sensor. Thus, the gear stage that the vehicle is cruising is determined through the comparison of 

vehicle and engine speeds 

1. Current gear signal must be zero (indicating neutral gear) and previous gear signal must be nonzero, 

2. Gear stage signals before and after shifting should be different, 

3. When the clutch pedal is pressed, gear stage signal should be zero, 

4. Gear shifting process duration must be between 0.3 s and 3 s. 

 

Similar to the previous parameter (engine speed at gear shifting instance), several rules are also defined for 

launch time, which is the elapsed time for accelerating from 0 km/h to 20 km/h. If the launch times for a 

driver are short, it is assumed that the driver has aggressive driving style. Therefore, the launch times are 

determined through an algorithm that is based on the following rules 

1. Vehicle speed must be 0 kph on the start of launch maneuver, 

2. Vehicle must accelerate continuously until 20 km/h speed, 

3. Launch maneuver cannot exceed 10 seconds. 

 

In order to identify driver characteristics, collected data is investigated in velocity vs. acceleration domain. 

Thus, corresponding data for normal drivability calibration is depicted in Figure 1 for nine drivers. Observe 
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that drivers #4, #6 and #8 have high average speed (more than 42 km/h) and acceleration (greater than 0.7 

m/s2). Thus, these drivers are identified with aggressive driving styles. Furthermore, the average velocity 

and acceleration values for drivers #1 and #2 are small; less than 38 km/h and 0.5 m/s2. Hence these drivers 

are assumed to have relaxed driving styles. Finally, the average velocity and acceleration values for the rest 

of the drivers (drivers #3, #5, #7 and #9) locate in between aggressive and relaxed limits. Hence, these 

drivers are assumed to have normal driving styles. 

 

 
Figure 1. Velocity-acceleration traces extracted for all drivers for the tests with normal drivability 

calibration. Key: , Driver #1; , Driver #2; , Driver #3; , Driver #4; , Driver #5; , Driver 

#6; , Driver #7; , Driver #8; , Driver #9 

 

In order to visualize driving styles, selected maneuvers are color-coded on the velocity time histories. Two 

samples of this illustration are shown in Figures 2 and 3 for drivers #2 and #6, respectively. Note that the 

color coding in these figures is as below: 

1. Red: Acceleration greater than 0.4 m/s2 

2. Yellow: Acceleration greater than -0.4 m/s2 and less than 0.4 m/s2, and the acceleration pedal 

position is greater than 15% 

3. Green: Acceleration greater than -0.4 m/s2 and less than 0.4 m/s2, and the acceleration pedal 

position is less than 15% 

4. Pink: Acceleration less than -0.4 m/s2 

5. Light Blue: Vehicle speed less than 2 km/h and engine speed less than 1000 rpm. 

 

As seen on Figures 2 and 3, the characteristics of a driver can be easily grasped. For example, the high 

intensity red and pink areas indicate an aggressive driving style. On the contrary, if green and yellow areas 

are dominant, the driving style can be identified as relaxed. Driver #2 can be given as an example to this 

type of driver as evident from Figure 2. Moreover, driver #6 seems to have aggressive driving style based 

on Figure 3, where there are sudden acceleration and deceleration regimes. 
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Figure 2. Velocity time history and detected maneuvers for Driver #2 for normal vehicle calibration 

 

 
Figure 3. Velocity time history and detected maneuvers for Driver #6 for normal vehicle calibration 

 

3. IMPLEMENTATION OF FUZZY LOGIC ALGORITHM FOR DRIVER CLASSIFICATION 

 

In order to set up the fuzzy logic structure, membership functions and rules should be identified. Thus, the 

thresholds for upper and lower boundaries of the seven critical parameters are determined accordingly. 

Since there are three different drivability calibrations, the thresholds are determined separately for all 

calibration types as tabulated in Table 2. Though, it is seen that the calibration type does not have a 

significant effect on these threshold values, i.e., same set of thresholds could be used regardless of the type 

of the calibration. Here, it should be noted that the data from the first nine drivers are used in order to assess 

the threshold values. Thus, the fuzzy logic architecture is trained with the data of these drivers. Then, the 

data of the last two drivers are used to test the performance of the fuzzy logic structure that is built. 

 

The determination of the thresholds for each fuzzy logic structure are performed as follows. First, all the 

input parameters as listed in Table 2 are extracted from the vehicle test signals. Note that there are 27 sets 

of data that is obtained from 9 drivers at 3 different vehicle calibration configurations. The averages of each 

input parameter at all vehicle calibrations are then calculated and the distribution of each input parameter 
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around the calculated average value is investigated. Based on the distribution of each input parameter for 

all individual vehicle calibrations, a threshold value is determined as the value that splits the membership 

functions as low and high. As an example, the acceleration data of all drivers collected for normal drivability 

calibration is shown in Figure 4. Observe that the acceleration value of 0.6 m/s2 splits the responses into 

two categories, i.e., drivers with mean acceleration levels lower and higher than 0.6 m/s2. Thus, the value 

0.6 m/s2 is used as the threshold of the fuzzy logic membership functions for the acceleration parameter in 

normal drivability calibration. This approach is applied to all parameters with all input parameters and for 

all different calibration values to define fuzzy logic algorithm and membership functions. 

 

 
Figure 4. Positive and negative acceleration values for all drivers for the tests with normal drivability 

calibration. The solid red line shows the threshold value for this input parameter 

 

Table 2. Fuzzy logic input parameters threshold values 

Input Parameter Relax Calibration Normal Calibration Aggressive Calibration 

Fuel Consumption [l] 3 3 3 

Acceleration [m/s2] 0.75 0.6 0.75 

Average Engine Speed [rpm] 1800 1750 1750 

Acceleration Pedal Position [%] 25 25 25 

Velocity [km/h] 40.5 40 40.5 

Launch time [sec] 6.25 6 5.25 

Engine Speed at Gear Shift [rpm] 2250 2500 2750 

 

The fuzzy logic structure is shown in Figure 5. Note that Mamdani method is utilized for building the fuzzy 

logic rules. Fuzzification of driving style classification is carried out using input variables and their 

membership functions. The input variables are defined with two spline-based S-shaped membership 

functions (low and high). These membership functions for the normal calibration of the vehicle are depicted 

in Figure 6. For the defuzzification method, centroid approach is adopted. The output variable, which is the 

driving style is defined with three triangular membership functions, namely relaxed, normal and aggressive. 

Again, the membership functions for the output variable are given in Figure 7 for the normal calibration of 

the vehicle. 
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Figure 5. Fuzzy logic structure 

 

 

 
Figure 6. Spline-based S-shaped input membership functions for the normal calibration of the vehicle 
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Figure 7. Triangular form-based output membership functions for the normal calibration of the vehicle 

 

In the fuzzy logic structure developed in this study, a total of 128 rules are defined depending on the values 

of the critical parameters. Some of these rules are listed in Table 3. For example, if all seven parameters 

are located at lower levels, this driver is assumed to have a relaxed driving style (see the first line in Table 

3). On the contrary, if the driver has high values for all seven input parameters, he/she is assigned with an 

aggressive driving style. Furthermore, if the driver has low values for three input parameters and high values 

for the rest, he/she is classified as a driver with normal driving style. If more than three input parameters 

are low, then the driver is assumed to have a relaxed driving style. 

 

Table 3. An example of fuzzy logic rules defined 

Fuel 

Consumption 
Acceleration 

Average 

Engine 

Speed 

Acceleration 

Pedal 

Position 

Velocity 
Launch 

Time 

Gear Shit 

Engine 

Speed 

Driving 

Style 

Low Low Low Low Low Low Low Relaxed 

High Low Low Low Low Low Low Relaxed 

Low High Low Low Low Low Low Relaxed 

Low Low High Low Low Low Low Relaxed 

Low Low Low High Low Low Low Relaxed 

Low Low Low Low High Low Low Relaxed 

Low Low Low Low Low High Low Relaxed 

Low Low Low Low Low Low High Relaxed 

High High Low Low Low Low Low Aggressive 

High Low High Low Low Low Low Aggressive 

High Low Low High Low Low Low Normal 

High Low Low Low High Low Low Aggressive 

High Low Low Low Low High Low Normal 

High Low Low Low Low Low High Normal 

High High High Low Low Low Low Aggressive 

High High Low High Low Low Low Aggressive 

Low High Low Low High Low Low Aggressive 

Low High Low Low Low High Low Relaxed 

Low High Low Low Low Low High Relaxed 

Low Low High High Low Low Low Normal 

Low Low High Low High Low Low Normal 
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All data are processed with the fuzzy logic structure by evaluating the input parameters regarding the rules 

defined. This process can be summarized as follows: 1) Data is collected on the vehicle three times per 

driver, where the drivability calibration of the vehicle is adjusted in three different configurations (relax, 

normal, and aggressive); 2) Data collected based on a given vehicle calibration is processed with the 

corresponding fuzzy logic algorithm (relax, normal, and aggressive); 3) Driving style of the driver is 

evaluated based on the driving indexes produced by each fuzzy logic algorithm. This decision-making 

process is shown in Figure 8. 

 

 
Figure 8. General decision-making flowchart for driver evaluation 

 

Each fuzzy logic structure produces a scalar, which is called the driving index, in the range 0 – 1 as an 

output. The driving indexes obtained based on the collected data are tabulated in Table 4. Driving indexes 

are then used to identify the characteristics of the corresponding driver, i.e., higher driving index increases 

the aggressiveness of the driving style. Furthermore, the limits for the driving index are defined as follows: 

1) relaxed driving style for the range of 0 – 0.4; 2) normal driving style for the range of 0.4 – 0.6; and 3) 

aggressive driving style for the range of 0.6 – 1. 

 

Observe from Table 4 that, driving styles are predicted for all drivers and drivability calibrations. Thus, 

each driver has assigned with different driving styles based on the drivability calibration of the vehicle. 

This indicates the effect of drivability calibration on the driver response, which may alter from driver to 

driver. For example, the driving styles of drivers #3, #5 and #9 are identified as normal with normal 

drivability calibration. However, the driving style of these drivers become relaxed when the drivability 

calibration of the vehicle is changed to aggressive. This can be explained with extra precautions taken by 

these drivers while driving a vehicle with aggressive drivability calibration. On the contrary, drivers #3 and 

#9 easily adapt to relaxed drivability calibration. In the meantime, drivers #4 and #8 represent aggressive 

driving style regardless of the drivability calibration. Thus, the drivability calibration does not affect the 

driving style of drivers #4 and #8. Similarly, the driving style of driver #1 is identified as normal regardless 

of the drivability calibration of the vehicle. 

 

The final decision on the driving style of a driver is then given based on the arithmetic mean of the driving 

indexes obtained from each fuzzy logic structure, which is also tabulated on Table 4. Therefore, drivers #3 

and #9 are classified with relaxed driving style, drivers #1, #2 and #5 are assumed to have a normal driving 

style and drivers #4, #6, #7 and #8 have an aggressive driving style. 
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Table 4. Fuzzy logic results for the training set 

Driver 

# 

Vehicle Calibration 
Final Decision 

Relax Normal Aggressive 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

1 Normal 0.452 Normal 0.487 Normal 0.423 Normal 0.454 

2 Normal 0.411 Relaxed 0.368 Normal 0.459 Normal 0.413 

3 Relaxed 0.358 Normal 0.453 Relaxed 0.388 Normal 0.400 

4 Aggressive 0.852 Aggressive 0.677 Aggressive 0.844 Aggressive 0.791 

5 Normal 0.408 Normal 0.445 Relaxed 0.385 Normal 0.413 

6 Normal 0.568 Aggressive 0.816 Aggressive 0.807 Aggressive 0.730 

7 Normal 0.522 Aggressive 0.725 Aggressive 0.633 Aggressive 0.627 

8 Aggressive 0.653 Aggressive 0.853 Aggressive 0.740 Aggressive 0.749 

9 Relaxed 0.259 Normal 0.407 Relaxed 0.223 Relaxed 0.296 

 

4. PERFORMANCE ASSESSMENT OF THE FUZZY LOGIC ALGORITHM 

 

In order to understand the effect of threshold values on the decision given by fuzzy logic algorithm, 

threshold values tabulated in Table 2 are varied by ±10% and data is again run through the fuzzy logic 

architecture. Though, the results of only two parameters, namely launch time and engine speed at gear shift 

are presented in Table 5. Note that, data in Table 5 represents the final decisions, thus needs to be compared 

with the last two columns of Table 4. In overall, it is observed that final decisions given by fuzzy logic 

algorithm do not change with respect to threshold values. By the inspection of Table 5, one can see that the 

decisions for driver #5 (for 10% increase at engine speed at gear shift) and driver #7 (for 10% reduction at 

launch time) are changed. The driving indexes for these cases are 0.396 and 0.599, respectively. As seen, 

these driving index values are very close to the limits of driving styles, i.e. 0.4 and 0.6. Furthermore, a 

change in the driving style of driver #3 is observed for 10% increase at engine speed at gear shift. Besides 

these three cases, all the decisions given by fuzzy logic algorithm remain the same as with the nominal 

threshold values. 

 

Table 5. Effect of fuzzy logic threshold values on decision making 

Driver 

# 

10% Increase at 

Launch Time 

10% Reduction at 

Launch Time 

10% Increase at 

Engine Speed at Gear 

Shift 

10% Reduction at 

Engine Speed at Gear 

Shift 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

1 Normal 0.469 Normal 0.475 Normal 0.447 Normal 0.484 

2 Normal 0.400 Normal 0.442 Normal 0.410 Normal 0.467 

3 Normal 0.410 Normal 0.402 Relaxed 0.385 Normal 0.406 

4 Aggressive 0.741 Aggressive 0.745 Aggressive 0.742 Aggressive 0.741 

5 Normal 0.417 Normal 0.408 Relaxed 0.396 Normal 0.415 

6 Aggressive 0.652 Aggressive 0.657 Aggressive 0.654 Aggressive 0.653 

7 Aggressive 0.605 Normal 0.599 Aggressive 0.604 Aggressive 0.606 

8 Aggressive 0.725 Aggressive 0.726 Aggressive 0.714 Aggressive 0.721 

9 Relaxed 0.369 Relaxed 0.339 Relaxed 0.329 Relaxed 0.378 

 

As mentioned before, only the data of the first nine drivers are used in order to develop the fuzzy logic 

approach-based driver classification algorithm. In other words, data from the first nine drivers are used to 

train the fuzzy logic structure. In order to assess the performance of this approach, two other drivers are 

chosen and driving tests are again performed with the same vehicle calibrations. Data collected from these 

tests are run through the developed fuzzy logic-based driver classification algorithm and the results are 

tabulated in Table 6. As seen on Table 6, driver #10 shows a normal driving behavior and driver #11 exhibits 

an aggressive driving style. 
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Table 6. Fuzzy logic results for the drivers #10 and #11 

Driver 

# 

Vehicle Calibration 
Final Decision 

Relax Normal Aggressive 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

Driving 

Style 

Driving 

Index 

10 Normal 0.548 Normal 0.482 Normal 0.430 Normal 0.487 

11 Aggressive 0.701 Aggressive 0.768 Aggressive 0.709 Aggressive 0.726 

 

In order to validate the results of the fuzzy logic algorithm, data from drivers #10 and #11 are further 

investigated. For example, the average acceleration pedal position of driver #10 is around 20%, whilst it is 

over 30% for driver #11. Furthermore, the average fuel consumption of driver #10 is around 2.4 l, whilst 

the average fuel consumption for driver #11 is over 3.4 l. As another parameter, the average vehicle speed 

for drivers #10 and #11 are 37 km/h and 45 km/h, respectively. As evident from these results, the fuzzy 

logic results show similar trend with these key parameters. Thus, it is concluded that the fuzzy logic 

structure developed with the training set successfully predicts the driver characteristics of other drivers that 

do not belong to the training set. 

 

5. RESULTS AND CONCLUSION 

 

In this study, an experimental procedure is developed and experiments are conveyed in order to identify the 

driving styles of different individuals. Accordingly, vehicle tests are performed with eleven different drivers 

at three different drivability calibrations of the test vehicle. Thus, a total of 33 tests are run and data are 

collected mainly through the CAN bus interface of the test vehicle. First, seven important parameters are 

identified that are assumed to be closely related with the driving style of the drivers. These parameters are 

then analyzed from the collected data in order to obtain critical threshold values that are necessary for fuzzy 

logic rules. Though, only the data of first nine drivers are used in order to determine these threshold values. 

In the fuzzy logic structure, a total of 128 rules are defined, and the driver classification is performed for 

all three drivability calibrations. Finally, drivers are assigned a scalar value by the corresponding fuzzy 

logic algorithm as identified as driving index, and the driving styles of all drivers are predicted. Based on 

these driving indexes, it is observed that the drivability calibration can be effective on the driving style of 

the driver. In order to investigate the effect of threshold values on driving style decisions, the threshold 

values of seven important parameters are varied by ±10% and new decisions are taken from the fuzzy logic 

structure with these altered threshold values. It is observed that, the change in final decision is minimal 

with respect to a change in threshold value. Thus, it is concluded that there is no significant effect of 

threshold values on the driving style decision. Further, test data of the other two drivers are used in order 

to assess the performance of the driver classification algorithm. Comparing the fuzzy logic results with the 

driving data shows that the fuzzy logic algorithm successfully predicts the driver behavior even for the 

drivers that are kept out of the training set. In conclusion, a prediction algorithm with a focus on driving 

characteristics, which establishes fuzzy logic structure, is successfully developed in this study. Even though 

it is off the scope, this approach can be implemented on a vehicle as a decision-making process for 

automated prediction. The in-situ evaluation of the input parameters as described in this study can yield to 

a driving index that can be used to decide on the driver behavior. Though, this requires the use of a single 

fuzzy logic structure, i.e. one fuzzy logic algorithm irrespective of the vehicle calibration. Hence, the 

vehicle can alter its drivability characteristics based on the driving style of the driver. 
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